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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In the traditional approach to managing complex systems, planning and scheduling are two very 
distinct phases. However, in a wide variety of applications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis strict separation is not possible or 
beneficial. During scheduling it is often necessary to make planning decisions (plan the setup of 
a machine); moreover planning decisions can benefit from scheduling information (choose a 
process plan depending on resource loads). HSTS (Heuristic Scheduling Testbed System) is a 
representation and problem solving framework that provides an integrated view of planning and 
scheduling. HSTS emphasizes the decomposition of a domain into state variables evolving over 
continuous time, This allows the description and manipulation of resources far more complex 
than it is possible in classical scheduling. The inclusion of time and resource capacity into the 
description of causal justifications allows a fine-grain integration of planning and scheduling and 
a better adaptation to problem and domain structure. HSTS puts special emphasis on leaving as 
much temporal flexibility as possible during the planninghcheduling process to generate better 
pldschedules with less computation effort. Within the HSTS framework we have implemented 
several planninghcheduling systems. In the paper we describe an integrated planner and 
scheduler for short term scheduling of the Hubble Space Telescope. This system has 
demonstrated the ability to deal effectively with all of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe important constraints of the domain. 
Experimental results show that executable schedules for Hubble can be built in a time 
compatible with operational needs. The paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso describes a methodology for job-shop 
scheduling problems. The methodology exploits the temporal flexibility provided by HSTS. 
Experimental results show that this approach is more effective than other intelligent scheduling 
techniques in the solution of scheduling problems with non-negotiable dead-lines. 
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1 Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In the traditional approach to managing complex systems, planning and scheduling are two very 
distinct phases. Planning determines how the system achieves different types of goals. The 
process consists of concatenating elementary transformations (or actions) to move the world into 
a state that satisfies the goal. The result is a library of plans. Scheduling takes responsibility for 
day to day operations. After receiving a set of goals, a scheduler instantiates plan templates 
contained in the library and assigns to each action a time slot for the exclusive use of the needed 
resources. The result is the prediction of a specific course of action that, if followed, ensures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe 
achievement of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall goals within the system’s physical constraints. 

A typical case is the management of a manufacturing facility. Planning develops processes to 
manufacture given product types (e.g., -transforming a raw block of metal into a widget). 
Scheduling receives a number of orders to produce widgets of given types with known release 
dates for raw materials and due dates for finished products. In both phases, costs should be kept 
as low as possible; this might require generating processes with a minimum number of steps, or 
scheduling the last action in each order as close as possible to the due date. 

This strict separation between planning and scheduling does not match the operating conditions 
of a wide variety of complex systems. Even in cases where separation is viable it might be overly 
restrictive. A more flexible adaptation to the structure of the problem might yield better 
solutions. For example, during the scheduling phase it is often necessary to expand setup 
activities; these are not justified by the achievement of a primary goal but depend exclusively on 
how other activities are sequenced on a resource. Consider an instance where two sequential 
operations require drilling holes of different diameters using the same drilling machine; the 
schedule must allocate time for the substitution of the drill bit. In other situations, planning might 
be profitably delayed into the scheduling phase. This allows the expansion of courses of action 
that, although a priori sub-optimal, are clearly convenient when considering expected resource 
usage. The number of possible alternatives might make the management of a complete plan 
library impractical as required by the traditional approach. 

A major obstacle to more integrated and flexible planning and scheduling is the lack of a unified 
framework. This should support the representation of all aspects of the problem in a way that 
makes the inherent structure of the domain evident. When dealing with large problems and 
complex domains, a framework with strong structuring devices facilitates the decomposition of 
system models and the consequent management of the combinatorics of search. 

In planning, most Artificial Intelligence research adopts the classical representational assumption 
proposed by the STRIPS planning system [IO]. In this view action is essentially an instantaneous 
transition between two world states of indeterminate durations. The structural complexity of a 
state is unbound, but the devices provided for its description are completely unstructured, such as 
complete first order theories or lists of predicates. Some frameworks [40,38] have demonstrated 
the ability to address practical planning problems. However, the classical assumption lacks 
balance between generality and structure; this is a major obstacle in extending classical planning 
into integrated planning and scheduling. Past research has attempted partial extensions in several 
important directions: processes evolving over continuous [2] and metric time [39,7], parallelism 
[20], and external events [13]. However, no comprehensive view has yet been proposed to 

address the integration problem. 

Classical scheduling research has always exploited much stronger structuring assumptions [3]. 
Domains are decomposed into a set of resources whose states evolve over continuous time. This 
facilitates the explicit representation of resource utilization over extended periods of time. 
Several current scheduling systems exploit reasoning over such representations 
f11.36, 32,22,42,5]. Empirical studies have demonstrated the superiority of this approach 
L29.321 with respect to dispatching scheduling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[30], where decision making focuses only on the 
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immediate future. However, the scheduling view zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the world has very strong limitations. No 
information is kept about a resource state beyond its availability. Additional state information 
(e.g., which bit is mounted in a drill at a given time) is crucial to maintain causal justifications 
and to dynamically expand support activities during problem solving. 

In this chapter we describe HSTS (Heuristic Scheduling Testbed System), a representation and 
problem solving framework that aims at unifying planning and scheduling. Similar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto classical 
scheduling, HSTS decomposes a domain into a vector of state variables continuously evolving 
over time. Similar to planning, HSTS provides general devices for representing complex states 
and causal justifications. Within this framework we have developed and experimentally tested 
planninghcheduling systems for several unconventional domains. These domain include short 
term scheduling for the Hubble Space Telescope [25] and “bare base” deployment for 
transportation planning [12]. Several constraint propagation mechanisms support the richness of 
domain representation at any problem solving stage. 

Schedules developed in HSTS implicitly identify a set of legal system behaviors. This is an 
important distinction with respect to classical approaches which, instead, specify all aspects of a 
single, nominal system behavior. During execution, a nominal behavior is interpreted as an ideal 
trajectory to be followed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas closely as possible. However, since the schedule does not explicitly 
represent feasible alternatives, it is difficult to have a clear picture of the impact of the 
unavoidable deviations from the desired course of action. HSTS, instead, advocates schedules as 
envelopes of behavior within which the executor is free to react to unexpected events and still 
maintain acceptable system performance. Viewing scheduling as the manipulation of behavior 
envelopes has potential advantages during pldschedule construction. In this chapter, we will 
discuss a heuristic scheduling methodology, Conflict Partition Scheduling (CPS), that operates 
on a temporally flexible network of constraints under the guidance of statistical estimates of the 
network’s properties. We will show experimental evidence of CPS’s superiority with respect to 
other intelligent scheduling approaches. 

The chapter is organized as follows. In section 2 we briefly describe two unconventional 
application domains that require integrated planning and scheduling. We then introduce the basic 
HSTS modeling principle which allows such integration (section 3). A detailed description of the 
features of HSTS follows in sections 4 and 5. Special attention is given to the wide variety of 
resource capacity constraints supported by the framework (section 6). The rest of the chapter 
describes two problem solvers implemented in HSTS: a short-term scheduler for Hubble Space 
Telescope observation scheduling (section 7) and a scheduling methodology for job-shop 
scheduling (section 8). In the conclusions (section 9) we summarize the status of the project and 
discuss future research directions. 

2 Two application domains 

2.1 Space Mission Scheduling 
Space mission scheduling problems include managing orbiting astronomical observatories, 
coordinating the execution of activities aboard the space station, and generating detailed 
command sequences for automated planetary probes. These apparently diverse applications share 
two main sources of complexity. The first is the need to use the space facility with high 
efficiency in the presence of a very large number of diverse usage requests. Much of the 
international scientific community is eager to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtake advantage of the unique conditions found in 
space (e.g., weightlessness, extreme vacuum, exposure to radiation that does not reach the 
surface of the earth). For example, in the case of the Hubble Space Telescope, the number of 
individual observations requested over a year is on the order of several tens of thousands. 
Consequently, the time requested by the experiments deemed worth pursuing exceeds the 
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lifetime of any given mission. To maximize return, the final schedule must accommodate as 
many of these experiments as possible. The second source of complexity is the need to insure a 
safe operation of the space facility. It is not enough to allocate exclusive time for the execution 
of main activities; the schedule must contain enough detail to explicitly ensure that auxiliary 
reconfigurations and intermediate states of the various subsystems do not interact in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa harmful 
way. 

A typical space mission scheduling problem is the generation of short-term schedules for the 
Hubble Space Telescope (HST). Astronomers formulate observation programs according to a 
fairly sophisticated specification language [37]. The basic structure of each program is a partial 
ordering of observations. Each observation specifies the collection of light from a celestial object 
with one of the telescope’s scientific instruments. A program can contain a diverse set of 
temporal constraints including precedences, windows of opportunity for groups of observations, 
minimum and maximum temporal separations, and coordinated parallel observations with 
different viewing instruments. When executing an observation, HST gathers light from celestial 
objects called targets, and communicates scientific data back to Earth through one of two 
TDRSS communication satellites (Figure I). Given the telescope’s low altitude orbit, the Earth 
periodically occludes virtually any target and communication satellite. The fraction of orbit 
during which each of them is available for observation or communication depends on their 
position. 

