
HSTS: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Integrating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPlanning and Scheduling

Nicola Museettola

CMU-RI-TR-93-05

The Robotics Institute
Camegie Mellon University

Pittsburgh, Pennsylvania 15213

March 1993

To appear in Intelligent Scheduling, Mark S . Fox and Monte Zweben
(editors), Morgan Kaufmann, 1993. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1993 Carnegie MelIon University

This work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas sponsored in part by the National Aeronautics and Space Administration under
contract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# NCC 2-707, &be Defense Advanced Research Projects Agency under contract
#F30602-91-F-0016, and the Robotics Institute.

Table of Contents
1 Introduction
2 Two application domains

3 Integration of planning and scheduling
4 The fundamental components of HSTS

4.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADomain Description Language
4.2 Temporal Data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABase

5 Additional HSTS features
5.1 Sequence Constraints
5.2 Time and type consistency

6.1 Atomic State Variables
6.2 Aggregate State Variables

2.1 Space Mission Scheduling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2 Transportation Planning

6 Managing Resources

7 Scheduling the Hubble Space Telescope
8 Exploiting temporal flexibility in scheduling

8.1 Conflict Partition Scheduling
8.2 Experimental evaluation

8.2.1 Experimental design
8.2.2 Experimental mults

9 Conclusions
Acknowledgments
References

1
2
2
4
5
6
6
8

12
12
13
15
15
16
17
20
21
25
25
26
28
30
31

List of Figures
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: The Hubble Space Telescope domain
Figure 2: Value transition graph for state(POINTING-DEVICE).
Figure 3: Compatibilities for the value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALOCkXD(?T).
Figure 4: Insertion of a value token into a time Lie.
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5: Implementation of a contained-by compatibility
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6: A sequence compatibility.
Figure 7: Implementation of a sequence compatibility.
Figure 8: A time point network.
Figure 9: Type propagation on a time line.
Figure 1 0 Posting a sequence constraint on an aggregate state variable.
Figure 11: Initial activity network.
Figure 12: Bottleneck resource status before scheduling cycle.
Figure 13: Activity network after zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConflict Arbitration.
Figure 14: New bottleneck resource zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstatus.

3
8
8

10
11
12
13
14
14
17
24
24
25
25

... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

List of Tables
Table 1: Performance results. The times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare reported in hours, minutes, 20

seconds, and fractions of second.
Table 2: Comparative results: number of problems solved. 27
Table 3: Comparative results: CPU time. 28

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In the traditional approach to managing complex systems, planning and scheduling are two very
distinct phases. However, in a wide variety of applications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis strict separation is not possible or
beneficial. During scheduling it is often necessary to make planning decisions (plan the setup of
a machine); moreover planning decisions can benefit from scheduling information (choose a
process plan depending on resource loads). HSTS (Heuristic Scheduling Testbed System) is a
representation and problem solving framework that provides an integrated view of planning and
scheduling. HSTS emphasizes the decomposition of a domain into state variables evolving over
continuous time, This allows the description and manipulation of resources far more complex
than it is possible in classical scheduling. The inclusion of time and resource capacity into the
description of causal justifications allows a fine-grain integration of planning and scheduling and
a better adaptation to problem and domain structure. HSTS puts special emphasis on leaving as
much temporal flexibility as possible during the planninghcheduling process to generate better
pldschedules with less computation effort. Within the HSTS framework we have implemented
several planninghcheduling systems. In the paper we describe an integrated planner and
scheduler for short term scheduling of the Hubble Space Telescope. This system has
demonstrated the ability to deal effectively with all of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe important constraints of the domain.
Experimental results show that executable schedules for Hubble can be built in a time
compatible with operational needs. The paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso describes a methodology for job-shop
scheduling problems. The methodology exploits the temporal flexibility provided by HSTS.
Experimental results show that this approach is more effective than other intelligent scheduling
techniques in the solution of scheduling problems with non-negotiable dead-lines.

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In the traditional approach to managing complex systems, planning and scheduling are two very
distinct phases. Planning determines how the system achieves different types of goals. The
process consists of concatenating elementary transformations (or actions) to move the world into
a state that satisfies the goal. The result is a library of plans. Scheduling takes responsibility for
day to day operations. After receiving a set of goals, a scheduler instantiates plan templates
contained in the library and assigns to each action a time slot for the exclusive use of the needed
resources. The result is the prediction of a specific course of action that, if followed, ensures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe
achievement of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall goals within the system’s physical constraints.

A typical case is the management of a manufacturing facility. Planning develops processes to
manufacture given product types (e.g., -transforming a raw block of metal into a widget).
Scheduling receives a number of orders to produce widgets of given types with known release
dates for raw materials and due dates for finished products. In both phases, costs should be kept
as low as possible; this might require generating processes with a minimum number of steps, or
scheduling the last action in each order as close as possible to the due date.

This strict separation between planning and scheduling does not match the operating conditions
of a wide variety of complex systems. Even in cases where separation is viable it might be overly
restrictive. A more flexible adaptation to the structure of the problem might yield better
solutions. For example, during the scheduling phase it is often necessary to expand setup
activities; these are not justified by the achievement of a primary goal but depend exclusively on
how other activities are sequenced on a resource. Consider an instance where two sequential
operations require drilling holes of different diameters using the same drilling machine; the
schedule must allocate time for the substitution of the drill bit. In other situations, planning might
be profitably delayed into the scheduling phase. This allows the expansion of courses of action
that, although a priori sub-optimal, are clearly convenient when considering expected resource
usage. The number of possible alternatives might make the management of a complete plan
library impractical as required by the traditional approach.

A major obstacle to more integrated and flexible planning and scheduling is the lack of a unified
framework. This should support the representation of all aspects of the problem in a way that
makes the inherent structure of the domain evident. When dealing with large problems and
complex domains, a framework with strong structuring devices facilitates the decomposition of
system models and the consequent management of the combinatorics of search.

In planning, most Artificial Intelligence research adopts the classical representational assumption
proposed by the STRIPS planning system [IO]. In this view action is essentially an instantaneous
transition between two world states of indeterminate durations. The structural complexity of a
state is unbound, but the devices provided for its description are completely unstructured, such as
complete first order theories or lists of predicates. Some frameworks [40,38] have demonstrated
the ability to address practical planning problems. However, the classical assumption lacks
balance between generality and structure; this is a major obstacle in extending classical planning
into integrated planning and scheduling. Past research has attempted partial extensions in several
important directions: processes evolving over continuous [2] and metric time [39,7], parallelism
[20], and external events [13]. However, no comprehensive view has yet been proposed to

address the integration problem.

Classical scheduling research has always exploited much stronger structuring assumptions [3].
Domains are decomposed into a set of resources whose states evolve over continuous time. This
facilitates the explicit representation of resource utilization over extended periods of time.
Several current scheduling systems exploit reasoning over such representations
f11.36, 32,22,42,5]. Empirical studies have demonstrated the superiority of this approach
L29.321 with respect to dispatching scheduling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[30], where decision making focuses only on the

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
immediate future. However, the scheduling view zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the world has very strong limitations. No
information is kept about a resource state beyond its availability. Additional state information
(e.g., which bit is mounted in a drill at a given time) is crucial to maintain causal justifications
and to dynamically expand support activities during problem solving.

In this chapter we describe HSTS (Heuristic Scheduling Testbed System), a representation and
problem solving framework that aims at unifying planning and scheduling. Similar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto classical
scheduling, HSTS decomposes a domain into a vector of state variables continuously evolving
over time. Similar to planning, HSTS provides general devices for representing complex states
and causal justifications. Within this framework we have developed and experimentally tested
planninghcheduling systems for several unconventional domains. These domain include short
term scheduling for the Hubble Space Telescope [25] and “bare base” deployment for
transportation planning [12]. Several constraint propagation mechanisms support the richness of
domain representation at any problem solving stage.

Schedules developed in HSTS implicitly identify a set of legal system behaviors. This is an
important distinction with respect to classical approaches which, instead, specify all aspects of a
single, nominal system behavior. During execution, a nominal behavior is interpreted as an ideal
trajectory to be followed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas closely as possible. However, since the schedule does not explicitly
represent feasible alternatives, it is difficult to have a clear picture of the impact of the
unavoidable deviations from the desired course of action. HSTS, instead, advocates schedules as
envelopes of behavior within which the executor is free to react to unexpected events and still
maintain acceptable system performance. Viewing scheduling as the manipulation of behavior
envelopes has potential advantages during pldschedule construction. In this chapter, we will
discuss a heuristic scheduling methodology, Conflict Partition Scheduling (CPS), that operates
on a temporally flexible network of constraints under the guidance of statistical estimates of the
network’s properties. We will show experimental evidence of CPS’s superiority with respect to
other intelligent scheduling approaches.

The chapter is organized as follows. In section 2 we briefly describe two unconventional
application domains that require integrated planning and scheduling. We then introduce the basic
HSTS modeling principle which allows such integration (section 3). A detailed description of the
features of HSTS follows in sections 4 and 5. Special attention is given to the wide variety of
resource capacity constraints supported by the framework (section 6). The rest of the chapter
describes two problem solvers implemented in HSTS: a short-term scheduler for Hubble Space
Telescope observation scheduling (section 7) and a scheduling methodology for job-shop
scheduling (section 8). In the conclusions (section 9) we summarize the status of the project and
discuss future research directions.

