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Abstract

Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target for
multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 has proven
challenging and, in some cases, may not be the most productive way to redirect Hsp70 function.
Another approach is to inhibit Hsp70’s interactions with important co-chaperones, such as J
proteins, nucleotide exchange factors (NEFs) and tetratricopeptide repeat (TPR) domain-
containing proteins. These co-chaperones normally bind Hsp70 and guide its many diverse cellular
activities. Complexes between Hsp70 and co-chaperones have been shown to have specific
functions, such as pro-folding, pro-degradation and pro-trafficking. Thus, a promising strategy
may be to block protein-protein interactions between Hsp70 and its co-chaperones or to target
allosteric sites that disrupt these contacts. Such an approach might shift the balance of Hsp70
complexes and re-shape the proteome and it has the potential to restore healthy proteostasis. In
this review, we discuss specific challenges and opportunities related to those goals. By pursuing
Hsp70 complexes as drug targets, we might not only develop new leads for therapeutic
development, but also discover new chemical probes for use in understanding Hsp70 biology.
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INTRODUCTION

Diversity of Hsp70 Functions

Heat shock protein 70 (Hsp70) is a molecular chaperone that plays a central role in protein
quality control [1, 2]. Hsp70 binds to protein substrates to assist with their folding [3, 4],
degradation [5–7], transport [8], regulation [9, 10] and aggregation prevention [11]. The
capacity of Hsp70 to carry out these widely divergent functions arises, in part, from three
features. First, evolution has given rise to multiple homologous Hsp70 genes [12, 13]. These
Hsp70s populate the major subcellular compartments. For example, the cytosol of human
cells has two major Hsp70 paralogs, a stress-inducible form (Hsp72/HSPA1A/B) and a
constitutive form (Hsc70/HSPA8). Additionally, BiP (HSPA5) is the Hsp70 paralog in the
endoplasmic reticulum, while mortalin (HSPA9) is found in the mitochondria. For the
purposes of this review, “Hsp70” will often be used to broadly refer to these chaperones
because they are thought to, in many cases, have similar biochemical properties. Another
source of functional diversity is Hsp70’s cooperation with other chaperones, such as the heat
shock proteins Hsp90 and Hsp60 [4]. Cooperation between Hsp70 and Hsp90, for example,
is critical to the function of nuclear hormone receptors [8]. Finally, the full diversity of
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Hsp70’s activities is achieved by collaborating with a large network of co-chaperones [1,
14], including J proteins, nucleotide exchange factors (NEFs), and tetratricopeptide repeat
(TPR) domain-containing proteins [15]. These factors bind to Hsp70 and guide its many
chaperone activities. In addition, the Hsp70 system is further diversified by the fact that each
co-chaperone class contains multiple members (Figure 1).

Hsp70 as a Therapeutic Target

Hsp70 has been implicated in multiple diseases, such as neurodegenerative disorders [16],
cancer [17], and infectious disease [18] and the evidence linking Hsp70 to disease has been
recently reviewed [19–21]. Despite this strong connection, relatively little progress has been
made in bringing Hsp70 inhibitors to the clinic. One of the contributing factors to this lack
of translational progress is that Hsp70’s functional promiscuity makes it difficult to predict
potential off-target effects. As discussed above, Hsp70 is involved in many key processes in
the cell; thus, it is not clear how therapeutics could be used to rebalance some pathological
Hsp70 functions without impacting global proteostasis. One attractive possibility may be to
target the interactions between Hsp70 and its co-chaperones because these factors are
thought to diversify Hsp70’s functions.

A major focus of this review is to explore the structure and function of Hsp70 multi-protein
complexes and evaluate recent progress in identifying compounds that selectively target the
assembly/disassembly of these complexes. The underlying model is that each complex
composed of an Hsp70 (e.g. Hsc70, Bip, etc) bound to a specific set of co-chaperones (e.g. J
protein, NEF, or TPR domain-containing protein) might be involved in a discrete aspect of
chaperone biology (e.g. clathrin uncoating, protein folding, degradation, etc.). Thus, if small
molecules selectively disrupted an interaction between Hsp70 and a specific co-chaperone,
then only a subset of Hsp70 biology might be impacted. In other words, the complexity of
this chaperone network provides a unique opportunity to influence specific subsets of
protein quality control while leaving the rest unperturbed. The challenge of this strategy is
that it has been notoriously difficult to target protein-protein interactions [22–24], such as
those between Hsp70 and its co-chaperones. However, new advances in high throughput
screening (HTS) methodology are rapidly changing the landscape of discovery in this area.
In fact, Hsp70 might be a particularly attractive target for deploying these methods, owing to
its high number of protein-protein contacts that are important in guiding Hsp70 biology.

Structure and Function of Hsp70 and Its Complexes

Hsp70 consists of two domains, a 45 kDa N-terminal nucleotide binding domain (NBD) and
a 25 kDa C-terminal substrate binding domain (SBD), which are connected by a short
flexible linker [25]. The NBD of Hsp70 is further divided into two subdomains, lobes I and
II, which are each divided into an “A” and “B” region (Figure 2). These lobes form a cleft
that binds ATP with a nucleotide binding cassette that is related to hexokinase and actin
[26]. Hsp70’s SBD is composed of a 15 kDa β-sandwich subdomain with a hydrophobic
groove for polypeptide binding and a 10 kDa α-helical region which forms a “lid” over the
polypeptide binding site [27]. Hsp70 preferentially binds hydrophobic regions of proteins
and can therefore bind newly synthesized linear peptides or exposed regions on partially
unfolded proteins [3, 28]. Additionally, a lack of strong sequence specificity allows Hsp70
to bind a variety of client proteins including signal transduction proteins, clathrin, nuclear
hormone receptors, and cytoskeletal proteins [29, 30].