Hubble Space Telescope 

- 

Data 
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Figure 1: The Hubble Space Telescope domain 

The telescope subsystems must be operated paying continuous attention to several stringent 
constraints. These include limited available electric power, and maintenance of acceptable 
temperature profiles on the telescope structure. The pointing subsystem is responsible for 
orienting HST toward a target, and locking it at the center of the field of view of the designated 
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scientific instrument. HST has 6 different scientific instruments, but available electric power 
does not allow all of them to be operational simultaneously. Moving an instrument between 
operation and quiescence requires complex reconfiguration sequences which must be 
coordinated among various instrument components. Reconfigurations must also be appropriately 
synchronized among different instruments. Data can be read from the instruments and directly 
communicated to Earth through one of two links operating at different communication rates; it 
can also be temporarily stored on an on-board tape recorder and communicated to Earth at a later 
time. 

In summary, solving the HST observation scheduling problem requires the generation of 
command sequences to accommodate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas many observations as possible while maintaining 
telescope integrity and satisfying constraints and preferences imposed by the scientists. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATransportation Planning 
Disaster relief operations or other large-scale responses to international crises require. the 
coordination of the transportation of a large number of people, goods, and other facilities. For 
example, transportation plans to support military operations are very large, and involve the 
movement of tens of thousands of individual units. These units span a diverse range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof size and 
composition: from a single person or piece of cargo to an entire division [14]. The timely 
execution of a well-coordinated transportation plan is crucial for the success of an operation. 

Units can use transpoaation resources (e.g., planes, ships) depending on their original location, 
their intended destination, and the time at which they are needed at the destination. Therefore, it 
is not sufficient for a unit to fmd a resource with enough transportation capacity at the 
appropriate time, but the resource’s mute must also match the unit’s source and destination 
locations. Units can be assigned to transportation flows already established. In case their arrival 
at the destination is extremely critical, transportation resources can be diverted from other less 
critical uses or temporarily acquired from other sources (e.g., planes chartered from commercial 
airlines). Justification information includes mutual dependency among different unit 
deployments and intended effects of a unit becoming operational at the destination. Keeping 
track of this information is essential in order to adapt the plan to unexpected execution 
conditions or to partially reuse it in other situations. 

Often the primary goal served by a unit is to augment the facilities available at the destination, so 
as to increase its throughput and to allow a higher rate of delivery. Typical examples of these 
facilities are air traffic control, aircraft refueling, and personnel or cargo unloading. Aggregate 
capacity resources are often an appropriate representation for these facilities. The state of an 
aggregate resource represents capacity in use or still available at any point in time. To make a 
more concrete example, let us consider a “bare base” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAscenario, where the goal is to turn a bare 
runway at the destination into a fully functioning airport. The number of planes that can be 
refueled in parallel at the destination can be represented as an aggregate refueling capacity. 
Bringing in one or more refueling units permanently increases refueling capacity. Since planes 
use this facility immediately after arrival, increasing refueling capacity increases the plane 
arrival rate at the destination. This in turn increases the arrival rate of additional refueling units, 
resulting in a quick amplification of the capabilities of the airport. Increasing the number of units 
at a site also increases the demand for other supporting functions (such as sleeping space, food, 
and fuel) which are provided by other units. The arrival of these additional units must be 
carefully coordinated to avoid chaotic situations and negative consequences on the overall 
outcome of the mission. 

In conclusion, the salient factors in transportation planning are time, dynamic generation and 
consumption of several types of aggregate capacity, state information, and causal relations. This 
domain is a primary candidate for the application of integrated planning and scheduling. 
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3 Integration of planning and scheduling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
To deal effectively with complex domains we need a synthesis of the problem solving 
capabilities currently split between classical planning and classical scheduling. To this end, it is 
crucial to recognize that a domain can always be described as a dynamical system[17]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
dynamical system is a formal structure that gives the relationship between exerted actions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(input) 
and observed behaviors over time, taking into account the internal memory of past history 
(sfare).* Planning and scheduling are in fact complementary aspects of the process of step-by- 
step construction of consistent dynamical system behaviors [23, 81. To build a problem solving 
framework capable of easily accommodating this process we must choose an appropriate 
structuring principle for the description of the dynamical system. 

In domains like space mission scheduling and transportation planning we can accurately describe 
the system’s instantaneous situation with the value of a handful of its properties (e.g., the 
operative state of each component of the space telescope, the usage of different airport facilities). 
Therefore, we adopt the fundamental structuring principle of describing both input and state as 
finite dimensional vectors of values evolving over continuous time. The same principle is 
adopted by approaches that deal with continuous value dynamical systems (e.g., linear systems) 
[17] and with the temporal specification of reactive software systems [21]. 

The input and state vector assumption promotes a more general view of the domain than those 
allowed by classical scheduling and planning. 

Classical scheduling requires the representation of resources. A vector component can directly 
model a single capacity resource since it can assume one and only one value at any point in time. 
In this case the range of possible values is essentially binary (e.g., processing or d e ) .  However, 
in our representation the range of vector component values can be wider than binary, allowing 
the inclusion of more complex state information into the representation of resources. This 
extends the restrictive assumptions made in classical scheduling. 

In classical planning, the evolution of a domain strictly alternates between a stage of change 
(ucrion) and a period of static persistence (sfare). A representation based on input and state 
vectors promotes a different view. The input vector identifies those system properties directly 
controlled by an external agent, while the state vector refers to those which can only be indirectly 
influenced. Values representing change and persistence can appear in any order in any vector 
component. For example, it is possible to have static values one immediately after the other 
(when transitions have infmitesimal durations) or changes following one another (when a 
process is divided into two or more contiguous phases). This facilitates reasoning over parallel 
processes evolving over continuous time. 

In the rest of the paper we will discuss only state vectors, assuming that for the domains of 
interest the synthesis of the input is straightforward (e.g., sending the signal to start an operation 
on a resource at a time determined by the schedule). 

These modeling premises also support the formulation of a broader class of problems than those 
usually expressible in classical planning and scheduling. A planning/scheduling problem is 
simply a set of constraints and preferences on state vector values; their satisfaction identifies a 
desired pladschedule among zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall possible consistent behaviors. Constraints can specify both the 
execution of actions, as in classical scheduling, and the request for stationary states, as in 
classical planning. Evaluation functions can impose preference on the possible behaviors of the 
system (e.g., execute as many observations as possible out of a pool submitted to HST). A good 
planner/scheduler will try to constmct behaviors with a high (possibly globally maximal) level of 

*In the following we will identi& the observable behavior of the system with the evolution of its state over time. 
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satisfaction for these preferences. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 The fundamental components of HSTS 
The HSTS framework makes coherent use of the previous representational principle. The two 
core components are the Domain Description Language (HSTS-DDL) and the Temporal Data 
Base (HSTS-TDB). HSTS-DDL allows the specification of the static and dynamic structure of a 
system. It supports the expression of a model as a modular set of constraint templates satisfied by 
any legal system behavior. HSTS-TDB supports the construction of such legal behaviors. It 
provides facilities to insure a strict adherence of its content to an HSTS-DDL system model and 
to any requirement stated in a problem. By posting assertions and constraints among assertions in 
the data base, a planner/scheduler sets goals, builds activity networks, commits to the 
achievement of intermediate states, and synchronizes system components. The tight connection 
between the entities that can be specified in HSTS-DDL and those that can be represented in 
HSTS-TDB provides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa strong basis for exploiting domain structure during problem solving. 

4.1 Domain Description Language 
An HSTS-DDL system model is organized as a set of system components, each with an 
associated set of properties. Each property represents an entry of the state vector; it can 
therefore assume one and only one value at any point in time. Properties whose value does not 
change over time (also called static properties) typically represent system parameters. The 
behavior of the system is determined by the value of its dynamic properties, those that change 
over time; in the rest of the paper we will refer to them as the state variables of the system. 

HSTS-DDL gives special emphasis to the specification of state variables. A system model must 
explicitly declare the set of all possible values for each state variable. A value is expressed as a 
predicate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ( x l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA....., xn) ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<nl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, ....., xn> is a tuple in the relation R. The model must 
give a domain for each predicate’s argument; currently HSTS-DDL allows sets of symbols, sets 
of system components, and numeric quantities (either discrete or continuous). 

To illustrate these points we give an example from HST. The system component 
POINTING-DEVICE has several properties. One of them is the telescope’s average slewing rate, 
described as a constant value of a static property. The pointing direction of the telescope and the 
state of target tracking is determined by a single state variable, State(POr”G-DEVICE). Its 
possible values are: 

UNLOCKED ( ?T)  : the telescope is pointing in the generic direction of target zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?T; 

LOCKED( ?T) : the telescope is actively tracking target ?T; 

LOCKING( ?T) : the tracking device is locking onto target ?T; 

SLEWING(?Tl, ?Z2)  : the telescope changes its direction from target ?TI to target 
?72. 

The domain of each of the variables ?T, ?TI and ?T2 is the set of all known targets, each 
represented as a separate system component in the HST model. 

The specification of each state variable value is incomplete without its temporal characteristics. 
For a system behavior each value extends over a continuous time interval or occurrence. A 
value’s occurrence depends in part on the value’s intrinsic characteristic and in part on its 
interaction with other values. For example, the duration of a slewing operation is entirely 
determined by intrinsic parameters, like the angle between the two targets and the telescope’s 
slewing rate. On the other hand, the only cause for the telescope to exit an unlocked state is the 



Occurrence of either a slewing or a locking operation, i.e., the interaction with other values. 