2 Two application domains

2.1 Space Mission Scheduling
Space mission scheduling problems include managing orbiting astronomical observatories,
coordinating the execution of activities aboard the space station, and generating detailed
command sequences for automated planetary probes. These apparently diverse applications share
two main sources of complexity. The first is the need to use the space facility with high
efficiency in the presence of a very large number of diverse usage requests. Much of the
international scientific community is eager to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtake advantage of the unique conditions found in
space (e.g., weightlessness, extreme vacuum, exposure to radiation that does not reach the
surface of the earth). For example, in the case of the Hubble Space Telescope, the number of
individual observations requested over a year is on the order of several tens of thousands.
Consequently, the time requested by the experiments deemed worth pursuing exceeds the

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I

Recorder
Tape zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-

lifetime of any given mission. To maximize return, the final schedule must accommodate as
many of these experiments as possible. The second source of complexity is the need to insure a
safe operation of the space facility. It is not enough to allocate exclusive time for the execution
of main activities; the schedule must contain enough detail to explicitly ensure that auxiliary
reconfigurations and intermediate states of the various subsystems do not interact in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa harmful
way.

A typical space mission scheduling problem is the generation of short-term schedules for the
Hubble Space Telescope (HST). Astronomers formulate observation programs according to a
fairly sophisticated specification language [37]. The basic structure of each program is a partial
ordering of observations. Each observation specifies the collection of light from a celestial object
with one of the telescope’s scientific instruments. A program can contain a diverse set of
temporal constraints including precedences, windows of opportunity for groups of observations,
minimum and maximum temporal separations, and coordinated parallel observations with
different viewing instruments. When executing an observation, HST gathers light from celestial
objects called targets, and communicates scientific data back to Earth through one of two
TDRSS communication satellites (Figure I). Given the telescope’s low altitude orbit, the Earth
periodically occludes virtually any target and communication satellite. The fraction of orbit
during which each of them is available for observation or communication depends on their
position.

Hubble Space Telescope

-

Data
Path

. Communication

Scientific
Instruments

I

Targets

Receiving
Devices

Figure 1: The Hubble Space Telescope domain

The telescope subsystems must be operated paying continuous attention to several stringent
constraints. These include limited available electric power, and maintenance of acceptable
temperature profiles on the telescope structure. The pointing subsystem is responsible for
orienting HST toward a target, and locking it at the center of the field of view of the designated

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
scientific instrument. HST has 6 different scientific instruments, but available electric power
does not allow all of them to be operational simultaneously. Moving an instrument between
operation and quiescence requires complex reconfiguration sequences which must be
coordinated among various instrument components. Reconfigurations must also be appropriately
synchronized among different instruments. Data can be read from the instruments and directly
communicated to Earth through one of two links operating at different communication rates; it
can also be temporarily stored on an on-board tape recorder and communicated to Earth at a later
time.

In summary, solving the HST observation scheduling problem requires the generation of
command sequences to accommodate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas many observations as possible while maintaining
telescope integrity and satisfying constraints and preferences imposed by the scientists. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATransportation Planning
Disaster relief operations or other large-scale responses to international crises require. the
coordination of the transportation of a large number of people, goods, and other facilities. For
example, transportation plans to support military operations are very large, and involve the
movement of tens of thousands of individual units. These units span a diverse range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof size and
composition: from a single person or piece of cargo to an entire division [14]. The timely
execution of a well-coordinated transportation plan is crucial for the success of an operation.

Units can use transpoaation resources (e.g., planes, ships) depending on their original location,
their intended destination, and the time at which they are needed at the destination. Therefore, it
is not sufficient for a unit to fmd a resource with enough transportation capacity at the
appropriate time, but the resource’s mute must also match the unit’s source and destination
locations. Units can be assigned to transportation flows already established. In case their arrival
at the destination is extremely critical, transportation resources can be diverted from other less
critical uses or temporarily acquired from other sources (e.g., planes chartered from commercial
airlines). Justification information includes mutual dependency among different unit
deployments and intended effects of a unit becoming operational at the destination. Keeping
track of this information is essential in order to adapt the plan to unexpected execution
conditions or to partially reuse it in other situations.

Often the primary goal served by a unit is to augment the facilities available at the destination, so
as to increase its throughput and to allow a higher rate of delivery. Typical examples of these
facilities are air traffic control, aircraft refueling, and personnel or cargo unloading. Aggregate
capacity resources are often an appropriate representation for these facilities. The state of an
aggregate resource represents capacity in use or still available at any point in time. To make a
more concrete example, let us consider a “bare base” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAscenario, where the goal is to turn a bare
runway at the destination into a fully functioning airport. The number of planes that can be
refueled in parallel at the destination can be represented as an aggregate refueling capacity.
Bringing in one or more refueling units permanently increases refueling capacity. Since planes
use this facility immediately after arrival, increasing refueling capacity increases the plane
arrival rate at the destination. This in turn increases the arrival rate of additional refueling units,
resulting in a quick amplification of the capabilities of the airport. Increasing the number of units
at a site also increases the demand for other supporting functions (such as sleeping space, food,
and fuel) which are provided by other units. The arrival of these additional units must be
carefully coordinated to avoid chaotic situations and negative consequences on the overall
outcome of the mission.

In conclusion, the salient factors in transportation planning are time, dynamic generation and
consumption of several types of aggregate capacity, state information, and causal relations. This
domain is a primary candidate for the application of integrated planning and scheduling.

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Integration of planning and scheduling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
To deal effectively with complex domains we need a synthesis of the problem solving
capabilities currently split between classical planning and classical scheduling. To this end, it is
crucial to recognize that a domain can always be described as a dynamical system[17]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA
dynamical system is a formal structure that gives the relationship between exerted actions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(input)
and observed behaviors over time, taking into account the internal memory of past history
(sfare).* Planning and scheduling are in fact complementary aspects of the process of step-by-
step construction of consistent dynamical system behaviors [23, 81. To build a problem solving
framework capable of easily accommodating this process we must choose an appropriate
structuring principle for the description of the dynamical system.

In domains like space mission scheduling and transportation planning we can accurately describe
the system’s instantaneous situation with the value of a handful of its properties (e.g., the
operative state of each component of the space telescope, the usage of different airport facilities).
Therefore, we adopt the fundamental structuring principle of describing both input and state as
finite dimensional vectors of values evolving over continuous time. The same principle is
adopted by approaches that deal with continuous value dynamical systems (e.g., linear systems)
[17] and with the temporal specification of reactive software systems [21].

The input and state vector assumption promotes a more general view of the domain than those
allowed by classical scheduling and planning.

Classical scheduling requires the representation of resources. A vector component can directly
model a single capacity resource since it can assume one and only one value at any point in time.
In this case the range of possible values is essentially binary (e.g., processing or d e) . However,
in our representation the range of vector component values can be wider than binary, allowing
the inclusion of more complex state information into the representation of resources. This
extends the restrictive assumptions made in classical scheduling.

In classical planning, the evolution of a domain strictly alternates between a stage of change
(ucrion) and a period of static persistence (sfare). A representation based on input and state
vectors promotes a different view. The input vector identifies those system properties directly
controlled by an external agent, while the state vector refers to those which can only be indirectly
influenced. Values representing change and persistence can appear in any order in any vector
component. For example, it is possible to have static values one immediately after the other
(when transitions have infmitesimal durations) or changes following one another (when a
process is divided into two or more contiguous phases). This facilitates reasoning over parallel
processes evolving over continuous time.

In the rest of the paper we will discuss only state vectors, assuming that for the domains of
interest the synthesis of the input is straightforward (e.g., sending the signal to start an operation
on a resource at a time determined by the schedule).

These modeling premises also support the formulation of a broader class of problems than those
usually expressible in classical planning and scheduling. A planning/scheduling problem is
simply a set of constraints and preferences on state vector values; their satisfaction identifies a
desired pladschedule among zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall possible consistent behaviors. Constraints can specify both the
execution of actions, as in classical scheduling, and the request for stationary states, as in
classical planning. Evaluation functions can impose preference on the possible behaviors of the
system (e.g., execute as many observations as possible out of a pool submitted to HST). A good
planner/scheduler will try to constmct behaviors with a high (possibly globally maximal) level of

*In the following we will identi& the observable behavior of the system with the evolution of its state over time.

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
satisfaction for these preferences. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 The fundamental components of HSTS
The HSTS framework makes coherent use of the previous representational principle. The two
core components are the Domain Description Language (HSTS-DDL) and the Temporal Data
Base (HSTS-TDB). HSTS-DDL allows the specification of the static and dynamic structure of a
system. It supports the expression of a model as a modular set of constraint templates satisfied by
any legal system behavior. HSTS-TDB supports the construction of such legal behaviors. It
provides facilities to insure a strict adherence of its content to an HSTS-DDL system model and
to any requirement stated in a problem. By posting assertions and constraints among assertions in
the data base, a planner/scheduler sets goals, builds activity networks, commits to the
achievement of intermediate states, and synchronizes system components. The tight connection
between the entities that can be specified in HSTS-DDL and those that can be represented in
HSTS-TDB provides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa strong basis for exploiting domain structure during problem solving.

4.1 Domain Description Language
An HSTS-DDL system model is organized as a set of system components, each with an
associated set of properties. Each property represents an entry of the state vector; it can
therefore assume one and only one value at any point in time. Properties whose value does not
change over time (also called static properties) typically represent system parameters. The
behavior of the system is determined by the value of its dynamic properties, those that change
over time; in the rest of the paper we will refer to them as the state variables of the system.

HSTS-DDL gives special emphasis to the specification of state variables. A system model must
explicitly declare the set of all possible values for each state variable. A value is expressed as a
predicate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR (x l , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA....., xn) , where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<nl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2,, xn> is a tuple in the relation R. The model must
give a domain for each predicate’s argument; currently HSTS-DDL allows sets of symbols, sets
of system components, and numeric quantities (either discrete or continuous).

To illustrate these points we give an example from HST. The system component
POINTING-DEVICE has several properties. One of them is the telescope’s average slewing rate,
described as a constant value of a static property. The pointing direction of the telescope and the
state of target tracking is determined by a single state variable, State(POr”G-DEVICE). Its
possible values are:

UNLOCKED (?T) : the telescope is pointing in the generic direction of target zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?T;

LOCKED(?T) : the telescope is actively tracking target ?T;

LOCKING(?T) : the tracking device is locking onto target ?T;

SLEWING(?Tl, ?Z2) : the telescope changes its direction from target ?TI to target
?72.

