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ThemolecularchaperoneHsp90 is important for the functionalmaturationofmanyclientproteins,and inhibitors
are inclinical trials formultiple indications incancer.Hsp90 inhibitionactivates theheatshock responseandcan
improve viability in a cell model of the P23Hmisfoldingmutation in rhodopsin that causes autosomal dominant
retinitispigmentosa (adRP).Here,weshowthat asingle lowdoseof theHsp90 inhibitorHSP990enhancedvisual
function and delayed photoreceptor degeneration in a P23H transgenic rat model. This was associatedwith the
inductionof heat shockprotein expressionand reduced rhodopsin aggregation.We then investigated the effect
ofHsp90 inhibitiononadifferent typeof rodopsinmutant,R135L,which ishyperphosphorylated, bindsarrestin
anddisruptsvesicular traffic.Hsp90 inhibitionwith17-AAGreduced the intracellular accumulationofR135Land
abolished arrestin binding in cells. Hsf-12/2 cells revealed that the effect of 17-AAG on P23H aggregation was
dependent on HSF-1, whereas the effect on R135L was HSF-1 independent. Instead, the effect on R135L was
mediated by a requirement of Hsp90 for rhodopsin kinase (GRK1) maturation and function. Importantly,
Hsp90 inhibition restored R135L rod opsin localization to wild-type (WT) phenotype in vivo in rat retina.
Prolonged Hsp90 inhibition with HSP990 in vivo led to a posttranslational reduction in GRK1 and phospho-
diesterase (PDE6) protein levels, identifying them as Hsp90 clients. These data suggest that Hsp90 represents
a potential therapeutic target for different types of rhodopsin adRP through distinct mechanisms, but also indi-
cate that sustained Hsp90 inhibition might adversely affect visual function.

INTRODUCTION

Hsp90 is an abundant andhighly conservedmolecular chaperone
that is involved in many cellular processes, including the func-
tional maturation of substrate proteins, which are known as
‘clients’ (1,2). Several of these client proteins are oncogenes,
leading to Hsp90 emerging as an important target in different
types of cancer treatment (3). Nucleotide binding and posttran-
slational modifications regulate Hsp90 function (4). Hsp90 inhi-
bitors bind with a high affinity to the ATP-binding pocket and
block the chaperone ATPase cycle leading to the degradation
of client proteins (2,3). InhibitionofHsp90 functionalsodisrupts

the chaperone complex with Heat Shock Factor 1 (HSF-1),
causing the activation of HSF-1 and induction of heat shock
protein expression (5). Therefore, Hsp90 inhibition can elicit a
dual effect, the proteasome-mediated degradation of Hsp90
client proteins and activation of HSF-1, which induces Hsp70
and other chaperones to protect against protein aggregation
and reduce protein toxicity (6–8).
Retinitispigmentosa(RP) is themostcommonformof inherited

photoreceptor degeneration. RP leads to dysfunction and progres-
sive loss of photoreceptor cells, resulting in defective dark adapta-
tion, reduction of peripheral vision and ultimately blindness (9).
Mutations in the rhodopsin gene, RHO, are the most common
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cause of autosomal dominant RP (adRP) (10) (RetNet: http://
www.sph.uth.tmc/edu/Retnet/). Rhodopsin, the light sensitive
protein of rod cells comprises rod opsin protein and chromophore
11-cis-retinal. Over 150 mutations in rod opsin result in different
cellular and biochemical defects, such as protein misfolding,
defective chromophore binding, impaired G-protein coupling or
activation, and altered traffic (11). Pharmacological interventions
can improve protein folding, reduce aggregation and improve
the traffic of the P23H Class II misfolding rod opsin mutant
(12). For example, treatment with Hsp90 inhibitors, including
the geldanamycin analog 17-allylamino-17-demethoxygeldana-
mycin (17-AAG), led to a reduction in P23H protein aggregation
that correlated with an increase in cell viability (12), highlighting
the potential of Hsp90 inhibitors to slow inherited retinal degener-
ation associated with defects in photoreceptor proteostasis (13).
Amino acid substitutions at arginine 135 of rod opsin (e.g.

R135L), which is highly conserved in GPCRs, cause a severe
and fast progressing form of adRP (14,15). The R135L mutant
is constitutively phosphorylated and binds with a high affinity
to visual arrestin (16), recruiting and translocating cytosolic
arrestin to the plasma membrane (PM) and endocytic compart-
ments (14). As yet, pharmacological interventions for this
class of rod opsin mutant have not been investigated. In the
present study, we investigated the therapeutic potential of
Hsp90 inhibition to reduce P23H rod opsin associated cell
death in the retina.We also tested the ability of pharmacological
chaperones, kosmostropes and Hsp90 inhibitors to alleviate the
R135L rod opsin phenotype. The results identify distinct
mechanisms for the therapeutic potential of Hsp90 inhibitors
in retinal degeneration, but also reveal the role of Hsp90 in the
maturation of essential phototransduction components.

RESULTS

HSP990-mediated protection of photoreceptor function
and survival in P23H-1 rats

We have previously shown that 17-AAG could protect against
P23Hrodopsin incells (12);however, 17-AAGdoesnot efficient-
ly cross the blood retinal barrier (17). The Hsp90 inhibitor
2-amino-7,8-dihydro-6H-pyrido[4,3-D]pyrimidin-5-one NVP-
HSP990 (referred to herein as HSP990) is a potent inducer of
the heat shock response (HSR) in brain (8), so we reasoned that
it was likely to cross the blood retinal barrier and would be
more appropriate to study the effect of Hsp90 inhibition on the
retina in vivo. Systemic HSP990 treatment led to the rapid post-
translational modification of HSF-1 in mouse retina, as judged
by its reduced SDS–PAGE mobility (Fig. 1A). Retinal Hsp70
mRNA was increased (Fig. 1B), and Hsp70, Hsp60 and Hsp40
protein levels were also increased (Fig. 1A). These results show
that HSP990 is able to efficiently induce the HSR in retina
in vivo, confirming that it can cross the blood retinal barrier.
Transgenic P23H-1 rats that express P23H rod opsin in their