The ATPase cycle of Hsp70 has been largely studied for the prokaryotic DnaK ortholog. In
this chaperone, ATP hydrolysis involves critical allostery between the NBD and SBD. In the
ATP-bound state, Hsp70 has a low affinity for substrate and retains an “open” substrate-
binding cleft, but conversion to the ADP-bound state causes the α-helical lid region to

Assimon et al. Page 2

Curr Pharm Des. Author manuscript; available in PMC 2014 January 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



“close” (Figure 3) [31]. In DnaK, this crosstalk between the NBD and SBD appears to be
bidirectional, because substrate binding also promotes nucleotide hydrolysis [31, 32]. Thus,
ATP hydrolysis in Hsp70 is thought to be a major determinant of chaperone function. For
example, mutations in the ATP binding cassette have dramatic effects on chaperone function
in vitro and in vivo [33]. However, recent mutagenesis studies have further shown that the
relationship between ATP hydrolysis and chaperone function is indirect [33]. For example,
some mutations in DnaK that dramatically reduce ATP turnover have only modest effects on
luciferase refolding. In the context of this review, these observations suggest that inhibiting
the ATPase activity of Hsp70 might not always directly lead to proportional changes in
functional outcomes, such as reduced client stability. Rather, modifying the interactions with
co-chaperones might have a more predictable effect on chaperone functions [33].

Co-Chaperones Regulate Hsp70 Structure and Activity

The major families of co-chaperones bind to distinct interaction surfaces on Hsp70 (Figures
1 and 2). The J protein co-chaperones bind protein substrates and interact with Hsp70 at
lobes IA and IIA of the NBD. This interaction results in an accelerated rate of ATP
hydrolysis [34]. The NEF co-chaperones bind lobes IB and IIB of Hsp70’s NBD and
facilitate the release of ADP, which has also been shown to accelerate Hsp70’s ATPase rate
[35]. TPR domain-containing co-chaperones bind Hsp70’s C-terminus and have been shown
to modulate the fates of Hsp70 substrates [36]. Thus, these major families of co-chaperones
bind Hsp70 to regulate its enzymatic activity, its choice of substrates and its triage decisions.
These systems will be discussed in more detail below.

Approaches to Targeting Hsp70

What is the best way to chemically target Hsp70? One possible approach is to inhibit
ATPase activity with competitive nucleotide analogs[20], as has been done with Hsp90
inhibitors [37]. The nucleotide binding cleft of Hsp70 is well defined and relatively deep,
suggesting that it might be suitable for development of inhibitors. However, Hsp70 has a
relatively tight affinity (mid-nanomolar) for nucleotide, 300-fold better than Hsp90 [38–41].
Because the cellular concentration of ATP is typically 1–5 mM, protein targets with a high
affinity for ADP and ATP are much more difficult to inhibit than those with a lower affinity.
Further, the ATP binding cassette in Hsp70 is highly homologous in actin and other
abundant proteins. Thus, selectivity for the chaperone might be challenging. Despite these
challenges, innovative work performed by Vernalis has produced competitive, orthosteric
inhibitors of Hsp70, using structure-based design [42]. Consistent with their design, these
compounds inhibit cancer cell viability [42] and this group has even been successful at
selectively targeting BiP [43]. However, Massey has reported that the path towards
orthostatic competitive inhibitors of Hsp70 is quantitatively more challenging than the
parallel path to other related targets, such as Hsp90 [41]. Given these hurdles, it seems
prudent to pursue additional routes to the design and discovery of potent and selective small
molecule modulators targeting Hsp70.

Targeting the substrate binding cleft of Hsp70 is the next logical avenue, given the depth of
the site and its known affinity for relatively low molecular mass peptides. This approach has
been taken by Chaperone Technologies in their development of antibiotics. For example, a
series of 18–20 amino acid peptides, including drosocin, pyrrhocoricin, and apidaecin, are
known to interact with DnaK [18]. Of these peptides, pyrrhocoricin exhibited broad-
spectrum antibacterial activity. Competition experiments indicated that this peptide has two
binding sites on DnaK, one of which is thought to be adjacent to the substrate binding
pocket. Interestingly, pyrrhocoricin has activity against bacteria but not mammalian cells
[44], suggesting that the SBD could be leveraged to gain selectivity between different
homologs of Hsp70. While this work highlights the usefulness of SBD-targeted compounds
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as antibiotics, it is unclear whether this strategy could be implemented in the development of
therapeutics for different Hsp70 related diseases. Of particular interest is whether enough
selectivity could be generated in the peptide binding groove to avoid widespread disruption
of the proteome.

One promising, unbiased approach has been recently reported by Garrido and colleagues, in
which they used a yeast-two hybrid experiment to identify peptide aptamers that bind either
the NBD or SBD of Hsp70. These aptamers sensitize cancer cells to anti-cancer drugs in
vivo [45, 46], strongly suggesting the potential of this approach. Thus far, it isn’t clear
whether these aptamers compete with nucleotide or peptide substrates or whether they have
another mechanism of action. Given that these molecules were identified in a cell-based
screen, it seems likely that they do not directly compete with the abundant nucleotide or
substrates.