The domain of each of the variables ?T, ?TI and ?T2 is the set of all known targets, each
represented as a separate system component in the HST model.

The specification of each state variable value is incomplete without its temporal characteristics.
For a system behavior each value extends over a continuous time interval or occurrence. A
value’s occurrence depends in part on the value’s intrinsic characteristic and in part on its
interaction with other values. For example, the duration of a slewing operation is entirely
determined by intrinsic parameters, like the angle between the two targets and the telescope’s
slewing rate. On the other hand, the only cause for the telescope to exit an unlocked state is the

Occurrence of either a slewing or a locking operation, i.e., the interaction with other values.

In HSTS-DDL each value has a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAduration constraint which expresses the intrinsic range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[d , D]
of its possible durations (D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 d 2 0); d and D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare respectively the duration’s lower and upper
bounds. The bounds are specified as functions of the value’s arguments; their tightness depends
on the binding status of the value’s arguments. For example, during problem solving ?T1 and
?72 in SLEWING(?Tl, ?n) might be restricted to specific sets of targets. The lower bound of
the duration constraint would return the slewing time between the closest pair of targets, each
selected from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa different set; the upper bound would refe.r to the farthest pair of targets. If each of
?T1 and ?72 are restricted to a single target, both the lower and upper bounds will assume the
slewing time between the two targets.

For any system it is possible to identify constraining patterns of value occurrences. In any legal
behavior, when a value occurs other values must also occur to match the pattern. Such patterns
describe the dynamic characteristics of the system, and have a function similar to state operators
in classical planning. In HSTS-DDL each value is constrained by a compatibility specification
which consists of a set of compatibilities organized as an AND/OR graph. Each compatibility
represents the request for an elementary temporal constraint between the value and an
appropriate segment of behavior. More precisely, a compatibility has the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[temp-rel <comp-class, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAst-vur, type >]

The tuple < comp-class, st-vur, type > specifies the characteristics of a constraining segment of
behavior; temp-rel is the temporal relation requested between the constrained value and the
constraining segment of behavior. The temporal relations known to HSTS-DDL are equivalent to
all combinations of interval relations[l] with metric constraints that can be expressed in
continuous endpoint algebra [IS]. For example, before([d , D]) indicates that the end of the
constrained value must precede the start of the constraining behavior segment by a time interval
6, such that d 5 6 I D ; its inverse is ufrer([d,D]) . The relation
contained-by(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[d l , D 1] , [d2, D2]) says that the constrained value must be contained within the
constraining behavior segment; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[d,, D1] defines the distance between the two start times while
[d2, D2] refers to the two end times. HSTS-DDL restricts the constraining behavior segment to
occur on a single state variable, st-vur. The identifier comp-class can be one of two symbols, v
or 6, depending on the nature of the behavior segment. The symbol v stands for a single value
occurrence (value compatibility), while D refers to a sequence of values occurring contiguously
on the same state variable (sequence compatibility). In this section we describe value
compatibilities; section 5.1 will discuss sequence compatibilities. The behavior segment must
consist of values extracted from the set specified in type.

To draw an illustrative example from the HST domain, let us consider the dynamic state of the
telescope’s pointing device (state variable ~~&(POI”G-DEVICE)). The possible value
transitions are shown in figure 2. Each node represents one of the possible values while an arc
between two nodes represents two compatibilities. More precisely, an arc from node ni to node
nj is equivalent to a [before([0, 01) < v, state(PoIWfNGDEWCE), Inj} >] compatibility
associated to ni, and to a symmetric ufer([O,O]) compatibility associated to nj. Multiple arcs
exiting or entering a node correspond to alternative transitions (OR node in the compatibility
specification). Some of the values can persist indefinitely (highlighted nodes in figure 2) and
have therefore an indeterminate duration constraint ([0, fm] bound); all other values have a
determined duration constraint, To precisely specify the physically consistent patterns of
behavior, we must also consider synchronization with other state variables. For example, locking
the telescope on a target and keeping the lock requires target visibility. This imposes an
additional compatibility ([canruzned-by([0, +-I, [0 , + - I) < v, visibility(?n, [VISIBLE] >])
on each of the values WCKING(?T) and LOCKED(?T). Figure 3 lists the complete

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
compatibility specification for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALOCKED(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?T). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

LOCKING

UNLOCXED zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W
SLEWING

Figure 2: Value transition graph for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~~~~~(POINTING-DEVICE).

< state (POINTING-DEVICE), LOCKED (?T) >

1 contained-by ([O, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+-I, [O, +-])
a, visibility (?T), { VISIBLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 > 1

[after (LO, 01 I
< V, ~tak (POINTING-DEVICE), {LOCKING (? T) I >]

[before (zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[O, 01 I
< v, state (POINTING-DEVICE), {SLEWING (?T, ?TI)) z 1

I before (LO, 01 I
< v, state (POINTING-DEVICE), {UNLOCKED (? T)) >]

Figure 3: Compatibilities for the value LOCKED(?T).

HSTS-DDL allows the specification of system models at different levels of abstraction. System
components and state variables at abstract levels aggregate those at more detailed levels. The
relationship among the levels is established by refinement descriptors; these map some of the
abstract values into a network of values associated with the immediately more detailed layer. The
mapping also specifies the correspondence between the start and end times of each abstract value
and those of the corresponding detailed values.

4.2 Temporal Data Base
HSTS-TDB shares the basic representational principles of a Time Map temporal data base
r6.341, but provides additional constructs to support the satisfaction of conditions imposed by

an HSTS-DDL system model.

The primitive unit of temporal description is the token, a time interval, identified by its stuart
time and end time, over which a specified condition, identified by a vpe, holds. HSTS-TDB
modifies the original Time Map token in two main ways. The first modification is designed to

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
strictly adhere to the state vector assumption: in HSTS-TDB each token can only represent a
segment of the evolution of a single state variable. The second modification supports the
incremental construction of system behaviors: HSTS-TDB allows different kinds of tokens
depending on the level of detail of the corresponding segment of behavior.

The general format of an HSTS-TDB token is a 5-tuple: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtoken-class, st-var, type, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAst, et, >

token-class determines the kind of behavior segment described by the token. It can assume three
different Values: VALUE-TOKD4, CONSTRAINT-TOKEN and SEQUENCE-TOKFiN. In this section we
discuss value and constraint tokens; section 5.1 will describe sequence tokens. st-vur specifies
the state variable on which the token occurs, type is a subset of the possible values of sr-vur
specified in the HSTS-DDL system model. Depending on token-class, the behavior segment
consists of one or more values belonging to type. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAst and et represent the token’s start and end
times; their nature will be discussed in section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.2.

The kind of token most directly related to the Time Map token is the VALUE-TOKEN. A value
token identifies a behavior segment consisting of a single unintenupted value. Taking an
example from the HST domain, to assert the occurrence of a telescope slew from target zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NGC4535 to target 3C267 we can post the token:

< VALUE-TOKEN, ~ta t~(PUlwr rhrc -DEVlCE) , {SLEWING(NGC4535,3C267)},+, t p

Since the token’s type consists of a single ground predicate, this expresses a defmite fact. HSTS-
TDB can also support decision making with a level of commitment appropriate to the current
state of knowledge. During the construction of an HST pldschedule, we might want to require
a slewing operation with a specific destination target, but it might be too early to select the most
convenient slew origin (e.g., due to the lack of strong indications on how to sequence a set of
observations). This can be done with the token:

< VALUE-TOKEN, Stak(POINTlNGDEVKE),{SLEWING(?T, 3C267)}, t l , t2>

where its type is the set of values obtained by binding ?T to all possible targets. Further
refinement of the token’s characteristics depends on additional decisions and constraint
propagation throughout the temporal data base (see section 5.2).

Asserting a value token does not guarantee that it will be eventually included in an executable
plan. An executable token has to also find a time interval over which no other value token can
possibly occur on the same state variable. HSTS-TDB supports the satisfaction of this condition
with a specific device: the time h e . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis is a generalization of resource capacity profiles as used
in classical scheduling. A time line is a linear sequence of tokens that completely covers the
scheduling horizon for a single state variable. In a completely specified pldschedule the time
line consists of a sequence of value tokens with ground predicate types. However, at the
beginning of the planninglscheduling process there is little or no knowledge on the number and
nature of these tokens. Constraint posting might allow different degrees of refinement of this
knowledge in different time line sections. To express this situation HSTS-TDB provides a
different kind of token, the CONSTRAINT-TOKEN. A constraint token can appear only in a state
variable’s time line and represents a sequence of values of indefinite length (possibly empty);
each value must belong to the token’s type.

The principal means to refine a behavior segment is the insertion of a value token into a
compatible constraint token. Token insertion generalizes reservation of capacity to an activity,
the main decision making primitive in classical scheduling. Figure 4 graphically describes the
consequences of the insertion of a value token with a single ground predicate into a time line
consisting of a single constraint token. The graph in figure 4(a) symbolizes all different

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
evolutions of the state variable values that can possibly substitute for the initial constraint token.
The insertion partitions the time line into three sections. The f ist and third section consist of
constraint tokens that inherit all characteristics of the original constraint token; the inserted value
token covers the middle section. All legal refinements of the time line must now assume the
specified value throughout the occurrence of the inserted token (Figure 4(b)).

value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4

time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@)

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 Insertion of a value token into a time line.