photoreceptors andundergo rapid andprogressive photoreceptor
degeneration (18) were treated with a single dose of HSP990 at
21 days of age (P21) when the degeneration is already estab-
lished. Full-field scotopic electroretinogram (ERG) was per-
formed 14 days later (P35) to assess changes in retinal
function. ERG analysis showed that HSP990 treatment pre-
served photoreceptor activity in P23H-1 rats, as the a-wave,

which corresponds to photoreceptor activation, and b-wave,
which arises from the signal being propagated in the retina,
response amplitudes were significantly higher than in vehicle-
treated control animals (Fig. 1C–E). Spectral-domain optical

Figure 1. HSP990 protects photoreceptor function and survival in P23H-1 rats.
(A) Western blots of the HSR in mouse retina systemically treated with
HSP990 (20 mg/kg) or vehicle. Retinae were collected 24 h postadministration
and 10 mg total proteinwestern blotted for Hsp70, Hsp60 or Hsp40, as indicated.
For the western blot for HSF-1, retinae were harvested 2 h after HSP990 (20 mg/
kg) or vehicle administration. Posttranslational modification of HSF-1 such as
phosphorylation is indicated (HSF-1-P). (B) RT–PCR showing retinal Hsp70
mRNA induction 2 h after HSP990 administration. Scotopic ERG responses,
a-wave (C), b-wave (D) and average at 1 log 10 cds/m2, (E) in vehicle or
HSP990-treated P23H-1 rats at P35, following a single-dose HSP990 treatment
at P21. ∗P ≤ 0.05, values are means+SEM, n ≥ 5 (F) P23H-1 ONL thickness
at P35 after a single dose of HSP990 at P21 assessed by OCT measurements.
∗P ≤ 0.05, values are means+SEM, n ≥ 4. (G) Spider plot of ONL thickness
in vehicle and HSP990-treated animals at P35 following a single treatment at
21 days old. ∗P ≤ 0.05, values are mean+SEM (n ≥ 5 per treatment group).
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coherence tomography (SD-OCT) and histological analyses
were used to examine the retinal architecture and measure the
outer nuclear layer (ONL) thickness of P23H-1 rats. SD-OCT
and histological measurements showed increased thickness of
the ONL in HSP990-treated animals (Fig. 1F and G).
Retinal protein expression was compared at different time

points (1 day, 7 days and 14 days postdosing). Hsp70 levels in
P23H-1 HSP990-treated rats were significantly increased at all
time-points with a peak at 7 days postadministration (Fig. 2A,
B and Supplementary Material, Fig. S1), whereas Hsp90 levels
remained unchanged (Fig. 2A). HSP990 treatment had no
significant effect on a range of phototransduction protein
levels at the time points analyzed (Fig. 2A,B andSupplementary
Material, Fig. S1). Immunohistochemistry confirmed the correct
localization of rhodopsin in the outer segment (OS) in HSP990-
treated P23H-1 rats with less cell body rhodopsin staining in the
ONL comparedwith vehicle-treated controls (Fig. 2C). Interest-
ingly, although the amount of soluble rhodopsin was unchanged
(Fig. 2D), HSP990 treatment led to a significant reduction of
sedimentable, insoluble rhodopsin (Fig. 2E), suggesting a reduc-
tion in rhodopsin aggregation that correlated with improved
photoreceptor function and survival.

Pharmacological manipulation of R135L rhodopsin

To date, no pharmacological treatments have been reported that
can ameliorate the phenotype of the Class III rod opsin mutant

R135L. As previously described (14), R135Lwas constitutively
internalized from the PM to endocytic vesicles that accumulated
intracellularly in SK-N-SH neuroblastoma cells (Fig. 3A and
Supplementary Material, Fig. S2). By contrast, WT rod opsin
was present mainly on the PM (Fig. 3A and Supplementary Ma-
terial, Fig. S2).Western blot analysis showed that the expression
level of the R135L rod opsinmutantwas reduced comparedwith
the WT protein, but had the same electrophoretic mobility and
glycosylation pattern after treatment with Endoglycosidase H
(EndoH) or Peptide-N-Glycosidase F (PNGaseF) (Supplemen-
tary Material, Fig. S2B). This indicates that the mutant protein
progressed through the secretory pathway from the endoplasmic
reticulum (ER) to the Golgi and was not retained in the ER like
the Class II mutant P23H (Supplementary Material, Fig. S2C).
In cells co-transfected with visual arrestin and WT rod opsin,
visual arrestin localized in the cytoplasm and did not co-localize
with rod opsin (Fig. 3A).However, co-transfectionofR135L rod
opsin led to the recruitment and translocation of visual arrestin
from the cytoplasm to the PM and endocytic compartments
where it co-localized with R135L rod opsin (Fig. 3A). P23H
rod opsin was retained in the ER and did not alter arrestin local-
ization or lead to intracellular vesicle formation (Supplementary
Material, Fig. S2C).
Several different pharmacological approaches can affect

P23H rod opsin traffic or aggregation in cells (12). Therefore,
themost effective compounds fromeach approach (9-cis-retinal,
4-phenyl butyric acid (4-PBA) and 17-AAG) were tested for an