In HSTS-DDL each value has a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAduration constraint which expresses the intrinsic range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[d ,  D ]  
of its possible durations (D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 d 2  0); d and D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare respectively the duration’s lower and upper 
bounds. The bounds are specified as functions of the value’s arguments; their tightness depends 
on the binding status of the value’s arguments. For example, during problem solving ?T1 and 
?72 in SLEWING(?Tl, ?n) might be restricted to specific sets of targets. The lower bound of 
the duration constraint would return the slewing time between the closest pair of targets, each 
selected from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa different set; the upper bound would refe.r to the farthest pair of targets. If each of 
?T1 and ?72 are restricted to a single target, both the lower and upper bounds will assume the 
slewing time between the two targets. 

For any system it is possible to identify constraining patterns of value occurrences. In any legal 
behavior, when a value occurs other values must also occur to match the pattern. Such patterns 
describe the dynamic characteristics of the system, and have a function similar to state operators 
in classical planning. In HSTS-DDL each value is constrained by a compatibility specification 
which consists of a set of compatibilities organized as an AND/OR graph. Each compatibility 
represents the request for an elementary temporal constraint between the value and an 
appropriate segment of behavior. More precisely, a compatibility has the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[ temp-rel <comp-class, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAst-vur, type >] 

The tuple < comp-class, st-vur, type > specifies the characteristics of a constraining segment of 
behavior; temp-rel is the temporal relation requested between the constrained value and the 
constraining segment of behavior. The temporal relations known to HSTS-DDL are equivalent to 
all combinations of interval relations[l] with metric constraints that can be expressed in 
continuous endpoint algebra [IS]. For example, before( [ d ,  D]) indicates that the end of the 
constrained value must precede the start of the constraining behavior segment by a time interval 
6, such that d 5 6 I D ;  its inverse is ufrer( [d,D]) .  The relation 
contained-by( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ d l ,  D 1 ] ,  [d2, D2]) says that the constrained value must be contained within the 
constraining behavior segment; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[d,, D1]  defines the distance between the two start times while 
[d2, D2] refers to the two end times. HSTS-DDL restricts the constraining behavior segment to 
occur on a single state variable, st-vur. The identifier comp-class can be one of two symbols, v 
or 6, depending on the nature of the behavior segment. The symbol v stands for a single value 
occurrence (value compatibility), while D refers to a sequence of values occurring contiguously 
on the same state variable (sequence compatibility). In this section we describe value 
compatibilities; section 5.1 will discuss sequence compatibilities. The behavior segment must 
consist of values extracted from the set specified in type. 

To draw an illustrative example from the HST domain, let us consider the dynamic state of the 
telescope’s pointing device (state variable ~~&(POI”G-DEVICE)). The possible value 
transitions are shown in figure 2. Each node represents one of the possible values while an arc 
between two nodes represents two compatibilities. More precisely, an arc from node ni to node 
nj is equivalent to a [before( [0, 01 ) < v, state(PoIWfNGDEWCE), Inj} > ] compatibility 
associated to ni, and to a symmetric ufer([O,O]) compatibility associated to nj. Multiple arcs 
exiting or entering a node correspond to alternative transitions (OR node in the compatibility 
specification). Some of the values can persist indefinitely (highlighted nodes in figure 2) and 
have therefore an indeterminate duration constraint ([0, fm] bound); all other values have a 
determined duration constraint, To precisely specify the physically consistent patterns of 
behavior, we must also consider synchronization with other state variables. For example, locking 
the telescope on a target and keeping the lock requires target visibility. This imposes an 
additional compatibility ([canruzned-by( [0, +-I, [0 ,  + - I )  < v, visibility(?n, [ VISIBLE] >]) 
on each of the values WCKING(?T) and LOCKED(?T). Figure 3 lists the complete 
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compatibility specification for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALOCKED( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?T). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

LOCKING 

UNLOCXED zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W 
SLEWING 

Figure 2: Value transition graph for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~~~~~(POINTING-DEVICE). 

< state ( POINTING-DEVICE ), LOCKED ( ?T ) > 

1 contained-by ( [O, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+-I, [O, +-] ) 
a, visibility ( ?T ), { VISIBLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 > 1 

[ after ( LO, 01 I 
< V, ~tak ( POINTING-DEVICE ), {LOCKING ( ? T )  I > ] 

[ before ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[O, 01 I 
< v, state ( POINTING-DEVICE ), {SLEWING ( ?T, ?TI ) ) z 1 

I before ( LO, 01 I 
< v, state ( POINTING-DEVICE ), {UNLOCKED ( ? T )  ) > ] 

Figure 3: Compatibilities for the value LOCKED( ?T).  

HSTS-DDL allows the specification of system models at different levels of abstraction. System 
components and state variables at abstract levels aggregate those at more detailed levels. The 
relationship among the levels is established by refinement descriptors; these map some of the 
abstract values into a network of values associated with the immediately more detailed layer. The 
mapping also specifies the correspondence between the start and end times of each abstract value 
and those of the corresponding detailed values. 

4.2 Temporal Data Base 
HSTS-TDB shares the basic representational principles of a Time Map temporal data base 
r6.341, but provides additional constructs to support the satisfaction of conditions imposed by 

an HSTS-DDL system model. 

The primitive unit of temporal description is the token, a time interval, identified by its stuart 
time and end time, over which a specified condition, identified by a vpe, holds. HSTS-TDB 
modifies the original Time Map token in two main ways. The first modification is designed to 
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strictly adhere to the state vector assumption: in HSTS-TDB each token can only represent a 
segment of the evolution of a single state variable. The second modification supports the 
incremental construction of system behaviors: HSTS-TDB allows different kinds of tokens 
depending on the level of detail of the corresponding segment of behavior. 

The general format of an HSTS-TDB token is a 5-tuple: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtoken-class, st-var, type, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAst, et, > 

token-class determines the kind of behavior segment described by the token. It can assume three 
different Values: VALUE-TOKD4, CONSTRAINT-TOKEN and SEQUENCE-TOKFiN. In this section we 
discuss value and constraint tokens; section 5.1 will describe sequence tokens. st-vur specifies 
the state variable on which the token occurs, type is a subset of the possible values of sr-vur 
specified in the HSTS-DDL system model. Depending on token-class, the behavior segment 
consists of one or more values belonging to type. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAst and et represent the token’s start and end 
times; their nature will be discussed in section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.2. 

The kind of token most directly related to the Time Map token is the VALUE-TOKEN. A value 
token identifies a behavior segment consisting of a single unintenupted value. Taking an 
example from the HST domain, to assert the occurrence of a telescope slew from target zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NGC4535 to target 3C267 we can post the token: 

< VALUE-TOKEN, ~ta t~(PUlwr rhrc -DEVlCE) ,  {SLEWING( NGC4535,3C267)},+, t p  

Since the token’s type consists of a single ground predicate, this expresses a defmite fact. HSTS- 
TDB can also support decision making with a level of commitment appropriate to the current 
state of knowledge. During the construction of an HST pldschedule, we might want to require 
a slewing operation with a specific destination target, but it might be too early to select the most 
convenient slew origin (e.g., due to the lack of strong indications on how to sequence a set of 
observations). This can be done with the token: 

< VALUE-TOKEN, Stak(POINTlNGDEVKE),{SLEWING( ?T, 3C267)}, t l ,  t2> 

where its type is the set of values obtained by binding ?T to all possible targets. Further 
refinement of the token’s characteristics depends on additional decisions and constraint 
propagation throughout the temporal data base (see section 5.2). 

Asserting a value token does not guarantee that it will be eventually included in an executable 
plan. An executable token has to also find a time interval over which no other value token can 
possibly occur on the same state variable. HSTS-TDB supports the satisfaction of this condition 
with a specific device: the time h e .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis is a generalization of resource capacity profiles as used 
in classical scheduling. A time line is a linear sequence of tokens that completely covers the 
scheduling horizon for a single state variable. In a completely specified pldschedule the time 
line consists of a sequence of value tokens with ground predicate types. However, at the 
beginning of the planninglscheduling process there is little or no knowledge on the number and 
nature of these tokens. Constraint posting might allow different degrees of refinement of this 
knowledge in different time line sections. To express this situation HSTS-TDB provides a 
different kind of token, the CONSTRAINT-TOKEN. A constraint token can appear only in a state 
variable’s time line and represents a sequence of values of indefinite length (possibly empty); 
each value must belong to the token’s type. 

The principal means to refine a behavior segment is the insertion of a value token into a 
compatible constraint token. Token insertion generalizes reservation of capacity to an activity, 
the main decision making primitive in classical scheduling. Figure 4 graphically describes the 
consequences of the insertion of a value token with a single ground predicate into a time line 
consisting of a single constraint token. The graph in figure 4(a) symbolizes all different 



10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
evolutions of the state variable values that can possibly substitute for the initial constraint token. 
The insertion partitions the time line into three sections. The f ist  and third section consist of 
constraint tokens that inherit all characteristics of the original constraint token; the inserted value 
token covers the middle section. All legal refinements of the time line must now assume the 
specified value throughout the occurrence of the inserted token (Figure 4(b)). 

value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@) 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 Insertion of a value token into a time line. 