Given the significant challenges associated with the targeting of either the nucleotide or
substrate binding regions of Hsp70, additional strategies are worth pursuing. A number of
additional Hsp70 inhibitors have been identified, but their mechanisms are not known yet
[47–49]. To supplement this collection of compounds, targeting the PPIs between Hsp70
and its many co-chaperones may be an effective approach. In the following sections, we
discuss the each co-chaperone class in more detail and outline some of the successes and
challenges associated with targeting these PPIs.

OPPORTUNITIES FOR DRUG DISCOVERY IN THE HSP70 COMPLEX

J Proteins

J proteins are a class of Hsp70 co-chaperones whose diversity in structure and function are
crucial to the flexibility of the Hsp70 machinery. Evolution has dramatically expanded the
cellular repertoire of J proteins relative to Hsp70s, such that humans have over 40 J protein
encoding genes, but only 13 Hsp70 genes [50, 51]. Moreover, the coexistence of many J
proteins within the cytosol and nucleus suggests that they have evolved for distinct functions
[52, 53]. All J proteins share a conserved J domain but they diverge in other regions, perhaps
providing the functional diversity needed to recruit Hsp70 into many different cellular
activities. Accordingly, various J proteins have been linked extensively with a wide array of
pathological conditions including cancer, neurodegeneration, muscular dystrophy, and viral
infection [54–58]. Thus, J proteins may be interesting pharmacological targets because they
have the potential to impact a subset of Hsp70-dependent functions.

The J domain is a highly conserved structure that consists of four α-helices (Figure 1). The J
domain interacts directly with the NBD of Hsp70 to stimulate ATP hydrolysis and allosteric
conversion into a high affinity substrate binding conformation [59–61]. For the bacterial
DnaJ-DnaK interaction, the interface consists of the positively charged helix II of the J
domain interacting electrostatically with the negatively charged NBD in lobes IA and IIA
[34, 62–64]. Additionally, J domains include an invariant His-Pro-Asp (HPD) motif in the
loop between helices II and III that is required for function. Though the overall four-helix
architecture of the J domain is largely conserved among J proteins, subtle structural
differences suggest that some functional diversity may arise from J domain interactions with
Hsp70 [65]. For example, mutants in the NBD of the yeast BiP disrupt interactions with only
a subset of available J proteins [66, 67]. Although speculative, these findings suggest that it
might be possible to independently target specific J domains at the contact surface with
Hsp70.

J proteins have been traditionally grouped into three classes based on structural homology to
the Escherichia coli DnaJ (Figure 3A). Class A consists of an N-terminal J domain, a
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glycine-phenylalanine (G/F) rich region, a zinc finger-like region (ZFLR), a barrel topology
C-terminal domain (CTD) and a dimerization domain [68, 69]. Class B has the N-terminal J
domain and G/F region, lacks a ZFLR and is more structurally variable at the C-terminus,
but often contains two CTDs (CTDI and CTDII) [51]. Class C, the largest class, consists of
proteins containing a J domain and no other structural homology to DnaJ. More recently,
Kampinga and Craig have provided a revised classification system based more closely on
function [69]. This classification represents an important new paradigm in thinking about J
proteins and it highlights the major contribution of J proteins to directing the activity of
Hsp70.

Specific functions have been described for only some of the individual J proteins and much
more work is needed to clarify this area. However, some convincing and illustrative
examples include auxilin (DNAJC6), which has a C-terminal J domain and a clathrin-
binding domain. This J protein is exclusively involved in the Hsp70-dependent uncoating of
clathrin-coated vesicles [70–72], an activity not readily redundant with other J proteins.
Similarly, DNAJC7 interacts with both Hsp70 and Hsp90 and seems to play a “recycling”
role in the chaperoning of specific substrates, such as the progesterone receptor [73]. In the
ER, ERdj3 (DNAJB11) works with BiP to assist with ER-associated degradation (ERAD)
[74, 75]. These and other examples [76] lead to a speculative model in which individual J
proteins might be responsible for each of Hsp70’s specific functions. In support of this idea,
a systematic study of human J proteins found that a subset are able to refold luciferase, while
others inhibit aggregation of heat-denatured luciferase [53], further suggesting that these co-
chaperones may be specialized.

One prevailing model is that J proteins may bind to substrates and present them to Hsp70.
While this concept is likely oversimplified when applied to the large family of J proteins, the
interaction of these co-chaperones with substrates seems to play a crucial role in some cases.
For example, Lu and coworkers deleted the J domain of Ydj1 (yeast DNAJA1) and found
that the remaining portion suppresses rhodanese aggregation on its own [77]. Later work
identified a shallow hydrophobic depression on the CTDI of Sis1 (yeast DNAJB1) and
found that four point mutants in this domain inhibited luciferase binding and refolding [78].
These studies suggest that J proteins can bind directly to substrates. Further insight into how
J proteins bind to their substrates has largely been gained from peptide microarray
experiments. These studies have revealed that the prokaryotic DnaJ binds ~8mer peptides
enriched in hydrophobic residues [79]. Interestingly, DnaJ does not discriminate between L-
peptides and D-peptides, indicating that peptide binding involves side chain interactions [79,
80]. However, a crystal structure of the Ydj1 C-terminus bound to the peptide GWLYEIS
suggests that the peptide forms a β-strand alongside a β-sheet in CTDI and several contacts
are made with the peptide backbone [81] (Figure 3B). This discrepancy may be due to
species differences and the fact that the general rules for J protein-substrate interactions are
not yet clear. However, it is reasonable to hypothesize that formation of Hsp70-J protein-
substrate complexes may be important in directing Hsp70 to “choose” specific substrates.