Figure 2.HSR induction and reduced aggregation in the P23H-1 rat retina followingHSP990 treatment. (A)Western blots of P23H-1 rat retinae treatedwith a single
dose of vehicle or HSP990 at 21 days of age after 1, 7 or 14 days, as indicated. (B) Quantification of expression levels of phototransduction proteins and Hsp70 in
P23H-1 rat retina relative to levels of actin, 14 days after HSP990 administration. Western blots were subjected to densitometric analyses. Fold expression of
each proteinwas calculated for HSP990 relative to vehicle. ∗P ≤ 0.05, values aremeans+SEM, n ≥ 3. (C) Representative images of ONL fromHSP990 or vehicle-
treated P23H-1 animalswith rhodopsin stained in green and nuclei in bluewithDAPI. Cell body staining is arrowed. Scale bars: 10 mm.Representative western blots
and densitometric quantitation of soluble (D) and insoluble (E) rhodopsin fractions revealed a reduction only in the insoluble fraction following HSP990 treatment.
The position of molecular-weight markers is indicated on the left in kDa for the blots. ∗P , 0.05, ANOVA values are mean+SEM (n ≥ 3 per treatment group).
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effect on R135L rod opsin. 11- and 9-cis retinal can act as
pharmacological chaperones to stabilize near native rod opsin
conformations and improve P23H rod opsin folding and traffick-
ing (12,19,20). Treatment of cells expressing R135L rod opsin
with 9-cis-retinal enhanced the endocytosis of the mutant
protein and shifted the protein from the PM to the intracellular
vesicles (Fig. 3B and C), whereas treatment with the
low-molecular-weight fatty acid and kosmotrope, 4-PBA that
reduces P23H rod opsin aggregation (12), did not affect
R135L rod opsin localization (Fig. 3B and C). In contrast,

treatment of cells expressingR135L rodopsinwith theHsp90 in-
hibitor 17-AAG reduced the number of intracellular vesicles
(Fig. 3B and C). Soluble fractions of cells transfected with
R135L rod opsin and treated with 9-cis-retinal, 17-AAG or
4-PBA for 24 h were analyzed by western blotting (Fig. 3D).
The levels of solubleR135Lproteinwere not affected after treat-
mentwith 17-AAG,while treatmentwith 4-PBA reduced the ex-
pression of both WT and the R135L rod opsin. Treatment with
9-cis-retinal stimulated an increase of a low-molecular-weight
species at ≏27 kDa for both proteins, potentially corresponding

Figure3.Pharmacologicalmanipulation ofR135L rhodopsin. (A) Subcellular distribution and traffickingofWT-GFPandR135L-GFProd opsin (green) in SK-N-SH
neuroblastoma cells co-transfectedwith visual arrestin-FLAG (red).WT rodopsinmainly decorated the PMand visual arrestin remained in the cytoplasm.R135L rod
opsinmutant recruited and translocated cytosolic visual arrestin to the PM(arrow) and the endocytic compartments (arrowhead). Scale bars: 10 mm. (B) Fluorescence
microscopyofR135L-GFProdopsin and treatedwith 10 mM9-cis-retinal, 10 mM4-PBAand1 mM17-AAG.Scalebars: 10 mm. (C)Cell counts of intracellular vesicle
incidence in cells expressing WT-GFP (open) or R135L-GFP (grey) following treatment with 9-cis-retinal, 4-PBA or 17-AAG for 18 h. Values are mean+SEM.
∗∗∗P, 0.0001, Student’s t-test n ¼ 3. (D) Western blot with 1D4 of untagged WT and R135L rod opsin after treatment with 9-cis-retinal, 4-PBA or 17-AAG for
24 h. The position of molecular-weight markers is indicated on the left in kDa.
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to cleavage of the opsin N-terminal segment (21). Cells
co-transfected with R135L rod opsin and arrestin and treated
with 17-AAG for 24 h showed a reduction in R135L-arrestin
co-localization (Fig. 4A), restoring the normal arrestin localiza-
tion to the cytoplasm and reducing the number of R135L rod
opsin positive intracellular vesicles (Fig. 4A).

HSF-1 dependence of Hsp90 inhibition effects on P23H
and R135L rod opsin

The protective effect of Hsp90 inhibition on P23H rhodopsin
correlated with an increase in heat shock protein expression, so
we tested if the effect was dependent on HSF-1. Control and
Hsf-1 null (22)mouse embryonic fibroblasts (MEFs) were trans-
fected with P23H-GFP rod opsin and inclusion incidence was
assessed as a surrogate marker of protein aggregation. As previ-
ously described (12), 17-AAG treatment led to a significant re-
duction in inclusion incidence in control cells (Fig. 4B). In
contrast, there was no reduction in inclusions in the Hsf-12/2

cells treatedwith 17-AAG (Fig. 4B), confirming that the protect-
ive effect of Hsp90 inhibition on P23H is dependent on activa-
tion of the HSR.
Aspreviously observed inSK-N-SHcells, the intracellular ac-

cumulation of R135L-GFP rod opsin in control MEFs was
reduced by17-AAG treatment.Hsp90 inhibitionwas also effect-
ive at reducing intracellular R135L in Hsf-12/2 cells (Fig. 4C),
showing that this effect is independent of HSF-1. These data
highlight that different mechanisms underlie the effect of
Hsp90 inhibition on P23H and R135L rod opsin and suggest
that the rescue of R135L is likely to be the result of targeting
another Hsp90 client protein.