Tokens are restricted by the problem statement and by the HSTS-DDL system model. For 
example, a problem might require the satisfaction of a release date on the occurrence of activity, 
while compatibility specifications might require the occumnce of a related pattern of support 
activities and states. The means to assure the satisfaction of these conditions is the posting of 
temporal and type constraints among pairs of tokens. We refer to the set of tokens and 
constraints among tokens in the data base as the token network. In HSTS-TDB, an absolute 
temporal constraint relates a token zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 to a special “reference token” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*pas@; the end time of 
*pasr* is by convention the origin of the temporal axis, or time 0. To enforce a release date on 
token z, for example, we can post the constraint {*past* before( [ I ,  +-I) 7). which says that z 
must start at least r units of time after the time origin. To support the satisfaction of constraints 
intrinsic to the domain, HSTS-TDB automatically associates to each value token an instance of 
its type’s compatibility specification tree. During the planningkcheduling process this data 
structure maintains the current state of the token’s causal justification. When the 
planner/scheduler decides to satisfy a compatibility, it posts a temporal relation between two 
tokens. HSTS-TDB marks as achieved the appropriate leaves in the causal justification trees of 
the two tokens, and propagates the marking throughout each tree. If the root of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtree is marked 
as achieved, the corresponding value token is sufficiently justified; the planner/scheduler can 
therefore remove it from the list of tokens (subgoals) still to achieve. Compatibility 
implementation corresponds to precondition and postcondition satisfaction in classical planning. 
Figure 5 summarizes the process of implementing a contained-by compatibility in the HST 
domain; the compatibility specifies that while the telescope is locked on target 3C267, the target 
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NOT- VISIBLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvisibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3C267 ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmust be visible. 

VISIBLE NOT- VISIBLE 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALOCKED( 3C267) I 

visibility ( 3C267 ) NOT-VISIBLE VISIBLE 

LOCKED( 3C267) 

( b )  

Figure 5: Implementation of a contained-by compatibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HSTS-TDB also supports problem solving at multiple levels of abstractions. This is obtained by 
subdividing a token network into a number of communicating layers, each corresponding to a 
level of abstraction in the HSTS-DDL system model. If the type of a value token has a 
refinement specification in the system model, an instance of the refmement specification is 
automatically associated to the token. 

HSTS-TDB provides primitives to allow the creation and insertion of tokens and the creation of 
instances of temporal relations. Each primitive has an inverse that allows the undoing of previous 
commitments. HSTS does not impose any particular constraint on the order in which these 
primitives can be used; this is completely left to the search method and the domain knowledge of 
the planner/scheduler. Through a context mechanism a plannerkcheduler can also access 
different alternative database states. Mechanisms are provided to localize tokens that satisfy 
given conditions (e.g., all tokens on a state variable time line that can be used to implement a 
given compatibility). 
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5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAdditional HSTS features 

5.1 Sequence Constraints zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The primitives introduced in section 4 can express synchronization constraints between 
“constant” segments of state variable behavior, i.e., time intervals during which a state variable 
does not change its value. However, in complex domains it might be necessary to synchronize 
more complex behavior segments. A typical case involves several sequential values. For 
example, in the HST domain when the Wide Field detector (W) of the Wide FieldPlanetary 
Camera is in an intermediate reconfiguration state, the instrument platform (WFPC) can be in any 
of a number of states that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare neither too “cold” nor too “warm”. In terms directly derived 
from the HSTS-DDL model of HST, we need to express that while the state variable state(w) 
has value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs(3n), state(wppC) must remain in a value range within s(3n) and s(4n). Transition 
among values are allowed and no preferences are given on which specific sequence of values to 
use. 

To express these kinds of conditions, HSTS-DDL provides a special type of compatibility, the 
sequence compatibility (cump-class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0). If the value’s compatibility specification contains a 
sequence compatibility [ temp-rel <o, sf-vur, type>], a value’s occurrence requires a 
contiguous sequence of values from rype on state variable sr-var; moreover, the constrained 
value must be in the temporal relation femp-rel with the overall interval of occurrence of the 
sequence. Figure 6 shows the sequence compatibility for the WFlwFpc example described 
before. 

<sta te(WF) ,S(3n)  > 

[ contained-by ( [O, +mi [O. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+-I)  
<a, state( WFPC), { S (  3n) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT( 3n. 4n ), WARMUP ( 4 n ) ,  

S ( 4n ). T ( 4n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3n 1. COOLDO WN ( 3n ) > ] 

... 

Figure 6: A sequence compatibility. 

A planner/scheduler can impose sequence synchronization constraints by using a special kind of 
HSTS-TDB token, the sequence token (tok-class = SEQUENCGTO‘OKEN). A sequence token 
<SEQUENCE-TOKEN, st-vur, type, st, et> represents a time interval during which the state 
variable st-vur can assume an indefinite number of sequential values belonging to the set type. 
As for a value token, asserting a sequence token does not automatically imply inclusion into the 
pldschedule. This requires the insertion of the token into the time line. Figure 7 shows the 
implementation of the compatibility in figure 6. Notice that the sequence token encompasses 
several value tokens (in white) and constraint tokens (in gray); each represents a segment of 
behavior with a different level of refinement. 

Sequence compatibilities specify synchronization among “prooesses” within a single level of 
abstraction; this makes them different from traditional approaches to hierarchical planning [ 191. 
A sequence compatibility might not provide the primary justification for the constraining 
process. In this case, the sequence compatibility merely adds constraints (e.g., on the overall 
length of the process) that new goal expansions will have to satisfy. 
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contained-by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAio. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“‘“ea Is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3n 1. .... , COOLDOWN ( 3n ) / 

Figure 7: Implementation of a sequence compatibility. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2 Time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtype consistency 
HSTS-TDB maintains token network consistency through auxiliary constraint networks. 
Constraint propagation procedures allow the evaluation of the current flexibility of the possible 
value assignments for time and type. 

Temporal constraints are organized in a graph, the time point network [9]. Each token start or 
end constitutes a node in the graph, or time point; arcs between time points are metric interval 
distances derived from the temporal relations posted in the data base. Drawing an example from 
the HST domain, figure 8 shows a portion of the time point network underlying a pldschedule 
for taking an image of target NGC288 with the WF detector of the Wide FieldPlanetary Camera; 
the black token represents the actual exposure. HSTS-TDB provides a single-source constraint 
propagation procedure to compute the range of possible times for each time point. If the 
propagation finds some time point with an empty range, the token network is inconsistent. An 
all-pairs constraint propagation procedure is also available to determine ranges of temporal 
distances between pairs of tokens. This is useful when minimizing the token network (e.g., find 
tokens whose duration is effectively [ 0, 01 and that can therefore be deleted). The all-pairs 
procedure also allows the localization of inconsistent distance constraint cycles. Both constraint 
propagation procedures are incremental; if no constraints are deleted from the network, the time 
ranges are updated by considering only the additional effects of the new constraints. 

To provide a more localized structural analysis of the token network, it is possible to apply 
temporal propagation to portions of the time point network. This feature is useful when the 
planner/scheduler can take advantage of a limited amount of look-ahead. For example, during the 
implementation of a sequence compatibility, the planner/scheduler needs to determine where to 
insert a sequence token without provoking inconsistencies. If propagation is limited to the 
subgraph of all time points lying on one of the two state variables involved, the 
planner/scheduler can evaluate in a short time the temporal consistency of a high number of 
alternative token subsequences. Local consistency does not grant global consistency; however, 
the amount of pruning obtained is still extremely effective in reducing overall problem solving 
cost [15]. 

Maintaining a time point network encompassing the entire token network (irrespective of a token 
being inserted in a time line or not) encourages a problem solving style that keeps substantial 
amounts of temporal flexibility at any stage. Although it is certainly possible to make classical 
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visibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(NOC288 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVISIBLE NOT~VISIBLE VISIBLX 

Figure 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA time point network. 

scheduling decisions (Le., post absolute temporal constraints to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfuc a token start time andor end 
time), one could ask if additional leverage could.not derive from making decisions with lower 
levels of commitment. This issue is discussed in more depth in section 8. 

A limited constraint propagation among token types keeps track of the possible time line 
refmements in view of the currently inserted value and sequence tokens. Figure 9, for example, 
represents the consequence of the insertion of a sequence token overlapping a pre-existing one. 
Type propagation updates the type of each time line token to the intersection of its type with 
those of all encompassing sequence tokens. The initial type of a free constraint token is 
represented as ( * 1, meaning the set of all possible values for the state variable. If type 
propagation associates an empty type to some time line tokens, the token network is inconsistent. 
Similar to temporal propagation, type propagation is incremental. 

Figure 9 Type propagation on a time line. 

Unlike other approaches 161, HSTS-TDB propagation procedures limit their action to the 
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verification and, possibly, localization of inconsistencies; no attempt is made to automatically 
recover to a consistent state. The problem solver must take 111  responsibility of the recovery 
process, since different responses might be needed in different situations. For example, if a state 
variable is over-subscribed, we might either delete tokens that have not yet been inserted (goal 
rejection) or cancel the insertion of some tokens (resource deallocation). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA plannerlscheduler 
implemented in HSTS can operate on inconsistent token networks, adding and retracting tokens 
and constraints with no need to insure consistency at each intermediate step. Planning/scheduIing 
algorithms can reach a final consistent pldschedule with trajectories that lay partially zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor 
entirely in the space of inconsistent data base instantiations. Therefore, HSTS supports a wide 
variety of problem solving methods, including search in the space of incremental consistent 
pladschedule extensions [32], reactive opportunistic scheduling [36], and purely repair based 
approaches [22,42,5]. 

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAManaging Resources 
To provide a general representation framework for several types of resources, it is important to 
take into account several features. First is the amount of capacity available for consumption; in 
general, a resource can be either zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsingle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcupuciry or multiple capacity. A second dimension 
concerns the number of requests that the resource can service at the same time; we can 
distinguish between single user and multiple user resources. Finally, resources differ with 
respect to what happens to capacity after usage; they can be renewable or not renewable. HSTS 
supports the representation and manipulation of all these resource features. By making 
appropriate use of compatibility and duration constraints, an HSTS-DDL system model can 
represent various kinds of synchronization with capacity requests and various kinds of resource 
renewability. For example, we can express a compatibility that requests a human operator to 
attend to a machine only during the initial part of a machining process. We can also impose a 
duration constraint to make capacity consumption by an activity permanent. To represent 
multiple user resources, however, we need an extension of the basic state variable model: the 
aggregate state variable. In this section we give examples of resource modeling within HSTS. 