The interaction between J proteins and substrates appears to important for several disease-
relevant proteins [82]. For example, DNAJB1 and DNAJB6 inhibit the aggregation and
toxicity of mHtt, which is involved in Huntington’s disease [83–85]. However, another J
protein, DNAJA1, co-localizes with mHtt aggregates [86] and its over-expression increases
mHtt aggregation [87]. These observations suggest that individual J proteins, such as
DNAJB1 and DNAJA1, might have unique roles in protein quality control. This concept is
further illustrated by studies on the Hsp70 substrate, tau [88], in which DNAJB1 inhibits
aggregation of tau in vitro [89], while DNAJA1 over-expression causes the proteasomal
degradation of tau [90]. Together, these observations suggest that the interactions between J
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proteins and their substrates might be interesting drug targets, but that more information is
needed about how this network is assembled.

While the interactions between J proteins and their substrates have not been
pharmacologically targeted, several compounds impact the ability of J proteins to act on
Hsp70s. This PPI between Hsp70 and its J proteins is attractive because of the importance of
co-chaperone in regulating ATP turnover. The first of the compounds to interfere with this
PPI was 15-deoxyspergualin (DSG), a modified natural product that stimulates cytosolic
Hsp70 ATP hydrolysis [91–93]. Chemical screens for structurally similar molecules
identified R/1, a compound that specifically inhibits the J protein-stimulated ATPase activity
of the yeast cytosolic Hsp70, Ssa1 [94] (Figure 4). These findings suggested that drug-like
molecules could be identified that alter the allostery between J proteins and Hsp70s. In
further support of this idea, an unrelated class of molecules, the sulfogalactosyl ceramide
(SGC) mimics, was developed. SGC is a cell surface receptor that binds the NBD of
multiple members of the Hsp70 family [95, 96]. Park and coworkers developed a soluble
mimic of SGC called adamantylSGC (AdaSGC). AdaSGC inhibits the J protein-stimulated
ATPase activity of Hsp70, but not its intrinsic (i.e. unstimulated) activity, suggesting that it
may directly inhibit the J domain-Hsp70 interaction [97].

More recent high throughput screening (HTS) efforts have identified a broader range of
compounds that specifically influence J protein-stimulated Hsp70 ATPase activity. For
example, screening of a collection of dihydropyrimidines identified three examples,
including MAL3-101, which had no effect on intrinsic Hsp70 ATP turnover, but inhibited J
protein-stimulated turnover [98]. Subsequent screening and structural studies confirmed this
outcome and showed that the dihydropyrimidines bind to a region at the J protein-Hsp70
interface [99–101]. Moreover, these studies also found that some dihydropyrimidines
promote J protein activity, while others are inhibitory. For example, 115-7c is able to
stimulate the ATPase activity of Hsp70 synergistically with DnaJ [99]. 115-7c binds better
to the DnaJ-DnaK complex than DnaK alone and nuclear magnetic resonance (NMR)
studies found that 115-7c binds directly adjacent to the J domain-binding site on DnaK.
However, the related compound 116-9e, which (similar to MAL3-101) has a diphenyl
substitution on the dihydropyrimidine ring, inhibits DnaJ stimulation of ATPase activity,
without impacting NEF function [99]. Interestingly, MAL3-101 seems to discriminate
between J proteins because it inhibits Ssa1 stimulation by SV40 large T Antigen (TAg), a
viral J protein, but had less potent activity against the combination of Ssa1 and Ydj1. This
finding suggests that it may be possible to achieve J protein-specific inhibition even by
targeting the J protein-Hsp70 interface. MAL3-101 was subsequently found to have potent
anti-cancer effects in a multiple myeloma cell line and mouse model [102], while other
dihydropyrimidines have been found to control stability of other Hsp70 substrates, including
tau, polyglutamines and Akt [48, 73, 103, 104]. This growing body of work suggests that
targeting the Hsp70-J protein interface may be a productive approach for guiding Hsp70
functions. Importantly, these compounds are not generally cytotoxic and they do not activate
a stress response [48, 103, 104], consistent with the idea that disrupting PPIs in the Hsp70
complex may be relatively well tolerated.

Other chemical series also appear to have activity against the Hsp70-J protein interaction
and, interestingly, some of these compounds use mechanisms different than the one used by
the dihydropyrimidines. For example, an HTS effort against the DnaK-DnaJ pair identified
the flavinoid myricetin, which inhibits DnaJ-stimulated ATPase and substrate binding
activities, without affecting intrinsic or NEF stimulated activity [48, 105]. NMR revealed
that myricetin binds the NBD in a region between the IB and IA subdomains, which is a
more than 20 Å away from the J domain-binding site [105]. However, myricetin blocks
binding of DnaJ to DnaK, suggesting that it acts across a long-distance allosteric pathway.