The rescue of R135L rod opsin by Hsp90 inhibition is
dependent on GRK activity

Hsp90 plays a general role in regulating G-protein-coupled re-
ceptor kinase (GRK) maturation, and GRK2, GRK3, GRK5
and GRK6 are stabilized by interaction with Hsp90 (23). We
therefore hypothesized that treatment with 17-AAG might
disrupt the interaction between the R135L mutant and arrestin
by inhibiting Hsp90 function in kinase maturation and thereby
alter thephosphorylation status ofR135L rodopsin.Overexpres-
sion of rhodopsin kinase (GRK1) leads to constitutive phosphor-
ylation ofWT rod opsin (14). Similarly, whenWT rod opsinwas
co-expressed with GRK1, we observed staining ofWT rod opsin
in the PM and re-localization to intracellular vesicles, mimicking
the R135L phenotype (Fig. 5A). Treatment of cells co-expressing
WT rod opsin and GRK1 with 17-AAG for 24 h prevented accu-
mulation of intracellular vesicles and restored the localization of
rod opsin protein mainly to the PM (Fig. 5A). These data
suggest that Hsp90 inhibition has an effect on GRK1, and most
likely other GRKs, rather than directly on the mutant rod opsin
protein. Treatment with 17-AAG for 24 h led to a significant re-
duction of GRK1 levels (.90%), whereas after 4 h GRK1
protein levels were only mildly reduced (≏30%) (Fig. 5B and
C). These data suggest thatHsp90 is required forGRK1synthesis,
but not GRK1 stability once the protein has been correctly folded.
To test this hypothesis, GRK1 levels were examined following
cycloheximide (CHX) treatment to block protein synthesis and
reveal the rates of protein degradation. After 20 h of 17-AAG

treatment GRK1 was rapidly degraded (Fig. 5D), with a half-life
of,2 h. In contrast, after 4 h of 17-AAG treatment the remaining
GRK1 was relatively stable, with a half-life in excess of 6 h
(Fig. 5D). These data confirm thatHsp90 is required for the stabil-
ity of newly synthesized GRK1, but once GRK1 has been folded
Hsp90 does not appear to be required for its stability.

R135L rod opsin localization in photoreceptors is
restored by Hsp90 inhibition

To confirm our in vitro studies, and test if Hsp90 inhibition had
an effect onR135Lmutant rod opsin in vivo, electroporationwas
used to introduce DNA constructs encoding WT-GFP and
R135L-GFP rod opsin into the developing rat retina (14,24),
plus vehicle or 17-AAG in the injection. Neonatal SD rats elec-
troporated with WT-GFP and vehicle treated showed rod opsin
mainly targeted to the rod photoreceptor OS, as expected
(Fig. 5E). Mutant R135L-GFP also localized to the OS, but
showed additional increased retention in the photoreceptor cell
body, most likely corresponding to arrestin-mediated internal-
ization (Fig. 5E and F) (14). R135L rod opsin injection in com-
bination with 17-AAG resulted in a significant reduction of
R135L rod opsin in the cell body (Fig. 5E and F). This result con-
firmed the in vitro data and showed that 17-AAG was able to
restore R135L rod opsin localization to WT phenotype in vivo.
In addition, Hsp90 inhibition seemed to enhance the vectorial
transport of R135L mutant rod opsin to the OS by suppressing
its endocytosis defect.

Prolonged high dose Hsp90 inhibition reduces GRK1
and PDE levels in vivo

Recent reports from oncology clinical trials have suggested that
some Hsp90 inhibitors, such as 17-DMAG and AUY922, might
lead to visual disturbances (25–27). Our data on the effect of
17-AAG on GRK1 suggest that some of the visual problems
observed in patients could be on-target effects on phototransduc-
tion components. To test this hypothesis, HSP990 was given to
control mice every 3 days for 14 days at close to the maximum
tolerated dose, which was most likely to reveal any effect on
phototransduction machinery biogenesis (Fig. 6A and B).
HSP990-treated retinae showed a significant reduction in
GRK1 levels, compared with vehicle-treated control (Fig. 6A
and B). Interestingly, phosphodiesterase (PDE6b) levels were
also reduced (70% reduction), but no significant decrease of
arrestin, transducin and rhodopsin was observed (Fig. 6A and
B). To confirm that these alterations were occurring post-
transcriptionally, GRK1, PDE6b, arrestin, transducin a and
rhodopsinmRNA levels were assessed by real-time quantitative
PCR. No significant changes were observed in any of the genes
assessed (Fig. 6C). These data suggest that inhibition of Hsp90
in the retina affects post-transcriptional levels of GRK1 and
PDE6b as a result of chaperone deficiency.
To study any possible toxic effects ofHSP990 onmouse retina,

the retinae of these animals were processed for histological
analysis. Photoreceptor survival was unaffected by HSP990
treatment (Fig. 6D).Moreover, HSP990-treated retinae exhibited
retinal morphology that was indistinguishable from age-matched
vehicle-treated animals, with rhodopsin localized in the OS
(Fig. 6E). Retinal function was examined by ERG, and
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Figure4.Hsp90 inhibitionaffectsP23HandR135Lbydifferentmechanisms. (A) Subcellular distribution and traffickingof rodopsin inSK-N-SHcells co-transfected
with R135L-GFP rod opsin (green) and arrestin-FLAG (red) and treated with 17-AAG (1 mM) for 24 h. (B) Representative images of P23H-GFP expressing control
(upper panels) andHsf-12/2MEFs (lower panels) treated with vehicle or 17-AAG (0.5 mM) for 20 h as indicated (left panels). At least 600 cells were scored for the
presence of inclusions in each condition and the inclusion incidence was normalized to vehicle-treated inclusion incidence (right panels). Values are mean+SEM.
∗P, 0.05, Student’s t-test. (C) Representative images of R135L-GFP expressing control (upper panels) andHsf-12/2MEFs (lower panels) treated with vehicle or
17-AAG (0.5 mM) for 20 h, as indicated (left panels). Cells were scored for large intracellular accumulations of R135L-positive vesicles and the values normalized to
vehicle-treated MEFs (right panels). At least 600 cells were scored in each condition. Values are mean+SEM. ∗P , 0.05, ∗∗P, 0.01, Student’s t-test. Scale bars:
10 mm.
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single-flashERG responses of increasing intensity showed slight-
ly reduced a-wave amplitudes in animals treated with HSP990
(Fig. 6F).Adouble-flash recordingwas used to study the recovery
of phototransduction in photoreceptors. HSP990-treated mice
exhibited the same complete a- and b-wave recovery as observed
pretreatment (Fig. 6F); therefore, it is likely that the residual levels
ofPDEandGRK1(20–30%ofWT)are sufficient forphotorecep-
tor function and survival.