6.1 Atomic State Variables 
The kind of state variable discussed so far (called from now on atomic state variable) can 
model different types of single user resources. The examples given so far are essentially 
generalized single capacity resources; however, atomic state variables can also cover multiple 
capacity resources, renewable or not renewable. In the HST domain, the on-board tape recorder 
is an example of such a resource. Only one instrument at a time can dump data on it, making it 
single user; the tape has a f i i te  amount of storage, measured in bytes (multiple capacity), that 
can be cleared by communication to Earth (renewable capacity). The state of the tape recorder is 
tracked by the atomic state variable state(TApEREC0RDER). Each of its values keeps track of the 
amount of data stored in the tape with a numeric argument, ?C. The possible values for 
StatHTAPE-RECORDER) are: R E D O U T (  ?Z, ?D, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?C), the process of reading ?D bytes from 
instrument ?I on the tape already containing ?C bytes; STORED( ?C), when the tape recorder is 
not in use and is storing ?C bytes; DUMP-TO-EARTH(?C), the communication of ?C bytes 
from the tape recorder to earth and the resetting of the tape to empty. The total capacity of the 
tape, MAX-C, determines if it is possible to schedule the transfer of data from an instrument to 
the tape. More precisely, it is not possible to insert a value token of type 
READ-OUT( ?Z, ?D, ?C)  in a position such that ?D+?C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> MAX-C. for any value that can be 
assigned to ?D and ?C in that position. If no position is legal, we need to insert a 
DUMP-TO-EARTH token to renew the tape capacity, after which the READ-OUT can legally 
occur. Single user, multiple capacity, not renewable resources can be modeled like the tape 
recorder with the only exception of the lack of a capacity renewal operation analogous to 
DUMP-TO-EARTH, an example of such a resource is fuel in the propulsion system for a 
planetary probe’s attitude adjustment. 
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6.2 Aggregate State zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVariables 
In principle, we could represent multiple user resources as a collection of atomic state variables, 
each corresponding to a quantum of individually usable capacity. However, in most cases this 
solution is overly cumbersome, For example, to reason about the allocation of cargo to available 
space on a plane, we would have to subdivide both space and cargo into ‘‘units of space” and 
allocate each unit of cargo space to a free unit of plane space. This might be necessary to yield 
detailed maps of plane space allocation, but it is inappropriate when we only need an aggregate 
characterization. In these situations HSTS provides a different representation primitive: the 
aggregate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstate variable. The value of an aggregate state variable is a summary of the values of 
a set of atomic state variables. Electric power in HST and refueling capacity in transportation 
planning fall into this category. 

Consider, for example, the aggregation of classical scheduling resources, Le., resources that can 
be either in use (value OPER) or idle (value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIDLE). The state of a pool of resources POOL can be 
given by an aggregate state variable, Capacity(POOL), whose possible values have the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

{(OPER, nl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL (IDLE,%)) 

indicating that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn1 atomic resources in POOL are in an OPER state, and n2 are in an IDLE state. 
While Capacity(Po0L) assumes this value, POOL contains nl+% atomic resources. In general, a 
value for an aggregate state variable is a list of such entries (value, counter). 

When declaring compatibilities, a value might require that some atomic state variables in a pool 
assume another specified value. The effect of several atomic compatibilities can be aggregated 
into an aggregate compatibility; this will specify how to increment or decrement the counter of 
each entry of an aggregate state variable value. For example, assuming that activity OPi requires 
the use of ci atomic resources, the value (st(?j’), OPi) will have the following compatibility: 

[cunruains([O, 01, [ O , O ] )  {o, Capacity(POOL), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ (OPER, INC(+cj)), (IDLE, INC(-cj))  ) I  

This means that whenever OPi of job ?j is in progress (state variable st(?]’) has value OPi), there 
must be an appropriate sequence of values on Capacity(P0OL) starting and ending together with 
OP,. The type in the compatibility describes that for each value in the sequence the number of 
OPER atomic resources increases by ci units, while the number of IDLE resources decreases by 
ci units. 

After having implemented a number of aggregate compatibilities, the value assumed by an 
aggregate state variable at a given point in time can be obtained by type propagation. Suppose 
that, after having gathered all types of the sequences insisting on a time line token, we have no,,? 
entries of type (OPER, INC(cj)) and nide entries of type (IDLE, INC(cj)). The resulting type for 
the time line token is { { OPER, n1 ), {IDLE, n2)  ] with: 

OP‘ “idle 

i=l . j =  1 

n 

n,  = ci n2 = cj 

where ci and cj can be both positive (capacity creation) or negative (capacity consumption). 
Figure 10 shows the effect of the insertion of a request of aggregate capacity on the aggregate 
state variable time line. Checking type consistency requires the computation of the balance 
between positive and negative requests for each time line segment where a set of capacity 
requests overlap. The data base is inconsistent when an aggregate value contains a negative 
counter. Notice however that, in case the system model allows the generation of capacity (i.e., 
contains aggregate compatibilities with INC(-x) entries), inconsistencies can be resolved 
without backtracking by posting additional compatibilities that provide the missing capacity. 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(<IDLE, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI N C ( + 3 ) > )  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{< IDLE,  I N C ( + 3 ) > )  

( b )  

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10: Posting a sequence constraint on an aggregate state variable. 

As with atomic state variables, each transition between time line tokens belongs to the HSTS- 
TDB time point network. Therefore, the synchronization of the requests for capacity allows a 
certain degree of flexibility regarding the actual staft and end of the use of a resource. However, 
testing that the requested amount does not exceed available capacity still requires a total ordering 
of start and end times on the time line. One way to obtain a higher degree of flexibility is to 
statistically estimate resource usage over time even without committing to a specific total order 
(see section 8). 

7 Scheduling the Hubble Space Telescope 
Within HSTS we have developed and experimentally tested planninghcheduling systems for 
several domains including short term scheduling for HST zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25] and “bare base” deployment for 
transportation planning [12]. In this section we describe experience in the HST domain and we 
highlight some favorable characteristics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the HSTS framework. 

For HST, the problem size and the variety of constraint interactions suggest that complexity 
should be managed by staging problem solving. This consists of fwst making decisions 
concentrating only on some important aspects of the problem, and then further refining the 
intermediate solution to include the full range of domain constraints. Therefore, our model of the 
HST domain has two levels of abstraction. At the abstract level the generation of initial 
observation sequences takes into account telescope availability, overall telescope reconfiguration 
time, and target visibility windows. The model contains one state variable for the visibility of 
each target of interest and a single state variable representing telescope availability. The detail 
level generates planslschedules that are directly translatable into spacecraft commands. Abstract 
decisions are expanded and adapted to a domain model that includes one state variable for each 
telescope. subsystem. 

Initially, the temporal data base contains the candidate observation programs at the abstract level 
and an empty time line for each state variable. Each program is a token network, with a value 
token for each observation request. None of the tokens are inserted into a state variable time 
line. Two tokens cover each state variable time line: a value token representing the value of the 
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state variable in the telescope’s initial state, followed by a constraint token with unrestricted 
type. 

At both levels of abstraction the plannerkcheduler uses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe same decision making cycle: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGoal Selection: select some goal tokens; 
2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGod Insertion: insert each selected token into the corresponding state variable time line; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
repeat 

3. Compatibility Selection: select an open compatibility for an inserted token: 
4. Compatibility Implementation: implement the selected compatibility; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

until no more tokens in any time line have open compatibilities. 

The Compatibility Implementation step consists of finding a behavior segment on the time line 
(either a value token or a sequence of tokens) that is compatible with the conditions on type and 
time imposed by the compatibility. If such a behavior segment does not exist, a new value or 
sequence token with the required type is created, inserted in the time line in an appropriate 
position, and connected to the constrained token with the appropriate temporal relation. This 
process of token creation and insertion corresponds to subgoal sprouting in classical planning. 
The basic cycle is repeated until it is determined that it is not possible to insert another 
observation token into the abstract time line. 

Each of the 4 steps in the basic decision making cycle require choosing among alternatives. For 
example, we can implement a compatibility in different ways depending on which section of 
time line we select as the constraining segment of behavior. When different choices are possible, 
they are separately explored through a heuristic search procedure. 

Heuristics at the abstract level must address the trade-off between two potentially conflicting 
objectives: the maximization of the time spent collecting science data and the maximization of 
the number of scheduled observation programs. Different sequencing rules have been proposed 
and evaluated [35]. A first strategy addresses the first part of the trade-off. The strategy builds a 
sequence of observations by dispatching forward in time. The observation that minimizes the 
reconfiguration time and causes the fewest rejections of open requests (i.e., does not use time 
that was the only one available for the execution of some observations) is appended at the end of 
the current partial sequence. A second strategy concentrates on the second part of the trade-off. 
It consists of maintaining a set of possible start times for each open observation, and selecting 
the observation with the fewest alternatives for scheduling. The placement on the time line does 
not necessarily proceed by budding a linear sequence; if the time is available, an observation can 
be inserted amid previously scheduled observations. A third, more balanced strategy yields 
better results than the preceding two. At each problem solving cycle, it selects one of the two 
previous scheduling strategies as a function of problem characteristics dynamically discovered 
during problem solving. 