Assimon et al. Page 6

Curr Pharm Des. Author manuscript; available in PMC 2014 January 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Additional HTS efforts have shown that methylene blue (MB) blocks J stimulation of ATP
turnover in vitro. However, like myricetin, MB’s effects in cells and animals are complex
and it is likely to have targets other than Hsp70s [48, 73, 106]. Despite this complexity, MB
and myricetin have clearly shown Hsp70-dependent effects on pathological substrates in
cellular and animal models [48, 73, 107] and they reduce Akt levels in cancer cells [104].
Interestingly, these effects are blocked by co-administration of 115-7c, the
dihydropyrimidine activator of J protein function [48], further suggesting that the Hsp70-J
protein contact is critical. Finally, a larger HTS effort using more than 55,000 compounds
identified zafirlukast as an inhibitor of the DnaK-DnaJ combination [108] and a screen of
more than 300,000 compounds identified an inhibitor of TAg [109]. The binding site of
these molecules is not yet known, but it shows that a screening strategy employing
reconstituted chaperone complexes can be used to identify specific inhibitors of a PPI in the
Hsp70 system. Like the dihydropyrimidines, some of these are likely orthostatic, while
others may be allosteric, like myricetin.

The effects of small molecules on disease-relevant Hsp70 substrates are an initial indication
that this is a promising avenue of investigation. However, J protein biology is complex and
more work is needed to rationally refine these studies to focus on specific J protein-Hsp70
pairs. More specifically, if a discrete Hsp70-J protein pair can be clearly attributed to a
distinct pathobiology, then HTS approaches might be employed to selectively disrupt (or
even promote) the key protein-protein interactions.

Nucleotide Exchange Factors (NEFs)

Nucleotide exchange factors (NEF) provide another potential “handle” for targeting the
Hsp70 chaperone complex. NEFs bind Hsp70 and help to facilitate the exchange of ADP for
ATP. The biochemisty of the NEF family of co-chaperones has classically been investigated
using the prokaryotic NEF, GrpE, as a model [110]. However, the eukaryotic cytosol does
not contain a GrpE homolog. Rather, there are three main sub-classes of human NEFs:
Hsp110, HspBP1, and the BAG proteins, all of which are structurally distinct with little to
no sequence homology. Consistent with their diverse structures, they also differ in their
mode of binding to Hsp70s and their roles in guiding Hsp70 biology. For example, BAG2 is
associated with proteasomal degradation of the Hsp70 substrate, tau, while BAG1-Hsp70 is
linked to increased tau stability [111, 112]. These observations suggest that the formation of
specific NEF-Hsp70 complexes may help decide the fate of Hsp70-bound substrates.
Additionally, these findings illustrate that differential disruption of specific Hsp70-NEF
contacts might be beneficial in disease. For example, members of the NEF family are
differentially expressed in multiple diseases, including cancer, Alzheimer’s,
cardiomyopathies, and ischemia [113–116], highlighting the rationale for developing
chemical modulators of NEF-Hsp70.

Hsp110 was originally observed and classified as a heat shock protein based on the
appearance of a 110 kDa band in the lysates of Chinese Hamster Ovary (CHO) cells upon
heat shock [117]. In humans the major cytosolic Hsp110 protein is called Hsp105 (HSPH1)
and it has two major isoforms α and β [118]. Hsp105β results from alternative splicing at
exon 12 and lacks 43 amino acids from its C-terminus. Recently, a mutant of Hsp110 that
skips exon 9 and results in a truncated form of Hsp110, Hsp110ΔE9, has also been
described [119]. This truncated Hsp110ΔE9 is able to act as a dominant negative mutant,
abrogating Hsp110 chaperone activity and sensitizing cancer cells to chemotherapy
treatments [119]. Since Hsp110 has been shown to protect cancer cells against apoptotic
death [120], strategies to block its function or its interactions with Hsp70 could be promising
cancer therapies.
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Hsp110 is an evolutionary relative of the Hsp70 family and therefore it has very similar
domain architecture, with the main differences including a longer acidic loop region
between the β-sandwich and α-helical lid of the SBD and a larger unstructured C-terminal
extension [121, 122]. Despite the structural similarity, Hsp110 only functions as a holdase
and has no ability to refold substrates without the help of the Hsp70 machinery [122–126].
Furthermore, while Hsp110 homologs bind nucleotide, this function seems to be dispensable
for their NEF activity [127]. The crystal structure of the complex between Hsp70 and yeast
Hsp110, Sse1, shows that the interaction covers a large surface area involving their
respective NBDs [128, 129]. This interaction between Hsp70 and Hsp110 causes several
rotations in Hsp70’s NBD, especially in lobe IIB [130], allowing ADP release (Figure 5).

The large buried surface area between Hsp70 and Hsp110 may make targeting this
interaction difficult. The problem in PPI systems like this is that binding energy is often
distributed across a large and complex topology, precluding easy inhibition by small (<500
Da) molecules. However, inhibiting PPIs with large surface areas is not unprecedented and
compounds with potency values in the low nM range have been reported [131]. A common
feature of previous successful strategies is that the small molecules tend to target so-called
“hotspots” of the PPI, meaning the inhibitor binds in a region on one partner containing a
small number of residues that are responsible for the majority of the binding strength [132,
133]. Thus, it will be important to identify residues that are critical to the Hsp70-NEF
interaction. Another common feature of successful PPI inhibitors is that they bind in
allosteric sites to impact the topology of protein-protein contact surfaces from a distance
[133]. This approach lets the small molecule bind in a relatively concise pocket and impact
larger surfaces to block PPIs. It seems likely that similar mechanisms will need to be
employed to target the Hsp110-Hsp70 interaction.