DISCUSSION

Mutations in rhodopsin result in distinct changes in the protein’s
cellular and biochemical properties that lead to RP through

different mechanisms. Understanding the aspects of rhodopsin
biology and associated molecular mechanisms, from protein
biogenesis to receptor inactivation, is necessary for the develop-
mentofnovel effective therapeutic strategies tomitigate this cur-
rently untreatable retinal degenerative disease.
Class II misfolding mutants in rod opsin, such as P23H, are

thought to result inphotoreceptor cell death througha combination
of gain-of-function and dominant-negative mechanisms (11). The
possible gain-of-function effects include ER retention and
unfolded protein response (UPR) activation, proteasome inhib-
ition, protein instability and aggregation and dysregulated activa-
tion (11,28,29).Thecritical factorshavestill notbeenfullydefined,
but successful protection against P23H rhodopsin-mediated cell

Figure 5. Hsp90 inhibition blocks R135L:arrestin recruitment through GRK1 (A) SK-N-SH cells co-transfected with WT-GFP rod opsin and FLAG-GRK1 and
treated with 17-AAG (1 mM) or vehicle for 24 h. Scale bars: 10 mm. (B) Western blot of FLAG-GRK1 expression following 17-AAG treatment. SK-N-SH cells
were transfected with FLAG-GRK1 and treated with 17-AAG (1 mM) for 24 or 4 h as indicated. Ten micrograms of soluble protein were resolved and detected
using anti-FLAG mAb. Asterisk highlights a non-specific band used as a loading control. (C) Quantification of total FLAG-GRK1 levels, normalized relative to
loading control, after incubation with 17-AAG for the indicated times. Values are mean+SEM (n . 6). (D) Degradation of GRK1 in the presence of 17-AAG.
Left panel, western blot for FLAG-GRK1 and actin of SK-N-SH cell lysates treated with 17-AAG for the indicated times prior to addition of CHX (50 mg/ml) for
the indicated times. Exposures have been adjusted so that time 0 is approximately equivalent. Right panel shows quantification of GRK1 levels normalized to
time 0. Values aremean+SEM(n ≥ 3). (E) In vivo electroporation ofWT andR135L rod opsin.WT-GFP or R135-GFP (green), as indicated, was injected subretin-
ally with vehicle or 17-AAG (20 mg/ml) and electroporated in neonatal SD rats. Eyes were analyzed 16 days postelectroporation. Nuclei were stained with DAPI.
Scale bars: 10 mm. (F) Quantitation of over 100 transfected cells (n ¼ 4) showed WT-GFP was mainly present in the ROS, whereas R135L-GFP in the presence
of vehicle was observed throughout the photoreceptor cell layer. Treatment with 17-AAGpartially shifted themutant protein to the ROS and reduced cell body stain-
ing. ∗ P , 0.05, Student’s t-test.
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death has been reported with overexpression of the molecular
chaperone BiP (HSPA5) (30,31) or treatment with curcumin and
TUDCA (32,33), which might act to reduce protein misfolding
stress and protein aggregation. Here, we observed protection
against P23H rhodopsin-mediated disease with Hsp90 inhibition
that correlated with the induction of molecular chaperones via ac-
tivation of HSF-1 and reduced rhodopsin aggregation, suggesting
that HSR manipulation could be important for combatting the
gain-of-function properties of Class II rod opsin mutants. Target-
ing imbalances in photoreceptor proteostasis might have broader
application. For example, 17-AAG treatment after transient
blood retinal barrier permeabilization with claudin 5 RNAi suc-
cessfully prevented photoreceptor degeneration in an RP10
IMPDH mouse model, showing effective reduction of mutant
R224P IMPDH aggregation and protection of ONL structure
(17). Therefore, we believe that in the P23H model Hsp90 inhib-
ition acts as a protective factor via enhanced activation of the
cell stress machinery. This provides proof of principle that
HSF-1activation canprotect photoreceptors fromproteinmisfold-
ing stress.
Rhodopsin phosphorylation is part of the normal inactivation

pathway of the phototransduction cascade and leads to arrestin
binding (34). The adRP rod opsin substitutions K296E and

R135L, however, have been shown to be hyperphosphorylated,
which can lead to altered arrestin binding which then recruits
the endocytic adaptor protein AP-2, potentially leading to
defects in subcellular traffic (14,35,36). We have shown that
Hsp90 inhibition can rescue rod opsin mutant R135L-mediated
recruitment of arrestin and mislocalization phenotype in vitro
and in vivo, most likely by abolishing the hyperphosphorylation
status of R135L. We hypothesized that this was not through a
direct effect on R135L rod opsin as an Hsp90 client, but
instead reveals a requirement for Hsp90 function for GRK1 syn-
thesis. Overexpressing GRK1 with WT rod opsin led to the for-
mationof intracellular vesicles andHsp90 inhibition restored the
WT phenotype, supporting the hypothesis that it is not a direct
effect on the mutant rod opsin.