Tokens are restricted by the problem statement and by the HSTS-DDL system model. For
example, a problem might require the satisfaction of a release date on the occurrence of activity,
while compatibility specifications might require the occumnce of a related pattern of support
activities and states. The means to assure the satisfaction of these conditions is the posting of
temporal and type constraints among pairs of tokens. We refer to the set of tokens and
constraints among tokens in the data base as the token network. In HSTS-TDB, an absolute
temporal constraint relates a token zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 to a special “reference token” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*pas@; the end time of
pasr is by convention the origin of the temporal axis, or time 0. To enforce a release date on
token z, for example, we can post the constraint {*past* before([I , +-I) 7). which says that z
must start at least r units of time after the time origin. To support the satisfaction of constraints
intrinsic to the domain, HSTS-TDB automatically associates to each value token an instance of
its type’s compatibility specification tree. During the planningkcheduling process this data
structure maintains the current state of the token’s causal justification. When the
planner/scheduler decides to satisfy a compatibility, it posts a temporal relation between two
tokens. HSTS-TDB marks as achieved the appropriate leaves in the causal justification trees of
the two tokens, and propagates the marking throughout each tree. If the root of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtree is marked
as achieved, the corresponding value token is sufficiently justified; the planner/scheduler can
therefore remove it from the list of tokens (subgoals) still to achieve. Compatibility
implementation corresponds to precondition and postcondition satisfaction in classical planning.
Figure 5 summarizes the process of implementing a contained-by compatibility in the HST
domain; the compatibility specifies that while the telescope is locked on target 3C267, the target

11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NOT- VISIBLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvisibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3C267) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmust be visible.

VISIBLE NOT- VISIBLE

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALOCKED(3C267) I

visibility (3C267) NOT-VISIBLE VISIBLE

LOCKED(3C267)

(b)

Figure 5: Implementation of a contained-by compatibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HSTS-TDB also supports problem solving at multiple levels of abstractions. This is obtained by
subdividing a token network into a number of communicating layers, each corresponding to a
level of abstraction in the HSTS-DDL system model. If the type of a value token has a
refinement specification in the system model, an instance of the refmement specification is
automatically associated to the token.

HSTS-TDB provides primitives to allow the creation and insertion of tokens and the creation of
instances of temporal relations. Each primitive has an inverse that allows the undoing of previous
commitments. HSTS does not impose any particular constraint on the order in which these
primitives can be used; this is completely left to the search method and the domain knowledge of
the planner/scheduler. Through a context mechanism a plannerkcheduler can also access
different alternative database states. Mechanisms are provided to localize tokens that satisfy
given conditions (e.g., all tokens on a state variable time line that can be used to implement a
given compatibility).

12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAdditional HSTS features

5.1 Sequence Constraints zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The primitives introduced in section 4 can express synchronization constraints between
“constant” segments of state variable behavior, i.e., time intervals during which a state variable
does not change its value. However, in complex domains it might be necessary to synchronize
more complex behavior segments. A typical case involves several sequential values. For
example, in the HST domain when the Wide Field detector (W) of the Wide FieldPlanetary
Camera is in an intermediate reconfiguration state, the instrument platform (WFPC) can be in any
of a number of states that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare neither too “cold” nor too “warm”. In terms directly derived
from the HSTS-DDL model of HST, we need to express that while the state variable state(w)
has value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs(3n), state(wppC) must remain in a value range within s(3n) and s(4n). Transition
among values are allowed and no preferences are given on which specific sequence of values to
use.

To express these kinds of conditions, HSTS-DDL provides a special type of compatibility, the
sequence compatibility (cump-class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0). If the value’s compatibility specification contains a
sequence compatibility [temp-rel <o, sf-vur, type>], a value’s occurrence requires a
contiguous sequence of values from rype on state variable sr-var; moreover, the constrained
value must be in the temporal relation femp-rel with the overall interval of occurrence of the
sequence. Figure 6 shows the sequence compatibility for the WFlwFpc example described
before.

<sta te(WF) ,S(3n) >

[contained-by ([O, +mi [O. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+-I)
<a, state(WFPC), { S (3n) , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT(3n. 4n), WARMUP (4 n) ,

S (4n). T (4n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3n 1. COOLDO WN (3n) >]

...

Figure 6: A sequence compatibility.

A planner/scheduler can impose sequence synchronization constraints by using a special kind of
HSTS-TDB token, the sequence token (tok-class = SEQUENCGTO‘OKEN). A sequence token
<SEQUENCE-TOKEN, st-vur, type, st, et> represents a time interval during which the state
variable st-vur can assume an indefinite number of sequential values belonging to the set type.
As for a value token, asserting a sequence token does not automatically imply inclusion into the
pldschedule. This requires the insertion of the token into the time line. Figure 7 shows the
implementation of the compatibility in figure 6. Notice that the sequence token encompasses
several value tokens (in white) and constraint tokens (in gray); each represents a segment of
behavior with a different level of refinement.

Sequence compatibilities specify synchronization among “prooesses” within a single level of
abstraction; this makes them different from traditional approaches to hierarchical planning [191.
A sequence compatibility might not provide the primary justification for the constraining
process. In this case, the sequence compatibility merely adds constraints (e.g., on the overall
length of the process) that new goal expansions will have to satisfy.

13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

contained-by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAio. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“‘“ea Is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3n 1. , COOLDOWN (3n) /

Figure 7: Implementation of a sequence compatibility. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2 Time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtype consistency
HSTS-TDB maintains token network consistency through auxiliary constraint networks.
Constraint propagation procedures allow the evaluation of the current flexibility of the possible
value assignments for time and type.

Temporal constraints are organized in a graph, the time point network [9]. Each token start or
end constitutes a node in the graph, or time point; arcs between time points are metric interval
distances derived from the temporal relations posted in the data base. Drawing an example from
the HST domain, figure 8 shows a portion of the time point network underlying a pldschedule
for taking an image of target NGC288 with the WF detector of the Wide FieldPlanetary Camera;
the black token represents the actual exposure. HSTS-TDB provides a single-source constraint
propagation procedure to compute the range of possible times for each time point. If the
propagation finds some time point with an empty range, the token network is inconsistent. An
all-pairs constraint propagation procedure is also available to determine ranges of temporal
distances between pairs of tokens. This is useful when minimizing the token network (e.g., find
tokens whose duration is effectively [0, 01 and that can therefore be deleted). The all-pairs
procedure also allows the localization of inconsistent distance constraint cycles. Both constraint
propagation procedures are incremental; if no constraints are deleted from the network, the time
ranges are updated by considering only the additional effects of the new constraints.

To provide a more localized structural analysis of the token network, it is possible to apply
temporal propagation to portions of the time point network. This feature is useful when the
planner/scheduler can take advantage of a limited amount of look-ahead. For example, during the
implementation of a sequence compatibility, the planner/scheduler needs to determine where to
insert a sequence token without provoking inconsistencies. If propagation is limited to the
subgraph of all time points lying on one of the two state variables involved, the
planner/scheduler can evaluate in a short time the temporal consistency of a high number of
alternative token subsequences. Local consistency does not grant global consistency; however,
the amount of pruning obtained is still extremely effective in reducing overall problem solving
cost [15].

Maintaining a time point network encompassing the entire token network (irrespective of a token
being inserted in a time line or not) encourages a problem solving style that keeps substantial
amounts of temporal flexibility at any stage. Although it is certainly possible to make classical

14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
visibility zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(NOC288 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVISIBLE NOT~VISIBLE VISIBLX

Figure 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA time point network.

scheduling decisions (Le., post absolute temporal constraints to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfuc a token start time andor end
time), one could ask if additional leverage could.not derive from making decisions with lower
levels of commitment. This issue is discussed in more depth in section 8.

A limited constraint propagation among token types keeps track of the possible time line
refmements in view of the currently inserted value and sequence tokens. Figure 9, for example,
represents the consequence of the insertion of a sequence token overlapping a pre-existing one.
Type propagation updates the type of each time line token to the intersection of its type with
those of all encompassing sequence tokens. The initial type of a free constraint token is
represented as (* 1, meaning the set of all possible values for the state variable. If type
propagation associates an empty type to some time line tokens, the token network is inconsistent.
Similar to temporal propagation, type propagation is incremental.

Figure 9 Type propagation on a time line.

Unlike other approaches 161, HSTS-TDB propagation procedures limit their action to the

15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
verification and, possibly, localization of inconsistencies; no attempt is made to automatically
recover to a consistent state. The problem solver must take 111 responsibility of the recovery
process, since different responses might be needed in different situations. For example, if a state
variable is over-subscribed, we might either delete tokens that have not yet been inserted (goal
rejection) or cancel the insertion of some tokens (resource deallocation). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA plannerlscheduler
implemented in HSTS can operate on inconsistent token networks, adding and retracting tokens
and constraints with no need to insure consistency at each intermediate step. Planning/scheduIing
algorithms can reach a final consistent pldschedule with trajectories that lay partially zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor
entirely in the space of inconsistent data base instantiations. Therefore, HSTS supports a wide
variety of problem solving methods, including search in the space of incremental consistent
pladschedule extensions [32], reactive opportunistic scheduling [36], and purely repair based
approaches [22,42,5].

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAManaging Resources
To provide a general representation framework for several types of resources, it is important to
take into account several features. First is the amount of capacity available for consumption; in
general, a resource can be either zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsingle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcupuciry or multiple capacity. A second dimension
concerns the number of requests that the resource can service at the same time; we can
distinguish between single user and multiple user resources. Finally, resources differ with
respect to what happens to capacity after usage; they can be renewable or not renewable. HSTS
supports the representation and manipulation of all these resource features. By making
appropriate use of compatibility and duration constraints, an HSTS-DDL system model can
represent various kinds of synchronization with capacity requests and various kinds of resource
renewability. For example, we can express a compatibility that requests a human operator to
attend to a machine only during the initial part of a machining process. We can also impose a
duration constraint to make capacity consumption by an activity permanent. To represent
multiple user resources, however, we need an extension of the basic state variable model: the
aggregate state variable. In this section we give examples of resource modeling within HSTS.