Similar issues are important in considering the potential for inhibition of the other major
classes of NEFs. For example, HspBP1 is a 40 kDa protein that is composed of two
structural domains, a largely unstructured N-terminal domain and a C-terminal domain that
is mostly α-helical and is responsible for HspBP1 binding to Hsp70 [134]. This C-terminal
region has been shown to be sufficient for eliciting Hsp70 nucleotide release [134, 135] and
co-crystal structures suggest that HspBP1’s C-terminal domain interacts with lobe II of
Hsp70’s NBD (Figure 5) [135]. Importantly, this interaction is not the same as the PPI
between Hsp70 and Hsp110, suggesting that this contact might be selectively inhibited. This
goal might be attractive because of HspBP1’s links to cancer and chemotherapy resistance
[136].

Additional lessons about how to potentially target the Hsp70-NEF interaction are illustrated
by the BAG family of co-chaperones, which includes BAG1-6. BAG proteins are defined by
a characteristic C-terminal BAG domain that binds lobe IB and IIB of Hsp70’s NBD and
facilitates nucleotide release [137, 138]. This BAG domain typically consists of 110 to 124
amino acids and forms a three-helix bundle with the second and third helices providing the
binding interface for Hsp70 [35, 139]. The association between the BAG domain and Hsp70
causes a 14° rotation in lobe II, which results in an opening of the nucleotide binding cleft
and promotes ADP release (Figure 5) [35]. Interestingly, while all BAG proteins interact
with Hsp70 through their conserved BAG domains, their N-terminal region is highly
variable. This diversity is likely to be key for pathway specificity and BAG proteins may use
these domains to determine the timing and location of nucleotide-dependent delivery of
Hsp70-bound cargo.

BAG1 is the founding member of the BAG protein family. It was initially discovered by two
independent research groups using immunochemical screening methods to identify
interacting partners of the anti-apoptotic protein Bcl-2 and the glucocorticoid receptor,
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respectively [140, 141]. The former researchers entitled their protein Bcl-2-associated
AnthanoGene-1 (BAG1) [140]. Four human BAG1 isoforms are expressed through
alternative initiation sites and are designated BAG1L (p50, Hap50), BAG1M (p46, Rap46,
Hap46), BAG1S (p36, Hap33), and p29 (Hap29) [142]. BAG1S is the most abundant
isoform expressed in cells, followed by BAG1L and BAG1M, while p29 is not consistently
detected [143]. BAG1 isoforms share a common C-terminus, containing the BAG domain
and an Ubiquitin-like (UBL) domain, while their N-termini differ based on the translation
initiation site (Figure 6). Besides their BAG and UBL domains, longer isoforms of BAG1
(M & L) also contain TXSEEX repeats, a DNA-binding domain (DBD), and BAG1L
contains a nuclear localization signal (NLS). These various domains help to dictate
interacting partners as well as cellular function and localization of each BAG1 isoform (for
review see [144]).

BAG1 regulates the fate of Hsp70-bound substrates. For example, the UBL domain of
BAG1 allows for BAG1-Hsp70 complexes to associate with the proteasome and promotes
the degradation of specific substrates such as the glucocorticoid receptor, BCR-ABL and Htt
[145–147]. However, BAG1 has also been shown to inhibit proteasomal degradation of
other Hsp70 substrates, such as tau [112]. These observations suggest that chemically
targeting BAG1-Hsp70 complexes could be used to reshape the proteome. Work towards
that goal been reported by Sharp et. al, in which they performed a screen for inhibitors of the
BAG1-Hsp70 interaction using GST pulldowns. After hit validation, NSC71948 (Thioflavin
S), was selected for further study [148]. This compound inhibits ERK phosphorylation and
growth of ZR-75-1 human breast cancer cells. Another promising scaffold was identified by
Leu et. al, in which they identified PES in a screen for anti-cancer compounds that impact
p53-mediated apoptosis. Later, they found that PES disrupts Hsp70 co-chaperone complexes
including its association with BAG1 [149]. The preliminary successes of these screening
approaches suggest that targeting a BAG-Hsp70 complex is both feasible and beneficial,
however, further studies are still needed. For example, the binding sites and mechanisms of
these molecules are not yet clear.

The BAG family members BAG2 and BAG3 were identified in a yeast two hybrid screen
with the NBD of Hsp70 as bait and were named based on their structural and functional
similarity to BAG1 [137]. The crystal structure of its BAG domain revealed that BAG2 does
not adopt the canonical three-helix bundle and instead forms a dimeric structure with each
monomer consisting of only two long antiparallel helices [150]. Intriguingly BAG2 has also
been shown to independently bind an Hsp70 client substrate, CFTR (cystic fibrosis
transmembrane conductance regulator), and inhibit its proteasomal degradation [151]. Like
BAG1, however, BAG2 regulation of Hsp70 function is substrate specific. BAG2 has also
been shown to increase the proteasomal degradation of tau in an ubiquitin-independent
manner [111].