InDrosophila, inhibition of the formation of the rhodopsin:ar-
restin complex prevented photoreceptor degeneration (37).
Thus, it is possible that prevention of this complex will also
protect against degeneration invertebrate retina.This hypothesis
is supported by enhanced photoreceptor survival following ex-
pression of p44, which lacks the AP-2-binding element, to
inhibit recruitment of AP-2 by the K296E:arrestin complex
(36). There is no transgenic animal model for R135L rod
opsin, but from the in vivo retinal R135L transduction data

Figure6.Systemic administration ofHSP990 reducesGRK1andPDE6 levels. (A)Westernblots of 10 mg total retina protein for phototransductionproteins orHsp70
frommice treatedonceevery3dayswithHSP990(80 mg/kg) for10days. (B)Expression levels ofphototransductionproteinsandHsp70 inmouse retinanormalized to
b-tubulin. Fold expression of eachproteinwas calculated followingHSP990 treatment relative to vehicle.Values aremean+SEM(n ≥ 3per treatment group). ∗P ,
0.05, Student’s t-test. (C) RT–PCR of retinal cDNA to determine the fold induction of phototransduction and Hsp70 (HSPA1) genes following 10 days of HSP990
(80 mg/kg) treatment relative to expression of the vehicle-treated mice. Values are mean fold+SEM (n ≥ 3 per treatment group). ∗P , 0.05, Student’s t-test.
(D) Spider plot showing ONL thickness of vehicle or HSP990 (80 mg/kg)-treated mice once every 3 days for 10 days. Values are mean+SEM (n ≥ 3 per treatment
group). (E) Retinal sections stained for rhodopsin with 1D4 antibody (green), cone OS with PNA (red) and DAPI to visualize nuclei (blue) showed rhodopsin local-
ization in the ROS in both vehicle and HSP990-treated conditions. (F) Double-flash ERGs of mice pre- and post-HSP990 treatment. Recovery of the a- and b-waves
was analyzed by delivering a double flash at different interval stimulus illumination (ISI). The traces displayed correspond to ISI(s) ¼ 1 and show a good recovery of
the a- and b-wave following HSP990 treatment. A representative trace of one animal is shown per treatment (n ¼ 3 per treatment group).
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fromChuang et al. (14) and the data presented in this study, it can
be inferred that theR135Lmutantmight cause cell death through
the samemechanism.Therefore, Hsp90 inhibitionmediated pre-
ventionof arrestin binding and endocytosismight protect against
R135L rod opsin-mediated RP in vivo.
A range of Hsp90 inhibitors have now been developed with

different affinities and bioavailability (3). Importantly, several
have been in oncology clinical trials so their pharmacokinetic
profile and side effects are being identified, such that they
could potentially be applied to RP and other neurodegenerative
diseasewith prior knowledge of the risks and benefits. In order to
have a beneficial effect on retinal degeneration a systemically
administered inhibitor would need to cross the blood retinal
barrier (e.g. HSP990). However, there is a risk of systemic side
effects ofHsp90 inhibition, especially over a longcourseof treat-
ment. Alternatively, those inhibitors that do not cross the blood
retinal barrier efficiently (e.g. 17-AAG) would need be used in
conjunction with a technique that transiently permeabilizes the
blood retinal barrier (17), or be administered by intravitreal or
subretinal injection (e.g. Fig. 5). Topical delivery might reduce
the risk of systemic side effects of Hsp90 inhibition and this ap-
proach has been successfully used for retinal neovascularization
therapywith anti-VEGFbiological agents, but the repeated long-
term dosing needed for RP therapy means that this is unlikely to
be an attractive clinical option. A treatment regime could be
based on a repeated low dose administration that was just suffi-
cient to repeatedly stimulate the HSR. However, the ability to
induce the HSR in the brain can also be affected by epigenetic
changes related to disease and aging (8), so it is possible that
this protective effect might not be sustained over the many
years required to prevent cell death in the retina or in other
forms of neurodegeneration. This will need to be explored
further with extended treatments in slower models of retinal de-
generation. Furthermore, the direct effects of sustained Hsp90
inhibition on photoreceptor function must be considered.
Chronic systemicHsp90 inhibition led toapost-transcriptional

reduction in GRK1 and PDE subunits in the retina while other
phototransduction components such as rhodopsin, arrestin and
transducin were unaffected. These results suggest that Hsp90
is an essential chaperone for the biogenesis of GRK1 and
PDE6b. Reduction of these phototransduction components can
affect vision. Patients lacking GRK1 or arrestin suffer from
Oguchi disease, a form of stationary night blindness, which is
not characterized by rod cell death (38,39). Therefore, loss of
GRK1 itself might not lead to rod cell death, but would lead to
rod and cone dysfunction, as cone GRK7 is also likely to be an
Hsp90 client protein. The co-chaperones that function with
Hsp90 in GRK biosynthesis are not known, but might include
Cdc37, which assists Hsp90 in the maturation of many kinase
clients (40). Furthermore, Hsp90 inhibition reduced the level
of PDE. These data support the hypothesis that Hsp90 may
assist the photoreceptor chaperone AIPL1 in PDE biogenesis.
Mutations in AIPL1 cause Leber congenital amaurosis (LCA),
a severe early onset retinopathy (41) and AIPL1 functions as a
chaperone specific for PDE biosynthesis (42,43). In addition,
AIPL1 is a co-chaperone for Hsp90 (44). Therefore, these data
would support a role for both Hsp90 with AIPL1 in a chaperone
heterocomplex that is essential for PDE biogenesis and matur-
ation. The other chaperones and co-chaperones that are involved

in PDE biogenesis remain to be identified, but might include
Hsp70 as that can also bind AIPL1 (44).
In a recent clinical trial for advanced solid tumors with

AUY922, a potent second-generation, non-geldanamycin isoxa-
zole Hsp90 inhibitor, 43% of the patients reported grades 1–3
visual symptoms, including night blindness, photopsia, blurred
vision and visual impairment (27). These visual symptoms, in
particular night blindness and visual impairment, could be due
to reductions in PDE and GRK1. Fortunately, all the visual
symptoms were reversible when the drug was discontinued.
We did not observe retinal toxicity with HSP990 in mice as the
ONL thickness and mRNA transcript levels of photoreceptor
proteins were unaffected in animals treated with a high dose of
HSP990. Moreover, there were only small effects on the ERG
at these doses of HSP990. The reduced a-wave amplitude pre-
sumably relates to the lower levels of PDE, but dark adaptation
appeared unaffected. It is likely that the residual levels of PDE
and GRK1 (20–30% of vehicle treated) were sufficient for
photoreceptor function and survival. It is possible that greater
Hsp90 inhibition in the retina by higher affinityHsp90 inhibitors
with increased retinal availability could lead to larger reductions
in GRK1 and PDE, which would have amore pronounced effect
on photoreceptor function. Further reductions in PDE could
affect photoreceptor survival and be irreversible, as complete
loss of PDE is toxic to photoreceptors (43). This needs to be con-
sidered for eachHsp90 inhibitor andmight need to be tested em-
pirically as it could have important implications for the use of
Hsp90 inhibitors in the treatment of cancer or neurodegenera-
tion. However, our data show that Hsp90 can be inhibited sub-
stantially in the retina without toxic effects. Collectively, the
data show that Hsp90 has multiple roles in the retina and that
the use of Hsp90 inhibitors can be potentially protective
against retinal degeneration, but their possible adverse effects
on visual function also need to be considered.