6.1 Atomic State Variables
The kind of state variable discussed so far (called from now on atomic state variable) can
model different types of single user resources. The examples given so far are essentially
generalized single capacity resources; however, atomic state variables can also cover multiple
capacity resources, renewable or not renewable. In the HST domain, the on-board tape recorder
is an example of such a resource. Only one instrument at a time can dump data on it, making it
single user; the tape has a f i i te amount of storage, measured in bytes (multiple capacity), that
can be cleared by communication to Earth (renewable capacity). The state of the tape recorder is
tracked by the atomic state variable state(TApEREC0RDER). Each of its values keeps track of the
amount of data stored in the tape with a numeric argument, ?C. The possible values for
StatHTAPE-RECORDER) are: R E D O U T (?Z, ?D, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?C), the process of reading ?D bytes from
instrument ?I on the tape already containing ?C bytes; STORED(?C), when the tape recorder is
not in use and is storing ?C bytes; DUMP-TO-EARTH(?C), the communication of ?C bytes
from the tape recorder to earth and the resetting of the tape to empty. The total capacity of the
tape, MAX-C, determines if it is possible to schedule the transfer of data from an instrument to
the tape. More precisely, it is not possible to insert a value token of type
READ-OUT(?Z, ?D, ?C) in a position such that ?D+?C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> MAX-C. for any value that can be
assigned to ?D and ?C in that position. If no position is legal, we need to insert a
DUMP-TO-EARTH token to renew the tape capacity, after which the READ-OUT can legally
occur. Single user, multiple capacity, not renewable resources can be modeled like the tape
recorder with the only exception of the lack of a capacity renewal operation analogous to
DUMP-TO-EARTH, an example of such a resource is fuel in the propulsion system for a
planetary probe’s attitude adjustment.

16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6.2 Aggregate State zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVariables
In principle, we could represent multiple user resources as a collection of atomic state variables,
each corresponding to a quantum of individually usable capacity. However, in most cases this
solution is overly cumbersome, For example, to reason about the allocation of cargo to available
space on a plane, we would have to subdivide both space and cargo into ‘‘units of space” and
allocate each unit of cargo space to a free unit of plane space. This might be necessary to yield
detailed maps of plane space allocation, but it is inappropriate when we only need an aggregate
characterization. In these situations HSTS provides a different representation primitive: the
aggregate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstate variable. The value of an aggregate state variable is a summary of the values of
a set of atomic state variables. Electric power in HST and refueling capacity in transportation
planning fall into this category.

Consider, for example, the aggregation of classical scheduling resources, Le., resources that can
be either in use (value OPER) or idle (value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIDLE). The state of a pool of resources POOL can be
given by an aggregate state variable, Capacity(POOL), whose possible values have the form: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

{(OPER, nl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL (IDLE,%))

indicating that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn1 atomic resources in POOL are in an OPER state, and n2 are in an IDLE state.
While Capacity(Po0L) assumes this value, POOL contains nl+% atomic resources. In general, a
value for an aggregate state variable is a list of such entries (value, counter).

When declaring compatibilities, a value might require that some atomic state variables in a pool
assume another specified value. The effect of several atomic compatibilities can be aggregated
into an aggregate compatibility; this will specify how to increment or decrement the counter of
each entry of an aggregate state variable value. For example, assuming that activity OPi requires
the use of ci atomic resources, the value (st(?j’), OPi) will have the following compatibility:

[cunruains([O, 01, [O , O]) {o, Capacity(POOL), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ (OPER, INC(+cj)), (IDLE, INC(-cj))) I

This means that whenever OPi of job ?j is in progress (state variable st(?]’) has value OPi), there
must be an appropriate sequence of values on Capacity(P0OL) starting and ending together with
OP,. The type in the compatibility describes that for each value in the sequence the number of
OPER atomic resources increases by ci units, while the number of IDLE resources decreases by
ci units.

After having implemented a number of aggregate compatibilities, the value assumed by an
aggregate state variable at a given point in time can be obtained by type propagation. Suppose
that, after having gathered all types of the sequences insisting on a time line token, we have no,,?
entries of type (OPER, INC(cj)) and nide entries of type (IDLE, INC(cj)). The resulting type for
the time line token is { { OPER, n1), {IDLE, n2)] with:

OP‘ “idle

i=l . j = 1

n

n, = ci n2 = cj

where ci and cj can be both positive (capacity creation) or negative (capacity consumption).
Figure 10 shows the effect of the insertion of a request of aggregate capacity on the aggregate
state variable time line. Checking type consistency requires the computation of the balance
between positive and negative requests for each time line segment where a set of capacity
requests overlap. The data base is inconsistent when an aggregate value contains a negative
counter. Notice however that, in case the system model allows the generation of capacity (i.e.,
contains aggregate compatibilities with INC(-x) entries), inconsistencies can be resolved
without backtracking by posting additional compatibilities that provide the missing capacity.

17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(<IDLE, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI N C (+ 3) >) I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{< IDLE, I N C (+ 3) >)

(b)

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10: Posting a sequence constraint on an aggregate state variable.

As with atomic state variables, each transition between time line tokens belongs to the HSTS-
TDB time point network. Therefore, the synchronization of the requests for capacity allows a
certain degree of flexibility regarding the actual staft and end of the use of a resource. However,
testing that the requested amount does not exceed available capacity still requires a total ordering
of start and end times on the time line. One way to obtain a higher degree of flexibility is to
statistically estimate resource usage over time even without committing to a specific total order
(see section 8).

7 Scheduling the Hubble Space Telescope
Within HSTS we have developed and experimentally tested planninghcheduling systems for
several domains including short term scheduling for HST zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25] and “bare base” deployment for
transportation planning [12]. In this section we describe experience in the HST domain and we
highlight some favorable characteristics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the HSTS framework.

For HST, the problem size and the variety of constraint interactions suggest that complexity
should be managed by staging problem solving. This consists of fwst making decisions
concentrating only on some important aspects of the problem, and then further refining the
intermediate solution to include the full range of domain constraints. Therefore, our model of the
HST domain has two levels of abstraction. At the abstract level the generation of initial
observation sequences takes into account telescope availability, overall telescope reconfiguration
time, and target visibility windows. The model contains one state variable for the visibility of
each target of interest and a single state variable representing telescope availability. The detail
level generates planslschedules that are directly translatable into spacecraft commands. Abstract
decisions are expanded and adapted to a domain model that includes one state variable for each
telescope. subsystem.

Initially, the temporal data base contains the candidate observation programs at the abstract level
and an empty time line for each state variable. Each program is a token network, with a value
token for each observation request. None of the tokens are inserted into a state variable time
line. Two tokens cover each state variable time line: a value token representing the value of the

18

state variable in the telescope’s initial state, followed by a constraint token with unrestricted
type.

At both levels of abstraction the plannerkcheduler uses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe same decision making cycle: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGoal Selection: select some goal tokens;
2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGod Insertion: insert each selected token into the corresponding state variable time line; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
repeat

3. Compatibility Selection: select an open compatibility for an inserted token:
4. Compatibility Implementation: implement the selected compatibility; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

until no more tokens in any time line have open compatibilities.

The Compatibility Implementation step consists of finding a behavior segment on the time line
(either a value token or a sequence of tokens) that is compatible with the conditions on type and
time imposed by the compatibility. If such a behavior segment does not exist, a new value or
sequence token with the required type is created, inserted in the time line in an appropriate
position, and connected to the constrained token with the appropriate temporal relation. This
process of token creation and insertion corresponds to subgoal sprouting in classical planning.
The basic cycle is repeated until it is determined that it is not possible to insert another
observation token into the abstract time line.

Each of the 4 steps in the basic decision making cycle require choosing among alternatives. For
example, we can implement a compatibility in different ways depending on which section of
time line we select as the constraining segment of behavior. When different choices are possible,
they are separately explored through a heuristic search procedure.

Heuristics at the abstract level must address the trade-off between two potentially conflicting
objectives: the maximization of the time spent collecting science data and the maximization of
the number of scheduled observation programs. Different sequencing rules have been proposed
and evaluated [35]. A first strategy addresses the first part of the trade-off. The strategy builds a
sequence of observations by dispatching forward in time. The observation that minimizes the
reconfiguration time and causes the fewest rejections of open requests (i.e., does not use time
that was the only one available for the execution of some observations) is appended at the end of
the current partial sequence. A second strategy concentrates on the second part of the trade-off.
It consists of maintaining a set of possible start times for each open observation, and selecting
the observation with the fewest alternatives for scheduling. The placement on the time line does
not necessarily proceed by budding a linear sequence; if the time is available, an observation can
be inserted amid previously scheduled observations. A third, more balanced strategy yields
better results than the preceding two. At each problem solving cycle, it selects one of the two
previous scheduling strategies as a function of problem characteristics dynamically discovered
during problem solving.

Heuristics at the detail level ensure the correct synchronization of the reconfiguration of different
components; the primary goal is to minimize reconfiguration time [25]. We will describe the
nature of these heuristics when discussing the scalability of HSTS.

During planninglscheduling the two layers of abstraction exchange information. Observations
sequenced at the abstract level are communicated to the detail level for insertion in the detail
pladschedule. The request has the form of a token subnetwork that is obtained from the
expansion of the abstract token’s refinement specification. Preferences on how the goals should
be achieved (e.g., “achieve all goals as soon as possible”) are also communicated. The detail
level communicates back to the abstract level information resulting from detail problem solving;
these include additional temporal constraints on abstract observations to more precisely account
for the reconfiguration delays.

19 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In developing the plannerischeduler for the HST domain we followed an incremental approach.
We decomposed the problem into smaller sub-problems, we solved each sub-problem separately,
and then assembled the sub-solutions. It is natural to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtry to apply this methodology when dealing
with large problems and complex domains. However, to do so the representation framework
must effectively support modularity and scalability. In particular, a modular and scalable
framework should display the following two features:

the search procedure for the entire problem should be assembled by combining
heuristics independently developed for each sub-problem, with little or no
modification of the heuristics;

the computational effort needed to solve the complete problem should not increase
with respect to the sum of the efforts needed to solve each component sub-problem.