Heuristics at the detail level ensure the correct synchronization of the reconfiguration of different 
components; the primary goal is to minimize reconfiguration time [25]. We will describe the 
nature of these heuristics when discussing the scalability of HSTS. 

During planninglscheduling the two layers of abstraction exchange information. Observations 
sequenced at the abstract level are communicated to the detail level for insertion in the detail 
pladschedule. The request has the form of a token subnetwork that is obtained from the 
expansion of the abstract token’s refinement specification. Preferences on how the goals should 
be achieved (e.g., “achieve all goals as soon as possible”) are also communicated. The detail 
level communicates back to the abstract level information resulting from detail problem solving; 
these include additional temporal constraints on abstract observations to more precisely account 
for the reconfiguration delays. 
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In developing the plannerischeduler for the HST domain we followed an incremental approach. 
We decomposed the problem into smaller sub-problems, we solved each sub-problem separately, 
and then assembled the sub-solutions. It is natural to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtry to apply this methodology when dealing 
with large problems and complex domains. However, to do so the representation framework 
must effectively support modularity and scalability. In particular, a modular and scalable 
framework should display the following two features: 

the search procedure for the entire problem should be assembled by combining 
heuristics independently developed for each sub-problem, with little or no 
modification of the heuristics; 

the computational effort needed to solve the complete problem should not increase 
with respect to the sum of the efforts needed to solve each component sub-problem. 

Experiments on three increasingly complex and realistic models of the HST domain indicates 
that HSTS displays both of the previously mentioned features. The experiments serve as a 
framework to test the interaction between abstract and detail level planning and scheduling; 
therefore, unlike in [35], they pay little attention to the optimization of the main mission 
performance criteria. 

We identify the three models as SMALL, MEDIUM, and LARGE. All share the same abstract level 
representation. At the detail level the three models include state variables for different telescope 
functionalities. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASMALL model has a state variable for the visibility of each target of interest, 
a state variable for the pointing state of the telescope, and three state variables to describe a 
single instrument, the Wide Field/Planetary Camera (WFPC). The MEDIUM model includes 
SMALL and two state variables for an additional instrument, the Faint Object Spectrograph 
(FOS). Finally, the LARGE model extends MEDIUM with eight state variables accounting for data 
communication. The LARGE model is representative of the major operating constraints of the 
domain. 

For each model we use the same pattern of interaction between problem solving at the abstract 
and at the detail level. At the abstract level observations are selected and dispatched using a 
greedy heuristic to minimize expected reconfiguration time. The last dispatched observation is 
refined into the corresponding detail level token network, then control is passed to 
planning/scheduling at the detail level. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis cycle is repeated until the abstract level sequence is 
complete. 

The detail plannerkheduler for SMALL is driven by heuristics which deal with the interactions 
among its system components. A fust group ensures the correct synchronization of the WFPC 
components; one of them, for example, states that, when planning to turn on the W F  detector, 
preference should be given to synchronization with a PC behavior segment already constrained 
to be off. A second group deals with the pointing of HST; for example, one of them selects an 
appropriate target visibility window to execute the locking operation. A final group manages the 
interaction between the state of WFPC and target pointing; an example from this group states a 
preference to observe while the telescope is already scheduled to point at the required target. To 
solve problems in the contest of MEDIUM, additional heuristics must deal with the interactions 
within FOS components, between FOS and HST pointing state, and between FOS and WFPC. 
However, the nature of these additional interactions is very similar to those found in SMALL. 
Consequently, it is sufficient to extend the domain of applicability of SMALL’S heuristics to 
obtain a complete set of heuristics for MEDIUM. For example, the heuristic excluding WF and PC 
from being both in operation can be easily modified to ensure the same condition among the two 
FOS detectors. Finally, for LARGE we have the heuristics used in MEDIUM with no change, plus 
heuristics that address data communication and interaction among instruments and data 
communication; an example of these prevents to schedule an observation on an instrument if 
data from the previous observation has not yet been read out of its data buffer. By making 



20 

CPU time per compatibility 
Total CPU time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Total elapsed time 
Schedule horizon 

evident the decomposition in modules and the structural similarities among different sub-models, 
HSTS made possible the reuse of heuristics and their extension from one model to another. We 
therefore claim that HSTS displays the first feature of a modular and scalable 
planning/scheduling framework. 

In order to determine the relationship between model size and computational effort, we ran a test 
problem in each of the SMALL, MEDIUM, and LARGE models. Each test problem consisted of a 
set of 50 observation programs; each program consisted of a single observation with no user- 
imposed time constraints. The experiments were run on a TI Explorer 11+ with 16 Mbytes of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RAM memory. 

As required by the second feature of a scalable framework, the results in table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 indicate that the 
computational effort is indeed additive. In the table, the measure of model size (number of state 
variables) excludes visibilities for targets and communication satellites, since these can be 
considered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas given data. The time edges are links between two time points that lie on different 
state variables; the number of these links gives an indication of the amount of synchronization 
needed to coordinate the evolution of the state variables in the schedule. 

Since the detail level heuristics exploit the modularity of the model and the locality of 
interactions, the average CPU time (excluding garbage collection) spent implementing each 
compatibility remains relatively stable. In particular, given that the nature of the constraints 
included in SMALL and MEDlUhf is very similar, the time is identical in the two cases. The total 
elapsed time to generate a schedule is an acceptable fraction of the time horizon covered by the 
schedule during execution. Even if this implementation is far from optimal, nonetheless it shows 
the practicality of the framework for the actual HST operating environment. 

SMALL MUlIuM LARGE 

N. state variables I 41 61 1 1  

0.29 0.29 0.33 
941.00 10.11.50 1807.00 

1:0836.M) 1:13:16.00 2:34:07.00 
41:372000 54:25:46.00 52:44:41.00 

N. tokens 
N. time points 
N. time edges 1296 1328 I474 

ICPUtimeperobservation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 11.621 12.251 21.74 1 

I 
~ 

I I 
-. .. . 

Table 1: Performance results. The times are reported in hours, minutes, 
seconds, and fractions of second. 

8 Exploiting temporal flexibility in scheduling 
As we mentioned in section 4.2, HSTS puts special emphasis on temporal data base flexibility 
along several dimensions. For example, temporal information in plankchedules is uniformly 
represented as a time point network. One might wonder if this flexibility gives in fact any 
leverage during problem solving. In the following, we will discuss this issue with respect to the 
classical scheduling problem. 

Classical scheduling can be viewed as a process of constructively proving that the initial activity 
network contains at least one consistent behavior. Such behavior is completely determined by 
giving a complete assignment of resources, start and end times to each request of capacity 
originated by some activity. Several scheduling systems actually operate by binding values to 
variables corresponding to resources and time; a consistent total value assignment can be reached 
by either incrementally extending a consistent partial assignment 1321 or repairing a complete but 
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inconsistent total assignment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[42, 5,221. Our alternative to binding exact values to variables is to 
add sequencing constraints among tokens that request the same resource. In HSTS-TDB, such 
constraints assume the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbefore( [0, -1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. The goal is to post enough constraints to 
ensure that at any point in time the requested capacity does not exceed the available capacity. 

The final result of the two previous approaches is potentially quite similar. In fact, it is 
straightforward to “relax” a total time value commitment into a network of constraints by 
introducing a temporal precedence whenever two activities occur sequentially on the same 
resource. Vice-versa, it is straightforward to generate total time value commitments from a 
constraint network which satisfies all resource capacity limitations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9]. However, there is quite a 
difference in the way in which the two approaches explore the scheduling search space. When 
reasoning about sets of possible assignments of start and end times for the remaining 
unscheduled activities, the flexible time approach shows potential advantages over the value 
commitment approach. We can illustrate this point with a very simple example. Consider two 
activities that require the same single capacity resource, each having a duration of one time unit, 
and each having identical time bounds allowing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn possible start times. Without considering the 
resource capacity limitation, there are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn2 possible start time assignments for the pair of activities. 
If we fix the start time of one activity to a given time, there are n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 possible assignments for the 
start time of the other activity that do not violate the resource constraint. Instead, if we introduce 
a precedence constraint between the two activities, the total number of consistent start time 
assignments is - . Therefore, the size of the remaining search space after a scheduling 

decision is O ( n )  in the value commitment approach and O(n2) in the flexible time approach. In 
general, every time the value of a problem variable is fiied the search space loses one 
dimension. Alternatively, posting a constraint only restricts the range of the problem variables 
without necessarily decreasing dimensionality. This has the potential of leaving a greater number 
of variable assignment possibilities, and suggests a lower risk of the scheduler “getting lost” in 
blind alleys. 

I‘ 

( n - 1 ) n  
2 

8.1 Conflict Partition Scheduling 
Based on these principles, we have developed a constraint posting scheduling procedure: 
Conflict Partition Scheduling ( C P S )  [26,27]. The initial HSTS-TDB state for CPS is a token 
network; each request of capacity from some activity corresponds to a token. Initially, no token 
is inserted into the corresponding resource time line. The goal of CPS is to add constraints to the 
token network so that the insertion of all tokens according to the fimal network will not generate 
any capacity conflicts. To achieve this goal, CPS repeatedly identifies bottleneck sets of tokens, 
i.e. tokens that have a high likelihood of being in Competition for the use of a resource. It then 
adds precedence constraints to ensure that no conflict will actually arise. In order to identify 
bottleneck conflicts and decide which constraints are most favorable, CPS uses a search space 
analysis methodology based on stochastic simulation. 