BAG3 is one of the largest BAG proteins and it contains a WW domain, a proline rich
region containing multiple PXXP motifs, and two IPV motifs, which have recently been
shown to facilitate interactions between BAG3 and certain small heat shock proteins (Figure
6). In comparison to other BAG proteins, BAG3 is unique in that it is the only member
induced under stress conditions, mainly through activation of heat shock factor 1 (HSF1)
[152]. HSF1 is required for tumor initiation and maintenance in a variety of cancer models,
which suggests a role for BAG3 in tumor formation [153]. In support of this notion, it has
been shown that the BAG3-Hsp70 complex stabilizes a number of key oncogenes,
suppressing apoptosis [154–158]. Accordingly, silencing of BAG3 in multiple tumor lines
sensitizes the cells to chemotherapy, suggesting that the BAG3-Hsp70 complex is an
especially attractive drug target [157].
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One of the major questions in this field is whether the structural differences between the
major NEF classes can be exploited to produce selective inhibitors of the various families
(Figure 5). Similarly, can different members of the BAG family be individually targeted?
Further, it is not yet clear how many NEF functions are dependent on Hsp70 and how many
are independent.

Tetratricopeptide Repeat (TPR) Domain-Containing Proteins

Hsp70 also cooperates with a number of TPR domain-containing proteins. The TPR motif is
defined by a degenerate 34 amino acid sequence that forms an amphipathic antiparallel α-
helix [38, 159–162] and a TPR domain is typically assembled from 3 to 16 tandem TPR
motifs. Although first identified in subunits of the anaphase promoting complex [163, 164],
the TPR domain has since been found to be a common feature of protein-protein
interactions, including those with Hsp70 co-chaperones.

Members of the family of TPR co-chaperones, as a whole, share little homology outside
their TPR domains and they typically have regions involved in functions unrelated to Hsp70/
Hsp90 binding [38, 159–162]. For example, the TPR co-chaperone CHIP (carboxyl terminus
of Hsc70 interacting protein) is an ubiquitin E3 ligase with an effector Ubox domain [165].
This co-chaperone directs ubiquitination of Hsp70-bound substrates, marking them for
proteasome-mediated degradation [166, 167]. In contrast, the TPR co-chaperone Hop
(Hsp70/Hsp90 organizing protein) has three TPR domains: TPR1, TPR2A, and TPR2B. Of
these domains, TPR1 and TPR2A mediate the association with Hsp70 and Hsp90,
respectively [168, 169]. Thus, Hop facilitates the coordination of Hsp70 and Hsp90,
ultimately allowing for the transfer of substrate between these two chaperone systems [170,
171]. This coordination allows Hop to play a central role in the folding of non-native protein
substrates, such as nuclear hormone receptors [172, 173]. Thus, when Hop and CHIP
compete for binding to Hsp70 through their TPR domains, they establish a choice between
two opposing fates: folding vs. degradation. These findings clarify our understanding of the
combinatorial assembly of Hsp70 complexes, in which mutually exclusive binding of Hsp70
to specific co-chaperones dictates the fate of substrates [174–176]. Taken together, these
features suggest that chaperone complexes may have the potential to be chemically
modulated in order to “tune” the proteome.

TPR co-chaperones interact with the intrinsically disordered C-terminus of Hsp70.
Mutagenesis studies [169, 177, 178] and co-crystal structures of the TPR domains of Hop
and CHIP with Hsp70 C-terminal peptides [168, 179] illustrate the importance of the C-
terminal EEVD-COOH amino acids in mediating these PPIs [177, 180]. Based on these
findings, the EEVD motif of Hsp70 has been generalized as the minimal binding site for
TPR co-chaperones. This motif is also present in the extreme C-terminus of the
evolutionarily unrelated molecular chaperone Hsp90, but not in the prokaryotic DnaK,
mitochondrial or ER-resident Hsp70 homologs. These observations highlight the role of the
EEVD motif as a recruitment element that anchors TPR co-chaperones to the cytoplasmic
Hsp70 and Hsp90 chaperone systems. However, there is not much known about how TPR
co-chaperones “compete” for binding to Hsp70. Thus, compounds that block the EEVD-
TPR interaction might be exciting probes for understanding chaperone biology and these
compounds may serve as leads for drug discovery.

The importance of EEVD-TPR domain contacts in facilitating PPIs between Hsp70/90 and
TPR co-chaperones is well appreciated within the chaperone field. However, much less
attention has been paid to interaction surfaces outside this canonical binding site.
Immunoprecipitation experiments as well as in vitro binding studies performed on the
Hsp70-Hop complex, demonstrate that binding involves secondary contacts outside the
EEVD motif [169, 181]. Additionally, sequences outside the TPR domain of Hop, CHIP,
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and other TPR co-chaperones cause differential binding to Hsp90 mutants [182, 183].
Together, these findings suggest that interactions between TPR proteins and Hsp70 are more
complex than the minimal TPR-EEVD interactions. Thus, many key fundamental questions
remain unanswered: What are the molecular interactions between Hsp70 and TPR co-
chaperones? Do these interactions differ among TPR co-chaperones? What molecular events
influence the choice to bind one TPR protein over another? Because TPR co-chaperone
structures are divergent in nature, additional contacts outside the EEVD-TPR binding site
may provide an avenue for the development of chemical probes that can modulate specific
TPR-chaperone interactions. Such compounds would be useful in further dissecting the
complex mechanisms of Hsp70 and individual TPR co-chaperones in protein quality control.