Experiments on three increasingly complex and realistic models of the HST domain indicates
that HSTS displays both of the previously mentioned features. The experiments serve as a
framework to test the interaction between abstract and detail level planning and scheduling;
therefore, unlike in [35], they pay little attention to the optimization of the main mission
performance criteria.

We identify the three models as SMALL, MEDIUM, and LARGE. All share the same abstract level
representation. At the detail level the three models include state variables for different telescope
functionalities. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASMALL model has a state variable for the visibility of each target of interest,
a state variable for the pointing state of the telescope, and three state variables to describe a
single instrument, the Wide Field/Planetary Camera (WFPC). The MEDIUM model includes
SMALL and two state variables for an additional instrument, the Faint Object Spectrograph
(FOS). Finally, the LARGE model extends MEDIUM with eight state variables accounting for data
communication. The LARGE model is representative of the major operating constraints of the
domain.

For each model we use the same pattern of interaction between problem solving at the abstract
and at the detail level. At the abstract level observations are selected and dispatched using a
greedy heuristic to minimize expected reconfiguration time. The last dispatched observation is
refined into the corresponding detail level token network, then control is passed to
planning/scheduling at the detail level. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis cycle is repeated until the abstract level sequence is
complete.

The detail plannerkheduler for SMALL is driven by heuristics which deal with the interactions
among its system components. A fust group ensures the correct synchronization of the WFPC
components; one of them, for example, states that, when planning to turn on the W F detector,
preference should be given to synchronization with a PC behavior segment already constrained
to be off. A second group deals with the pointing of HST; for example, one of them selects an
appropriate target visibility window to execute the locking operation. A final group manages the
interaction between the state of WFPC and target pointing; an example from this group states a
preference to observe while the telescope is already scheduled to point at the required target. To
solve problems in the contest of MEDIUM, additional heuristics must deal with the interactions
within FOS components, between FOS and HST pointing state, and between FOS and WFPC.
However, the nature of these additional interactions is very similar to those found in SMALL.
Consequently, it is sufficient to extend the domain of applicability of SMALL’S heuristics to
obtain a complete set of heuristics for MEDIUM. For example, the heuristic excluding WF and PC
from being both in operation can be easily modified to ensure the same condition among the two
FOS detectors. Finally, for LARGE we have the heuristics used in MEDIUM with no change, plus
heuristics that address data communication and interaction among instruments and data
communication; an example of these prevents to schedule an observation on an instrument if
data from the previous observation has not yet been read out of its data buffer. By making

20

CPU time per compatibility
Total CPU time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Total elapsed time
Schedule horizon

evident the decomposition in modules and the structural similarities among different sub-models,
HSTS made possible the reuse of heuristics and their extension from one model to another. We
therefore claim that HSTS displays the first feature of a modular and scalable
planning/scheduling framework.

In order to determine the relationship between model size and computational effort, we ran a test
problem in each of the SMALL, MEDIUM, and LARGE models. Each test problem consisted of a
set of 50 observation programs; each program consisted of a single observation with no user-
imposed time constraints. The experiments were run on a TI Explorer 11+ with 16 Mbytes of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RAM memory.

As required by the second feature of a scalable framework, the results in table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 indicate that the
computational effort is indeed additive. In the table, the measure of model size (number of state
variables) excludes visibilities for targets and communication satellites, since these can be
considered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas given data. The time edges are links between two time points that lie on different
state variables; the number of these links gives an indication of the amount of synchronization
needed to coordinate the evolution of the state variables in the schedule.

Since the detail level heuristics exploit the modularity of the model and the locality of
interactions, the average CPU time (excluding garbage collection) spent implementing each
compatibility remains relatively stable. In particular, given that the nature of the constraints
included in SMALL and MEDlUhf is very similar, the time is identical in the two cases. The total
elapsed time to generate a schedule is an acceptable fraction of the time horizon covered by the
schedule during execution. Even if this implementation is far from optimal, nonetheless it shows
the practicality of the framework for the actual HST operating environment.

SMALL MUlIuM LARGE

N. state variables I 41 61 1 1

0.29 0.29 0.33
941.00 10.11.50 1807.00

1:0836.M) 1:13:16.00 2:34:07.00
41:372000 54:25:46.00 52:44:41.00

N. tokens
N. time points
N. time edges 1296 1328 I474

ICPUtimeperobservation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 11.621 12.251 21.74 1

I
~

I I
-. .. .

Table 1: Performance results. The times are reported in hours, minutes,
seconds, and fractions of second.

8 Exploiting temporal flexibility in scheduling
As we mentioned in section 4.2, HSTS puts special emphasis on temporal data base flexibility
along several dimensions. For example, temporal information in plankchedules is uniformly
represented as a time point network. One might wonder if this flexibility gives in fact any
leverage during problem solving. In the following, we will discuss this issue with respect to the
classical scheduling problem.

Classical scheduling can be viewed as a process of constructively proving that the initial activity
network contains at least one consistent behavior. Such behavior is completely determined by
giving a complete assignment of resources, start and end times to each request of capacity
originated by some activity. Several scheduling systems actually operate by binding values to
variables corresponding to resources and time; a consistent total value assignment can be reached
by either incrementally extending a consistent partial assignment 1321 or repairing a complete but

21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
inconsistent total assignment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[42, 5,221. Our alternative to binding exact values to variables is to
add sequencing constraints among tokens that request the same resource. In HSTS-TDB, such
constraints assume the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbefore([0, -1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. The goal is to post enough constraints to
ensure that at any point in time the requested capacity does not exceed the available capacity.

The final result of the two previous approaches is potentially quite similar. In fact, it is
straightforward to “relax” a total time value commitment into a network of constraints by
introducing a temporal precedence whenever two activities occur sequentially on the same
resource. Vice-versa, it is straightforward to generate total time value commitments from a
constraint network which satisfies all resource capacity limitations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9]. However, there is quite a
difference in the way in which the two approaches explore the scheduling search space. When
reasoning about sets of possible assignments of start and end times for the remaining
unscheduled activities, the flexible time approach shows potential advantages over the value
commitment approach. We can illustrate this point with a very simple example. Consider two
activities that require the same single capacity resource, each having a duration of one time unit,
and each having identical time bounds allowing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn possible start times. Without considering the
resource capacity limitation, there are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn2 possible start time assignments for the pair of activities.
If we fix the start time of one activity to a given time, there are n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 possible assignments for the
start time of the other activity that do not violate the resource constraint. Instead, if we introduce
a precedence constraint between the two activities, the total number of consistent start time
assignments is - . Therefore, the size of the remaining search space after a scheduling

decision is O (n) in the value commitment approach and O(n2) in the flexible time approach. In
general, every time the value of a problem variable is fiied the search space loses one
dimension. Alternatively, posting a constraint only restricts the range of the problem variables
without necessarily decreasing dimensionality. This has the potential of leaving a greater number
of variable assignment possibilities, and suggests a lower risk of the scheduler “getting lost” in
blind alleys.

I‘

(n - 1) n
2

8.1 Conflict Partition Scheduling
Based on these principles, we have developed a constraint posting scheduling procedure:
Conflict Partition Scheduling (C P S) [26,27]. The initial HSTS-TDB state for CPS is a token
network; each request of capacity from some activity corresponds to a token. Initially, no token
is inserted into the corresponding resource time line. The goal of CPS is to add constraints to the
token network so that the insertion of all tokens according to the fimal network will not generate
any capacity conflicts. To achieve this goal, CPS repeatedly identifies bottleneck sets of tokens,
i.e. tokens that have a high likelihood of being in Competition for the use of a resource. It then
adds precedence constraints to ensure that no conflict will actually arise. In order to identify
bottleneck conflicts and decide which constraints are most favorable, CPS uses a search space
analysis methodology based on stochastic simulation.

In the following we will identify T as the set of all tokens, R as the set of all resources, and H as
the scheduling horizon. H i s an interval of time that is guaranteed to contain the occurrence of
any token in the final schedule. We will also identify EST(T) and LFT(T), respectively, as the
earliest start and the latest finish times of token T.

The outline of the basic CPS procedure is the following:
1 . Capacity Analysis: estimate token demand and resource contention.

2. Termination Test: If the resource contention for each resource is zero over the
entire scheduling horizon, then exit. The current token network is the solution,

3. Bottleneck Detection: Identify the resource and time with the highest contention;

4. Conflict Identification: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASelect the tokens that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare most likely to contribute to the
bottleneck contention.

5. Conflict Partition: Sort the set of conflicting tokens according to the token
demand, by inserting appropriate temporal constraints.

6. Constraint Propagation: Update the time bounds in the time point network as a
consequence of the introduction of the new temporal constraints. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7. Consistency Test: If the time point network is inconsistent, signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan inconsistency
and exit.

8. Go to 1.

The basic CPS procedure is strictly monotonic. If it generates an inconsistency the token network
is reset to the initial state and the procedure is repeated. The stochastic nature of CPS’s capacity
analysis allows each repetition to explore a different path in the problem solving space, and to
therefore potentially succeed after backtracking. If after a fixed number of repetitions a solution
has not been found, CPS terminates with an overall failure. The general structure of the problem
solving cycle is similar to that of other heuristic scheduling approaches [4,36,32]: analyze the
problem space (step l), focus on a set of critical decision variables (steps 3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). and make
decisions concerning the critical variables (step 5).