MATERIALS ANDMETHODS

Materials

FLAG-GRK1plasmidwas a gift fromDrEllenWeiss (University
ofNorthCarolina,NC,USA).VisualArrestin-FLAGplasmidwas
a gift from Professor Vsevolod Gurevich (Vanderbilt University
Medical Center, Nashville, TN, USA). Lipofectamine and Plus
reagentwerepurchased fromInvitrogen. Protease InhibitorCock-
tail, 9-cis-retinal, 17-allylamino-17-demethoxygeldanamycin
(17-AAG), 4-PBA and 4′,6-diamidino-2-phenylindole dihy-
drochloride (DAPI) were purchased from Sigma. HSP990, a
2-amino-7,8-dihdro-6H-pyrido[4,3-D]pyrimidin-5-one com-
pound, was obtained from Novartis (Basel, Switzerland).
EndoH and PNGaseF were from New England Biolabs.
Rhodamine-labeled peanut agglutinin (PNA: 1:200) was from
Vector Laboratories. Rod opsin constructs, untagged rod opsin
in pMT3 and rod opsin-GFP were described previously (19).
1D4 mouse mAb against rod opsin was a gift from Professor
Robert Molday (University of British Columbia, Vancouver,
Canada) (1.33 mg/ml; 1:1500 for immunoblotting and for immu-
nohistochemistry, 1:5000 for immunocytochemistry). Hsp40
mouse mAb (1:600) was a gift from Professor Boris Margulis
(Institute of Cytology of the Russian Academy of Sciences,
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St. Petersburg, Russia). FLAG (cloneM2) mouse mAb (1:1000),
Hsp60 (clone LK1) mouse mAb (1:400), b-tubulin mouse mAb
(1:5000) and actin mouse mAb (1:2000) were from Sigma.
GRK1 (clone G8) mouse mAb (1:1000) and HSF-1 rat mAb
(1:1000) were from Abcam. Hsp70 mouse mAb (1:1000) and
Hsp90 rat mAb (1:5000) were from Stressgen. PDE6b rabbit
pAb (1:1000) and Arrestin rabbit pAb (1:1000) were from Ther-
moScientific. PDE6bmousemAb (1:1000) for rat tissue, transdu-
cin a rabbit pAb (1:1000) and transducin b rabbit pAb (1:1000)
were from Santa Cruz. Goat anti-mouse Alexa Fluor 488 or 594
secondary antibodies conjugated IgGs (1:1000) were from Invi-
trogen. Goat anti-mouse (1:50000), anti-rabbit (1:30000) or
anti-rat (1:30000) secondary antibodies conjugated with horse-
radish peroxidase were from Pierce.

Animals

All procedures were conducted according to the Home Office
(UK) regulations under the Animals (Scientific Procedures)
Act of 1986 and with local UCL Institute of Ophthalmology,
London, UK ethics committee approval. Three types of
animals were used wild-type C57Bl6 mice, wild-type Sprague
Dawley rats (SD) andP23H-1 heterozygous rats kindly provided
by Professor Matt LaVail (University of California San Fran-
scisco, San Franscisco, CA, USA). All animals were housed
under a 12:12 light dark cycle, with food and water available
ad libitum.

HSP990 dosing

HSP990was formulated using 2%methyl cellulose diluted with
9 volumes of saline solution (water with 0.9% NaCl). The
HSP990 vehicle mixture was sonicated at high frequency in a
water bath and mixed thoroughly to form a uniform suspension.
Compound or vehicle alone was administered to mice or rats by
oral gavage. For single-dose experiments, female rats were
treated with 1 mg/kg and male rats with 5 mg/kg because of
sex differences in sensitivity. For prolonged doses mice were
treated with 80 mg/kg every 3 days.

Immunocytochemistry

SK-N-SH cells were maintained and transfected as described
(12). Twenty-four hours after transfection, cells were fixed
with 4%paraformaldehyde (PFA) for 15 min and permeabilized
in 0.5% Triton X-100 for 10 min. Non-specific binding was
blocked using 3%BSA, 10% serum of the secondary antibodies
species in PBS for 1 h. Hsf-12/2 MEFs were derived from the
C;129-Hsf-1tm1Ijb/J strain of mice (22) from the Jackson
Labs and were a gift from Professor Gillian Bates and Dr
Andreas Neueder (King’s College London, UK). Control
MEFs have been previously described (45). 1 × 106 MEFs
were transfected with 4 mg of P23H-GFP or R135L-GFP rod
opsin plasmids using the Nucleofector kit from Lonza (Slough,
UK). Cells were treated with 17-AAG (0.5 mM) or vehicle
treated for 20 h and fixed with 4% PFA. Images were taken
usingaCarlZeissLSM710 laser-scanning confocalmicroscope.
The images were exported from LSM Browser and prepared
using Adobe Photoshop and Illustrator CS4. Cell morphology
studies scored the predominant localization of rod opsin on the
PM, ER, inclusions or vesicles as a percentage of total

transfected cells. At least four fields of ≏100 cells were
counted for each condition.