In the following we will identify T as the set of all tokens, R as the set of all resources, and H as 
the scheduling horizon. H i s  an interval of time that is guaranteed to contain the occurrence of 
any token in the final schedule. We will also identify EST(T) and LFT(T), respectively, as the 
earliest start and the latest finish times of token T.  

The outline of the basic CPS procedure is the following: 
1 .  Capacity Analysis: estimate token demand and resource contention. 

2. Termination Test: If the resource contention for each resource is zero over the 
entire scheduling horizon, then exit. The current token network is the solution, 

3. Bottleneck Detection: Identify the resource and time with the highest contention; 



4. Conflict Identification: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASelect the tokens that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare most likely to contribute to the 
bottleneck contention. 

5. Conflict Partition: Sort the set of conflicting tokens according to the token 
demand, by inserting appropriate temporal constraints. 

6. Constraint Propagation: Update the time bounds in the time point network as a 
consequence of the introduction of the new temporal constraints. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7. Consistency Test: If the time point network is inconsistent, signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan inconsistency 
and exit. 

8. Go to 1. 

The basic CPS procedure is strictly monotonic. If it generates an inconsistency the token network 
is reset to the initial state and the procedure is repeated. The stochastic nature of CPS’s capacity 
analysis allows each repetition to explore a different path in the problem solving space, and to 
therefore potentially succeed after backtracking. If after a fixed number of repetitions a solution 
has not been found, CPS terminates with an overall failure. The general structure of the problem 
solving cycle is similar to that of other heuristic scheduling approaches [4,36,32]: analyze the 
problem space (step l), focus on a set of critical decision variables (steps 3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). and make 
decisions concerning the critical variables (step 5). 

The stochastic Capacity Analysis extends and generalizes the one first proposed in [24]. The 
logic behind the method is quite simple. While it is difficult to complete an intermediate problem 
solving state into a consistent schedule due to unresolved disjunctive capacity constraints, it is 
easy to generate total time assignments that satisfy the temporal constraints already in the 
network. This can be done by also taking into account additional preference criteria (e.g., select 
times as soon as possible). For each such assignment we can identify violations of the still 
implicit capacity constraints (i.e., times where more than one token uses the same resource). If 
we generate a sample of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN different total time assignments, we can evaluate the following 
statistical measures of contention and preference: 

token demand for each token zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz and for each time EST(z) 5 ri < LFT(z), token 
demand A(T, r i)  is equal to n IN, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is the number of elements in the sample 

for which the token’s interval of occurrence overlaps ti. 

resource contention: for each resource p E R and for each time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 within the 
scheduling horizon H, resource contention X(p, 5 )  is equal to n,, /N, where nt, is the 

number of elements of the sample for which p is requested by more than one token 
at time 5. 

Token demand and resource contention represent two different aspects of the current problem 
solving state. Token demand measures how much the current constraints and preferences bias an 
activity toward being executed at a given time. Resource contention, instead, measures how 
likely it is that the current constraints and preferences will generate congestion of capacity 
requests (and therefore potential inconsistency) at a given time. 

A sample of N total time assignments is given from running the following stochastic simulation 
process N times. Given the time point network (V, C f ) ,  the following steps are repeated until all 
variables in V, have a value: 

ti ti 

I J 

1. select a variable v, E V, according to a predefmed variable selection strategy; 

2. select a value for vf within its current time bound according to a stochastic value 

. 
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selection rule; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
network; this results in new time bound assignments for the variables in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,; 

3. assign the value to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvt and propagate the consequences throughout the time point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. delete f from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,. 

At the end of a stochastic simulation all tokens in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT have a definite start and end time. For each 
token we record the interval of occurrence. For each resource at each instant of time within the 
scheduling horizon, we record if the number of tokens that require the use of the resource 
exceeds its available capacity. The stochastic simulation is parametric with respect to both 
variable selection strategy and value selection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArule. 

A micro-opportunistic search scheduling approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[32] has demonstrated the effectiveness of 
similar token demand and resource contention metrics. However, there the two metrics are 
computed independently and according to different, sometimes stronger, relaxation assumptions. 
In particular, several precedence constraints present in the time point network are disregarded 
when computing resource contention. Dropping constraints during capacity analysis allows fast 
computability of the metrics, but these computational savings might be offset by a decrease in 
the predictive power of the metrics. This decrease may cause an increase in the number of 
scheduling cycles needed to reach a solution [28]. 

Relying on the search space metrics, the scheduler focuses by first identifying the portion of the 
token network with the highest likelihood of capacity conflicts (Bottleneck Detection), and then 
by determining a set of potentially conflicting tokens within this subnetwork (Contlict 
Identification). A bottleneck is formally defined as follows: 

Bottleneck: Given the set of resource contention functions [X(p, t ) )  with PE R and 
t~ H, we call bottleneck a pair (Pb, fb)  such that: 

for any p~ Rand t E  Hsuchthat (X(p,t) > 0). 

X(pb, tb)  = maK{X(p,t)) 

The conflict set is a set of tokens that request pb, have time bounds that contain fb and are not 
necessarily sequential (i.e., no two tokens in the conflict set are forced to follow each other 
according to the token network). If multiple conflict sets are possible, CPS prefers tokens whose 
demand profiles cluster around rb [26]. 

Conflict Arbitration introduces precedence constraints among the capacity requests within the 
conflict set in order to decrease the likelihood of inconsistency in the token network. CPS allows 
the use of several types of arbitration rules. At one extreme there are minimal approaches, 
similar in spirit to micro-opportunistic scheduling [32]. These operate by introducing a single 
precedence constraint between a pair of tokens extracted from the conflict set. At the other 
extreme there are approaches similar in spirit to macro-opportunistic scheduling [36,4]. These 
generate a total ordering of all tokens in the conflict set. When designing a Conflict Arbitration 
procedure within these two extremes, we need to balance the trade-off between minimization of 
change in the topology of the token network and minimization of the number of problem solving 
cycles. In fact, posting too many constraints without appropriate guidance from problem space 
metrics could introduce inconsistencies and require backtracking, but posting too few constraints 
at each cycle requires a higher number of costly Capacity Analysis steps. The Conflict 
Arbitration strategy currently used in CPS adopts an intermediate approach; it partitions the 
conflict set into two subsets, Tb$o,.e and TnJPer and constrains every token in Tbefore to occur 
before any token in T4fter. The choice of the partition relies on the analysis of the token demand 
profiles, where tokens are assigned to subsets according to clustering of their demand profiles 
r241. 
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Figures 11, 12, 13, and 14 graphically illustrate the consequences of a CPS scheduling cycle.** 
Figure 11 shows the initial problem network consisting of 10 jobs of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 sequential activities. 
Highlighted tokens indicate capacity requests on the same resource. Each of the highlighted 
tokens occupies the same position in each job. In this example, the identical position together 
with the similarity of release and due dates across jobs cause a high likelihood of conflict on that 
resource. The contention profile for the resource (top graph of figure 12) shows, in fact, a 
maximum level of contention; this identifies the current bottleneck. All tokens requesting the 
resource belong to the conflict set since all of their time bounds overlap the bottleneck time (as 
shown in the bottom part of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfigure 12). The solid black segment at the far right of each time 
bound represents the token's duration. Figure 13 shows the new topology of the token network 
after Conflict Arbitration. The initial conflict set is now partitioned into two subsets of lower 
criticality, with potentially less operations in conflict in each set. As a consequence the resource 
contention for the bottleneck resource now has two peaks. Also, the new token clustering is 
clearly identifiable among the time bounds (figure 14). Notice that partitioning has only slightly 
reduced the slack associated with each time bound. 
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Figure 12: Bottleneck resource status before scheduling cycle. 

'?%e figures were generated using SAGE, a system for the automation of data presentation [3 I ]  
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Figure 14: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANew bottleneck rewurce status. 

8.2 Experimental evaluation 
To evaluate the effectiveness of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACPS we compared its performance to two other heuristic 
scheduling methods over a standard scheduling benchmark. The two competing methods rely on 
the value commitment approach; they are micro-opportunistic search [32] and min-conflict 
iterative repair [22]. Performance was measured according to the number of problem solved, and 
the CPU time required. 

8.2.1 Experimental design 
Our experimental analysis was conducted on the Constraint Satisfaction Scheduling benchmark 
proposed in [32]. The benchmark consists of 6 groups of 10 problems, each problem including 
10 jobs and 5 resources. Each job is a linear sequence of 5 activities, each requiring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa different 
resource; in each job, the first activity has a release date and the last a due date. Two features 
characterize the expected difficulty of each problem group. The first is the spread of release and 
due dates among jobs; this can be (in order of increasing expected difficulty) wide (w), narrow 
(n) and null (0). The second is the number of a priory bottlenecks; this can be either 1 or 2.*** 

For a more detailed description of the benchmark see [32], *** 
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We ran two different configurations of CPS. Backtracking was allowed up to a maximum of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 
times, after which the problem was declared not solved. Each Capacity Analysis step used a 
total value assignment sample size of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN = 2 0 .  In both cases the stochastic simulation used 
forward temporal dispatching zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the variable selection strategy; only the value selection rule was 
different in the two configurations. The (20, ASAP) configuration used a linearly biased value 
selection rule with highest preference to the earliest time and lowest, 0, to the latest time; the (20, 
UNIF) configuration used a uniform value selection rule. 