The development of small molecule modulators of Hsp70-TPR complexes is still in its
infancy. However, in the Hsp90 system, Yi and co-workers have targeted the TPR domain
of Hop and identified pyrimidotriazinediones as inhibitors of that PPI [184]. Additionally,
derivatives of the natural product sansalvamide A have been shown to modulate Hsp90
interactions with TPR co-chaperones [185, 186]. Taken together, this work suggests that the
Hsp70-TPR interactions may also be amenable to inhibition. However, further studies are
still needed because the binding sites and mechanisms of these molecules are not yet clear.
Compared to the other PPIs (e.g. J proteins and NEFs), the interactions between TPR
domains and Hsp70s are relatively more concise, which might accelerate discovery in that
area. The challenges will be in understanding how to engender selectivity and guide the
“choice” of TPR partner.

CONCLUSIONS

There are compelling reasons to target the PPIs between Hsp70 and its co-chaperones. These
contacts help shape Hsp70 activities and, as such, they might be targeted to re-direct the
protein quality control system. Molecules that disrupt the assembly and disassembly of the
Hsp70 complex might supplement other types of Hsp70 inhibitors, such as competitive
inhibitors of ATP and substrate binding, providing a more complete suite of chemical probes
and potential therapeutics. However, the number of PPIs in the Hsp70 complex means that
there are a large number of contacts yet to be explored.

PPIs are notoriously difficult to inhibit and the specific interactions involved in binding to
Hsp70 are particularly challenging, given their large buried surface areas. What strategies
might be used to disrupt these contacts? Based on growing evidence from other PPI
inhibitors discovery programs [22–24], it seems likely that compounds that are able to bind
to allosteric sites might be in the best position to target the types of PPIs in the Hsp70
system. Another key tool will likely be the development of HTS platforms that are
specifically suited to finding inhibitors of PPIs. Recent developments in this area, including
AlphaLisa, flow cytometry protein interaction assay (FCPIA) and gray box screening [105,
108], might lower the barrier to uncovering suitable compounds. Also, the creation of
chemical libraries enriched for more complex small molecules (e.g. natural product-like, etc)
may further accelerate discovery in this area [187]. A clever combination of these methods
might overcome the challenges associated with targeting the Hsp70 complex.

One major question that looms large over this field is how the global proteome will respond
to inhibitors of Hsp70 (both orthostatic and allosteric). This concept has not been rigorously
tested and it remains uncertain how cells will respond to different types of Hsp70 inhibitors.
What will happen to protein stability and turnover when Hsp70 function is blocked or even
“tuned”? The answers to this question may depend on how the molecule works (e.g.
competitive inhibitor of ATP binding, allosteric inhibitor of J proteins, etc.) and whether it is
selective for specific Hsp70 paralogs. It seems likely that the only way to address these
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significant concerns is to develop potent inhibitors and then use them to develop empirical
models.
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Figure 1.
Hsp70 forms the core of a multi-protein complex and associates with numerous co-
chaperones. Three distinct classes of co-chaperones, NEFs, J proteins, and TPR domain-
containing proteins, interact with Hsp70 and regulate its activities. The J proteins and NEFs
interact with the NBD, while the TPR domain-containing proteins bind the C-terminal
region. Representative structures from each class are shown with the corresponding PDB
code. Images were prepared in PyMol.
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Figure 2.
Structure and ATPase cycle of Hsp70. (A) Hsp70 is composed of a 45 kDa N-terminal
nucleotide binding domain (NBD) connected to a 25 kDa substrate binding domain (SBD)
by a short hydrophobic linker. The SBD is composed of a β-sandwich and an α-helical “lid”
domain. The structure of the prokaryotic Hsp70, DnaK, is shown (PDB code 2KHO), but the
general architecture appears to be conserved amongst prokaryotic and eukaryotic family
members. (B) Schematic of ATP hydrolysis and the role of co-chaperones. Substrate binding
in the SBD coupled with J-domain co-chaperone interactions in the NBD promotes ATP
hydrolysis. Conformational changes associated with ATP conversion close the “lid” and
enhance affinity for the substrate. The cycle is completed when a nucleotide exchange factor
interacts with the NBD and assists with ADP release.
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Figure 3.
J protein co-chaperones fall into three structural classes. (A) The domain architecture of
each class of J protein is depicted as a schematic beginning with the N-terminus to the left.
The domain types are J domain, GF (glycine-phenylalanine rich region), ZFLR (zinc finger-
like region), CTDI and II (C-terminal domain) and DD (dimerization domain). (B) The
crystal structures of the C-terminal portions of Ydj1 (yeast class A J protein) and Sis1 (yeast
class B J protein) are shown with corresponding PDB codes. Images were prepared in
PyMol.
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Figure 4.
Structures of chemical modulators of the Hsp70-J protein system.
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Figure 5.
Structures of Hsp70-NEF complexes. (A) Crystal structure of yeast Hsp110, Sse1, and
human Hsp70 NBD. Complex formation between Hsp70 and Hsp110 leads to a rotation in
lobe IIB allowing nucleotide release. (B) Crystal structure of HspBP1 and lobe II of Hsp70’s
NBD. HspBP1 wraps around lobe IIB displacing lobe I and opening the nucleotide cleft. (C)
Crystal structures of Hsp70 NBD in complex with the BAG domain of BAG1 and BAG2.
Association between Hsp70 and the BAG proteins cause an outward rotation of lobe II,
promoting nucleotide exchange. In all figures Hsp70 is colored in light grey and NEFs are
colored in dark grey with PDB codes indicated. Images were prepared in PyMol.
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Figure 6.
Domain architecture of the BAG family of co-chaperones.
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