The stochastic Capacity Analysis extends and generalizes the one first proposed in [24]. The
logic behind the method is quite simple. While it is difficult to complete an intermediate problem
solving state into a consistent schedule due to unresolved disjunctive capacity constraints, it is
easy to generate total time assignments that satisfy the temporal constraints already in the
network. This can be done by also taking into account additional preference criteria (e.g., select
times as soon as possible). For each such assignment we can identify violations of the still
implicit capacity constraints (i.e., times where more than one token uses the same resource). If
we generate a sample of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN different total time assignments, we can evaluate the following
statistical measures of contention and preference:

token demand for each token zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz and for each time EST(z) 5 ri < LFT(z), token
demand A(T, r i) is equal to n IN, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is the number of elements in the sample

for which the token’s interval of occurrence overlaps ti.

resource contention: for each resource p E R and for each time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 within the
scheduling horizon H, resource contention X(p, 5) is equal to n,, /N, where nt, is the

number of elements of the sample for which p is requested by more than one token
at time 5.

Token demand and resource contention represent two different aspects of the current problem
solving state. Token demand measures how much the current constraints and preferences bias an
activity toward being executed at a given time. Resource contention, instead, measures how
likely it is that the current constraints and preferences will generate congestion of capacity
requests (and therefore potential inconsistency) at a given time.

A sample of N total time assignments is given from running the following stochastic simulation
process N times. Given the time point network (V, C f) , the following steps are repeated until all
variables in V, have a value:

ti ti

I J

1. select a variable v, E V, according to a predefmed variable selection strategy;

2. select a value for vf within its current time bound according to a stochastic value

.

23

selection rule; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
network; this results in new time bound assignments for the variables in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,;

3. assign the value to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvt and propagate the consequences throughout the time point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. delete f from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,.

At the end of a stochastic simulation all tokens in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT have a definite start and end time. For each
token we record the interval of occurrence. For each resource at each instant of time within the
scheduling horizon, we record if the number of tokens that require the use of the resource
exceeds its available capacity. The stochastic simulation is parametric with respect to both
variable selection strategy and value selection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArule.

A micro-opportunistic search scheduling approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[32] has demonstrated the effectiveness of
similar token demand and resource contention metrics. However, there the two metrics are
computed independently and according to different, sometimes stronger, relaxation assumptions.
In particular, several precedence constraints present in the time point network are disregarded
when computing resource contention. Dropping constraints during capacity analysis allows fast
computability of the metrics, but these computational savings might be offset by a decrease in
the predictive power of the metrics. This decrease may cause an increase in the number of
scheduling cycles needed to reach a solution [28].

Relying on the search space metrics, the scheduler focuses by first identifying the portion of the
token network with the highest likelihood of capacity conflicts (Bottleneck Detection), and then
by determining a set of potentially conflicting tokens within this subnetwork (Contlict
Identification). A bottleneck is formally defined as follows:

Bottleneck: Given the set of resource contention functions [X(p, t)) with PE R and
t~ H, we call bottleneck a pair (Pb, fb) such that:

for any p~ Rand t E Hsuchthat (X(p,t) > 0).

X(pb, tb) = maK{X(p,t))

The conflict set is a set of tokens that request pb, have time bounds that contain fb and are not
necessarily sequential (i.e., no two tokens in the conflict set are forced to follow each other
according to the token network). If multiple conflict sets are possible, CPS prefers tokens whose
demand profiles cluster around rb [26].

Conflict Arbitration introduces precedence constraints among the capacity requests within the
conflict set in order to decrease the likelihood of inconsistency in the token network. CPS allows
the use of several types of arbitration rules. At one extreme there are minimal approaches,
similar in spirit to micro-opportunistic scheduling [32]. These operate by introducing a single
precedence constraint between a pair of tokens extracted from the conflict set. At the other
extreme there are approaches similar in spirit to macro-opportunistic scheduling [36,4]. These
generate a total ordering of all tokens in the conflict set. When designing a Conflict Arbitration
procedure within these two extremes, we need to balance the trade-off between minimization of
change in the topology of the token network and minimization of the number of problem solving
cycles. In fact, posting too many constraints without appropriate guidance from problem space
metrics could introduce inconsistencies and require backtracking, but posting too few constraints
at each cycle requires a higher number of costly Capacity Analysis steps. The Conflict
Arbitration strategy currently used in CPS adopts an intermediate approach; it partitions the
conflict set into two subsets, Tb$o,.e and TnJPer and constrains every token in Tbefore to occur
before any token in T4fter. The choice of the partition relies on the analysis of the token demand
profiles, where tokens are assigned to subsets according to clustering of their demand profiles
r241.

24 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figures 11, 12, 13, and 14 graphically illustrate the consequences of a CPS scheduling cycle.**
Figure 11 shows the initial problem network consisting of 10 jobs of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 sequential activities.
Highlighted tokens indicate capacity requests on the same resource. Each of the highlighted
tokens occupies the same position in each job. In this example, the identical position together
with the similarity of release and due dates across jobs cause a high likelihood of conflict on that
resource. The contention profile for the resource (top graph of figure 12) shows, in fact, a
maximum level of contention; this identifies the current bottleneck. All tokens requesting the
resource belong to the conflict set since all of their time bounds overlap the bottleneck time (as
shown in the bottom part of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfigure 12). The solid black segment at the far right of each time
bound represents the token's duration. Figure 13 shows the new topology of the token network
after Conflict Arbitration. The initial conflict set is now partitioned into two subsets of lower
criticality, with potentially less operations in conflict in each set. As a consequence the resource
contention for the bottleneck resource now has two peaks. Also, the new token clustering is
clearly identifiable among the time bounds (figure 14). Notice that partitioning has only slightly
reduced the slack associated with each time bound.

~ r n r i r w l ~ f i v i ~ ~ i Hlcriulte2 ~ c ~ i ~ i ~ ~ w H A ~ L ~ ~ ~ , . W

*.ririwo Hlcm~w~ H ~ e % ~ i t w Hrcciv'tre H .̂tkviwa

m

-"%,- -.,, .,+., Y-. R-.II,.~I.,I.V ,..,

Figure 12: Bottleneck resource status before scheduling cycle.

'?%e figures were generated using SAGE, a system for the automation of data presentation [3 I]

25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8 8 ..-... -._.-.- :.., , .".-"-" .-,..... : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 14: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANew bottleneck rewurce status.

8.2 Experimental evaluation
To evaluate the effectiveness of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACPS we compared its performance to two other heuristic
scheduling methods over a standard scheduling benchmark. The two competing methods rely on
the value commitment approach; they are micro-opportunistic search [32] and min-conflict
iterative repair [22]. Performance was measured according to the number of problem solved, and
the CPU time required.

8.2.1 Experimental design
Our experimental analysis was conducted on the Constraint Satisfaction Scheduling benchmark
proposed in [32]. The benchmark consists of 6 groups of 10 problems, each problem including
10 jobs and 5 resources. Each job is a linear sequence of 5 activities, each requiring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa different
resource; in each job, the first activity has a release date and the last a due date. Two features
characterize the expected difficulty of each problem group. The first is the spread of release and
due dates among jobs; this can be (in order of increasing expected difficulty) wide (w), narrow
(n) and null (0). The second is the number of a priory bottlenecks; this can be either 1 or 2.***

For a more detailed description of the benchmark see [32], ***

26 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We ran two different configurations of CPS. Backtracking was allowed up to a maximum of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10
times, after which the problem was declared not solved. Each Capacity Analysis step used a
total value assignment sample size of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN = 2 0 . In both cases the stochastic simulation used
forward temporal dispatching zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the variable selection strategy; only the value selection rule was
different in the two configurations. The (20, ASAP) configuration used a linearly biased value
selection rule with highest preference to the earliest time and lowest, 0, to the latest time; the (20,
UNIF) configuration used a uniform value selection rule.

We implemented a scheduler, MIN COW, that follows the min-conflict approach. The goal was
to evaluate the performance of a scheduler relying almost exclusively on the iterative repair
process. For this reason MW CONF displays several differences with respect to the
configuration of the Spike scheduling system which was also applied to this benchmark zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[16].
Both MIN CONF and Spike use a basic cycle that generates an initial total value assignment and
applies a process of iterative repair to it. In both cases, if a solution is not found after a fixed
number of repairs, the cycle is repeated. MIN CONF and Spike differ greatly with respect to the
creation of the initial value assignment. MIN CONF does not make any attempt to generate a
“good” initial guess. It generates a total time assignment by executing CPS’s stochastic
simulation once. The simulation is configured as forward temporal dispatching with uniform
value selection rule. This guarantees satisfaction of job precedences and of release and due dates,
but not of capacity constraints. Moreover, the use of a uniform rule biases each operation to
occur late in its time bound. Instead, Spike, uses a much more informed initialization method
that applies a min-conflict approach. It iteratively selects a variable by using “most-constrained
first” and by breaking ties randomly; the variable is then bound to the earliest value among those
with the minimum number of conflicts. Both MIN CONF and Spike use similar min-conflict
iterative repair cycles. The repair variable is chosen randomly among those currently in conflict.
Both methods count capacity conflicts in the same way, but there is a difference in the way job
precedence conflicts are counted. MIN CONF counts a single conflict for an activity that
violates job precedence constraints with any number of activities. On the other hand, Spike
counts one conflict for each job precedence which is violated.

Since the iterative repair phase could cycle indefinitely, MIN CONF limits the number of repairs
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25000; after this threshold the scheduler declares a failure. To evaluate the effect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the length
of the repair process we ran MIN CONF in two configurations. In the first, MIN CONF (50,
SOO), the initialization occurs every 500 unsuccessful repairs; in the second, MIN C O W (5,
SOOO), the limit for each repair phase is 5000 cycles. In both configurations the initialization
effort is negligible as compared to the time spent repairing. This bias is consistent with our
interest toward isolating the effects of the repair process as much as possible.