We implemented a scheduler, MIN COW, that follows the min-conflict approach. The goal was 
to evaluate the performance of a scheduler relying almost exclusively on the iterative repair 
process. For this reason MW CONF displays several differences with respect to the 
configuration of the Spike scheduling system which was also applied to this benchmark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[16]. 
Both MIN CONF and Spike use a basic cycle that generates an initial total value assignment and 
applies a process of iterative repair to it. In both cases, if a solution is not found after a fixed 
number of repairs, the cycle is repeated. MIN CONF and Spike differ greatly with respect to the 
creation of the initial value assignment. MIN CONF does not make any attempt to generate a 
“good” initial guess. It generates a total time assignment by executing CPS’s stochastic 
simulation once. The simulation is configured as forward temporal dispatching with uniform 
value selection rule. This guarantees satisfaction of job precedences and of release and due dates, 
but not of capacity constraints. Moreover, the use of a uniform rule biases each operation to 
occur late in its time bound. Instead, Spike, uses a much more informed initialization method 
that applies a min-conflict approach. It iteratively selects a variable by using “most-constrained 
first” and by breaking ties randomly; the variable is then bound to the earliest value among those 
with the minimum number of conflicts. Both MIN CONF and Spike use similar min-conflict 
iterative repair cycles. The repair variable is chosen randomly among those currently in conflict. 
Both methods count capacity conflicts in the same way, but there is a difference in the way job 
precedence conflicts are counted. MIN CONF counts a single conflict for an activity that 
violates job precedence constraints with any number of activities. On the other hand, Spike 
counts one conflict for each job precedence which is violated. 

Since the iterative repair phase could cycle indefinitely, MIN CONF limits the number of repairs 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25000; after this threshold the scheduler declares a failure. To evaluate the effect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the length 
of the repair process we ran MIN CONF in two configurations. In the first, MIN CONF (50, 
SOO), the initialization occurs every 500 unsuccessful repairs; in the second, MIN C O W  (5, 
SOOO), the limit for each repair phase is 5000 cycles. In both configurations the initialization 
effort is negligible as compared to the time spent repairing. This bias is consistent with our 
interest toward isolating the effects of the repair process as much as possible. 

The performance of micro-opportunistic search scheduling (MICRO OPP) comes directly from 
the literature [ 3 2 , 3 3 ] .  Micro opportunistic search uses variable and value ordering heuristics 
based on capacity analysis metrics similar to those of CPS. The performance results refer to two 
configurations differing on the strategy used to recover from dead ends. The f i t  configuration, 
MICRO OPP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACHRON BKTRK, uses chronological backtracking [32]. The second, MICRO OPP 
INTEL BKTRK, uses a series of intelligent dead end recovery techniques [41 I. 

8.2.2 Experimental results 
Tables 2 and 3 report the comparative performance results. The rows refer to each problem 
group in the benchmark; for example row w/2 refers to problems with wide spread and two a 
priori bottlenecks. The last row reports a summary of the performance over the whole 
benchmark. Since both CPS and MIN CONF have a randomized nature, we estimated their 
average performance over 5 independent runs. This is not necessary for MICRO OPP since, as 
we already mentioned in section 8.1, its heuristics are deterministic, although based on 
probabilistic assumptions. 
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(20,ASAP) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20, UNIF) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 reports the number of problems solved. The results show that CPS (20, ASAP) and 
MICRO OPP INTEL BKTRK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare the only two techniques that consistently solved all of the 
problems. The performance differences across the two CPS configurations indicate the 
importance of the stochastic simulation strategy. For example, The choice of different value 
selection rules impacts the region of the search space from which sample elements are more 
likely to be generated. In our case it can be demonstrated that the sample base obtained with a 
UNIF rule is, in fact, narrower than the one obtained with an ASAP rule. The evaluation of the 
effect of different sampling strategies on the performance of the scheduler is an important open 
problem. 

Both configurations of MIN CONF performed significantly worse than both CPS and MICRO 
OPP.**** At first glance this result might seem at odds with the excellent performances 
displayed on this benchmark by Spike [16]. However, the balance between initialization and 
repair efforts is very different in the two schedulers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs we mentioned before, since MIN CONF 
was mainly intended to evaluate the repair process, initialization effort is negligible with respect 
to repair. Considering the number of time value assignments in each phase, MIN CONF (50, 
500) has a 1 to 10 ratio and MIN CONF (5,5000) has a 1 to 100 ratio. Since each initialization 
assignment is not as “informed” as an assignment during repair, the ratio is even more biased 
toward repair. Conversely, in Spike initialization and repair efforts are balanced since the same 
number of value assignments to variables is executed in both phases. Moreover initialization and 
repair assignments use the same kind of heuristics. An important consequence of this is that, 
when Spike succeeds, most of the time it does not repair. The dependency of the convergence of 
the repair process from the choice of a “good” initial solution is still an open problem. 

The performance of MIN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC O W  across problem subsets is worst on the problems with two a 
priori bottlenecks. When a problem presents several bottlenecks, scheduling algorithms are 
known to have difficulty in dealing with the complex interactions. These results suggest that the 
local nature of the conflict measure used in MIN CONF is unable to detect such interactions. 

CHRON INTEL 
(SO. 500) (5? 5000) BKTRK BKTRK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn I  CPS I MINCONF 1 MICROOPP 

I \  1 I I 

w/l 
W12 
dl 
n12 
0/1 
w2 

10 
10 
10 
10 
10 
10 

10 
10 
10 
9.4 
9.4 
9 

9.8 
2.2 
7.4 
1 
4.2 
0 

9.2 
3.2 
6.6 
1.2 
3.4 
0.4 

10 
10 
8 
9 
7 
8 

10 
10 
10 
10 
10 
10 

I I I I I I 

TOT I 60 I 57.8 I 24.6 I 24.0 I 52 I 60 

Table 2: Comparative results: number of problems solved. 

Table 3 reports average CPU times for a problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArun in each subset. The times were obtained by 
summing up all the processing times for all the problem instances (successful and unsuccessful), 
dividing by the number of problems, and then averaging over the 5 independent runs. The last 
row contains average CPU time over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe entire benchmark. All the run times refer to 
implementations in Common Lisp, using CRL as an underlying knowledge representation 
language. The run times of CPS and MICRO OPP were obtained on a DEC 5000/200 

**** 
In fact, they also are inferior to a number of other heuristic search methods [32]. 
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workstation. 

To ensure a fair comparison, we reduced the actual CPU times for MIN CONF by a factor taking 
into account the inefficiency of our current implementation. This was done by assuming that the 
maximum CPU time of any CPS run was equivalent to the time taken to execute the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25000 
repairs of a maximum length MIN CONF run; we do not consider the time spent during 
initialization. These times would require a speed-up of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 times over our current, inefficient 
MIN CONF implementation, a factor that we think can be easily achieved by just using more 
efficient data structures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A comparison of CPU times serves two main purposes. In first place, the compared techniques 
are extremely different with respect to several factors. These include: the underlying search 
method; the computational effort needed to evaluate heuristics; the balance between the time 
spent in evaluating heuristics and the time spent expanding alternatives. CPU times are the only 
reasonable way to ensure that each technique is given a comparable “computational allowance” 
before declaring a failure.. In second place, CPU time indeed depends on the implementation. 
Implementations are likely to improve with time, and the degree of improvement might differ 
across techniques. However, if we assume some basic factors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas constant, like hardware and 
programming languages, CPU times are a fair description of the current state of the art of the 
different techniques. 

The comparison of the CPU times shows that CPS is consistently faster than all the other 
techniques. In particular, comparing the only two techniques that can solve all the problems in 
the benchmark, CPS (20, ASAP) is about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64% faster on average than MICRO OPP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINTEL 
BKTRK, The experimental results clearly show that CPS outperforms both MIN CONF and 
MICRO OPP on this benchmark. 

I \  I CPS I MINCONP I MICROOPP 

wll 
W/2 
dl 
n12 
011 
012 

68.08 
70.67 
69.43 
72.16 
80.20 

110.04 

152.40 
336.17 1 235.08 
408.83 
333.13 
425.10 

78.00 
82.75 

359.25 
151.00 
462.25 
275.00 

90.66 
94.95 

106.22 
119.53 
134.75 
226.56 

I AVG 1 78.43 1 92.64 I 298.42 1 315.12 I 234.71 I 128.78 

Table 3: Comparative results: CPU time. 

9 Conclusions 
The effectiveness of HSTS has been demonstrated by modeling and solving complex planning 
and scheduling problems. The principal advantages are the intrinsic modularity of the 
representation framework, its independence from the problem solving methodology, and the 
flexibility of the constraint posting and propagation mechanisms. Integrated planner/schedulers 
have been implemented in domains like space mission scheduling and transportation planning. 
Although simplified, they have demonstrated the ability to deal effectively with all of the 

‘**’%e run times from MICRO OPP CHRON BK7’RK have been obtained from those reported in I321 by 
assuming the maximum speed-up factor of 2 for moving from a DEC 3100 workstation to a DEC 5ooO/200. 
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important domain constraints. For more classical job-shop constraint satisfaction scheduling 
problems, the combination zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof flexibility of the temporal data base and of statistical measures of 
the search space has yielded promising results. Future research will further address the issue of 
scalability of the domain models and problem solvers, the extension of constraint language and 
propagation mechanisms, the development and evaluation of alternative methodologies for 
capacity analysis, the extension of the statistical search space metrics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto integrated 
planningkcheduling domains, and the assessment of the effectiveness of flexible pldschedule 
representations during reactive plan execution. 
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