Immunohistochemistry

At the defined time points, animals were sacrificed, and the eyes
were collected for histology. Eyes were fixed overnight in 4%
paraformaldehyde in PBS, and left in a 30% sucrose solution
for cryoprotection. Eyes were then frozen in OCT compound
(VWR) using a dry ice/acetone slurry and stored at 2808C
prior to cryosectioning at 10 mm onto Superfrost plus slides
(VWR). Cryosections were incubated with primary antibodies
1D4 and PNA (1:200) and visualized with anti-mouse goat
Alexa Fluor 488 conjugated IgGs. Outer nuclear layer thickness
measurements were made on digital images of stained cryosec-
tions, every 500 mm from the optic nerve outwards for both the
inferior and superior hemisphere.

Immunoblotting

SK-N-SH transfected cells were lysed for 15 min at 48C in 1%
n-dodecyl-b-D-maltoside (DM) buffer with 2% protease inhibi-
tor cocktail in PBS. For deglycosylation reactions, 15 mg total
protein in DM soluble cell lysate was digested with EndoH or
PNGase F. Digestions were carried out overnight at 378C
before resolving by SDS–PAGE. Frozen mouse or rat retinae
were homogenized in ice cold RIPA buffer with 2% protease in-
hibitor cocktail. Protein concentration was determined by BCA
assay (ThermoScientific) and 10 mg protein was added to 2×
Laemmli loading buffer before SDS–PAGE and western blot.
For the differential sedimentation assay, 350 ml of rat retinal
lysate was centrifuged at 100 000g 108C for 30 min resulting
in supernatant-1 (S1, ‘soluble’) and pellet-1 (P1) fractions. An
aliquot of S1 fraction was mixed with 4× SDS–PAGE sample
buffer for future analysis while P1 was washed with 200 ml of
RIPA buffer and reconstituted in RIPA buffer containing 5%
SDS by sonication. This was centrifuged at 225 000g for
60 min at 208C resulting in P2 and S2 fractions accordingly.
The ‘insoluble’ P2 fraction was reconstituted in 2× SDS–
PAGE sample buffer by sonication prior to analysis by western
blotting. To assess protein degradation, SK-N-SH cells were
treated with CHX (50 mg/ml) (Sigma, Poole, UK) 20 h after
transfection for 2 or 4 h. Sampleswere analyzed bywestern blot-
ting. Immunodetection of the proteins of interest was carried out
using the primary and secondary antibodies described inMateri-
als and Methods. Western blot densitometry was performed
using ImageJ. Developed films were scanned, and the average
pixel density for each band was measured.

Electroretinography

Scotopic ERG was performed as described in Coffey et al. (46).
Animalsweredark-adapted overnight and anesthetizedwithketa-
mine/xylazine intraperitoneally (i.p.). Procedures were carried
out under red-light conditions. Pupils were dilated with topical
1% tropicamide and 2.5% phenylephrine hydrochloride. ERG
was carried out via platinum loop electrodes on the cornea and
an indifferent platinum electrode in the scalp of the subjects. A
platinum earth electrode was placed in the back of the animal.
The animal was placed on a heated pad (378C) in a screened

Human Molecular Genetics, 2014, Vol. 23, No. 8 2173

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/h
m

g
/a

rtic
le

/2
3
/8

/2
1
6
4
/5

9
2
2
5
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



light-tight box for recording. Flash stimuli (10 ms to 1 ms dur-
ation, repetition rate 0.1–1 Hz)were presentedvia anLEDstimu-
lator (log intensity 26 to+ 2.7) under scotopic conditions.

Optical coherence tomography

SD rats were imaged using a modified Spectralis OCT
(Heidelberg Engineering, Heidelberg, Germany). Measurements
were recorded for whole and individual retinal layer thickness in
four regions (temporal, superior, nasal and inferior) around the
optic nerve head. After manual segmentation of each layer,
ONL thickness was measured with Adobe Photoshop.

Electroporation

DNA encoding WT-GFP and R135L-GFP and pRho dsRed in
fast green 0.1% were injected into the subretinal space of neo-
natal SD rats, followed by electroporation as described (24,47).

RNA extraction, reverse transcription and real-time PCR

Retinae were dissected and total RNA extractionwas performed
using an RNeasy Mini Kit (Qiagen, Crawley, UK). cDNA syn-
thesis, Invitrogen Super Script III First-Strand Synthesis
System reversed transcription. RT–PCR was carried out using
the ABI700HT (Applied Biosystems). The relative quantifica-
tion of the genes of interest was performed in triplicate using
three biological replicates according to the comparative
method. Specific amplification of gene transcripts was achieved
with the following primers: HSPA1A (Hsp70) F: TGGTGC
AGTCCGACATGAAG, R: GCTGAGAGTCGTTGAAGTAG
GC; GRK1 F: CGGGGCAGTTTTGACGGAA, R: AGCT-
GAGGTTGTCACGGAGA; PDE6b F: GCAGCACTTTTTG
AACTGGTG, R: CATTGCGCTGGCGGTACATA; Arrestin
F: GCCTGCGGGAAGACCAATAAA, R: GGTCAGGGTGA
CATACACCTT; Transducin a F: GATGCCCGCACTGT-
GAAAC, R: CCAGCGAATACCCGTCTTG; Rhodopsin F:
CCCTTCTCCAACGTCACAGG, R: TGAGGAAGTTGATG
GGGAAGC. An internal reference (GAPDH) was used to nor-
malize the transcripts: F: GCCATCAACGACCCCTTCAT, R:
ATGATGACCCGTTTGGCTCC. The reaction was set up
using the SYBR green Mix Hi-Rox (PCR Biosystems). The
data were analyzed with DART PCR software (48).

SUPPLEMENTARYMATERIAL

Supplementary Material is available at HMG online.
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