The performance of micro-opportunistic search scheduling (MICRO OPP) comes directly from
the literature [3 2 , 3 3] . Micro opportunistic search uses variable and value ordering heuristics
based on capacity analysis metrics similar to those of CPS. The performance results refer to two
configurations differing on the strategy used to recover from dead ends. The f i t configuration,
MICRO OPP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACHRON BKTRK, uses chronological backtracking [32]. The second, MICRO OPP
INTEL BKTRK, uses a series of intelligent dead end recovery techniques [41 I.

8.2.2 Experimental results
Tables 2 and 3 report the comparative performance results. The rows refer to each problem
group in the benchmark; for example row w/2 refers to problems with wide spread and two a
priori bottlenecks. The last row reports a summary of the performance over the whole
benchmark. Since both CPS and MIN CONF have a randomized nature, we estimated their
average performance over 5 independent runs. This is not necessary for MICRO OPP since, as
we already mentioned in section 8.1, its heuristics are deterministic, although based on
probabilistic assumptions.

21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(20,ASAP) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20, UNIF) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 reports the number of problems solved. The results show that CPS (20, ASAP) and
MICRO OPP INTEL BKTRK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare the only two techniques that consistently solved all of the
problems. The performance differences across the two CPS configurations indicate the
importance of the stochastic simulation strategy. For example, The choice of different value
selection rules impacts the region of the search space from which sample elements are more
likely to be generated. In our case it can be demonstrated that the sample base obtained with a
UNIF rule is, in fact, narrower than the one obtained with an ASAP rule. The evaluation of the
effect of different sampling strategies on the performance of the scheduler is an important open
problem.

Both configurations of MIN CONF performed significantly worse than both CPS and MICRO
OPP.**** At first glance this result might seem at odds with the excellent performances
displayed on this benchmark by Spike [16]. However, the balance between initialization and
repair efforts is very different in the two schedulers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs we mentioned before, since MIN CONF
was mainly intended to evaluate the repair process, initialization effort is negligible with respect
to repair. Considering the number of time value assignments in each phase, MIN CONF (50,
500) has a 1 to 10 ratio and MIN CONF (5,5000) has a 1 to 100 ratio. Since each initialization
assignment is not as “informed” as an assignment during repair, the ratio is even more biased
toward repair. Conversely, in Spike initialization and repair efforts are balanced since the same
number of value assignments to variables is executed in both phases. Moreover initialization and
repair assignments use the same kind of heuristics. An important consequence of this is that,
when Spike succeeds, most of the time it does not repair. The dependency of the convergence of
the repair process from the choice of a “good” initial solution is still an open problem.

The performance of MIN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC O W across problem subsets is worst on the problems with two a
priori bottlenecks. When a problem presents several bottlenecks, scheduling algorithms are
known to have difficulty in dealing with the complex interactions. These results suggest that the
local nature of the conflict measure used in MIN CONF is unable to detect such interactions.

CHRON INTEL
(SO. 500) (5? 5000) BKTRK BKTRK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn I CPS I MINCONF 1 MICROOPP

I \ 1 I I

w/l
W12
dl
n12
0/1
w2

10
10
10
10
10
10

10
10
10
9.4
9.4
9

9.8
2.2
7.4
1
4.2
0

9.2
3.2
6.6
1.2
3.4
0.4

10
10
8
9
7
8

10
10
10
10
10
10

I I I I I I

TOT I 60 I 57.8 I 24.6 I 24.0 I 52 I 60

Table 2: Comparative results: number of problems solved.

Table 3 reports average CPU times for a problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArun in each subset. The times were obtained by
summing up all the processing times for all the problem instances (successful and unsuccessful),
dividing by the number of problems, and then averaging over the 5 independent runs. The last
row contains average CPU time over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe entire benchmark. All the run times refer to
implementations in Common Lisp, using CRL as an underlying knowledge representation
language. The run times of CPS and MICRO OPP were obtained on a DEC 5000/200

In fact, they also are inferior to a number of other heuristic search methods [32].

28 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
***** zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

workstation.

To ensure a fair comparison, we reduced the actual CPU times for MIN CONF by a factor taking
into account the inefficiency of our current implementation. This was done by assuming that the
maximum CPU time of any CPS run was equivalent to the time taken to execute the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25000
repairs of a maximum length MIN CONF run; we do not consider the time spent during
initialization. These times would require a speed-up of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 times over our current, inefficient
MIN CONF implementation, a factor that we think can be easily achieved by just using more
efficient data structures. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A comparison of CPU times serves two main purposes. In first place, the compared techniques
are extremely different with respect to several factors. These include: the underlying search
method; the computational effort needed to evaluate heuristics; the balance between the time
spent in evaluating heuristics and the time spent expanding alternatives. CPU times are the only
reasonable way to ensure that each technique is given a comparable “computational allowance”
before declaring a failure.. In second place, CPU time indeed depends on the implementation.
Implementations are likely to improve with time, and the degree of improvement might differ
across techniques. However, if we assume some basic factors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas constant, like hardware and
programming languages, CPU times are a fair description of the current state of the art of the
different techniques.

The comparison of the CPU times shows that CPS is consistently faster than all the other
techniques. In particular, comparing the only two techniques that can solve all the problems in
the benchmark, CPS (20, ASAP) is about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64% faster on average than MICRO OPP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINTEL
BKTRK, The experimental results clearly show that CPS outperforms both MIN CONF and
MICRO OPP on this benchmark.

I \ I CPS I MINCONP I MICROOPP

wll
W/2
dl
n12
011
012

68.08
70.67
69.43
72.16
80.20

110.04

152.40
336.17 1 235.08
408.83
333.13
425.10

78.00
82.75

359.25
151.00
462.25
275.00

90.66
94.95

106.22
119.53
134.75
226.56

I AVG 1 78.43 1 92.64 I 298.42 1 315.12 I 234.71 I 128.78

Table 3: Comparative results: CPU time.

9 Conclusions
The effectiveness of HSTS has been demonstrated by modeling and solving complex planning
and scheduling problems. The principal advantages are the intrinsic modularity of the
representation framework, its independence from the problem solving methodology, and the
flexibility of the constraint posting and propagation mechanisms. Integrated planner/schedulers
have been implemented in domains like space mission scheduling and transportation planning.
Although simplified, they have demonstrated the ability to deal effectively with all of the

‘**’%e run times from MICRO OPP CHRON BK7’RK have been obtained from those reported in I321 by
assuming the maximum speed-up factor of 2 for moving from a DEC 3100 workstation to a DEC 5ooO/200.

29 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
important domain constraints. For more classical job-shop constraint satisfaction scheduling
problems, the combination zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof flexibility of the temporal data base and of statistical measures of
the search space has yielded promising results. Future research will further address the issue of
scalability of the domain models and problem solvers, the extension of constraint language and
propagation mechanisms, the development and evaluation of alternative methodologies for
capacity analysis, the extension of the statistical search space metrics zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto integrated
planningkcheduling domains, and the assessment of the effectiveness of flexible pldschedule
representations during reactive plan execution.

30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Acknowledgments
Since the beginning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the project, Stephen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASmith has always given valuable support and
contributions. Other contributors are Gilad Amiri, Amedeo Cesta, Daniela D' Aloisi, Robert
Frederking, and Dhiraj Pathak. Dina Berkowitz, Gregg Podnar, and David Greene helped review
a previous draft of this chapter.

31

References zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Allen, J.F.
Maintaining Knowledge about Temporal Intervals. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Communications of the ACM 26(11):832-843, 1983.

Allen, 1. and Koomen, J.A.
Planning Using a Temporal World Model.
In Proceedings of the 8th International Joint Conference on Artificial Intelligence, pages

Baker, K.R.
Iniroduction to Sequencing and Scheduling.
John Wiley and Sons, New York, 1974.

Adams, J., Balas, E., Zawack, D.
The Shifting Bottleneck Procedure for Job Shop Scheduling.
Management Science 34,1988.

Biefeld, E., Cooper, L.
Bottleneck Identification Using Process Chronologies.
In Proceedings of the 12th Iniernutional Joint Conference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon Artijicial Intelligence. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Dean, T.L. and McDermott, D.V.
Temporal Data Base Management.
Artificial Intelligence 32:l-55, 1987.

Dean, T., Firby, R.J., Miller, D.
Hierarchical Planning Involving Deadlines, Travel Time, and Resources.
Computational Intelligence 4:381-398, 1988.

Dean, T., Wellman, M.
Planning and Control.
Morgan Kaufmann, 1991

Dechter, R. and Meiri, I and Pearl, J.
Temporal Constraint Networks.
Artificial Intelligence 4951-95, May, 1991.

Fikes, R.E., Hart, P.E., Nilsson, N.J.
Learning and Executing Generalized Robot Plans.
Artijicial Intelligence 3:25 1-288, 1972.

Fox, M.S., Smith, S.F.
ISIS: A Knowledge-Based System for Factory Scheduling.
Expert Syftems 1(1):25-49, 1984.

Frederking, R.E., Muscettola, N.
Temporal Planning for Transportation Planning and Scheduling.
In Proceeding of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI992 IEEE International Conference on Robotics and Automation (to

741-747. 1983.

1991.

appear). 1992.

5L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Forbus, K.D.
Introducing Actions into Qualitative Simulation.
In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProceedings of the Eleventh International Joint Conference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon Artificial Intelligence,

pages 1273-8. Morgan Kaufmann, 1989.

Hanes, S.H. (editor).
The Joint Staff Officer’s Guide.
U.S. Government Printing Office, 1988.
Publication 1, Armed Forces Staff College.

Haralick, R.M. and Elliot, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG.L.
Increasing Tree Search Efficiency for Constraint Satisfaction Problems.
Artificial Intelligence 14(3):263-3 13, October, 1980.

Johnston, M.J., Minton, S.
Analyzing a Heuristic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStrategy for Constraint Satisfaction and Scheduling.
Intelligent Scheduling.
In Fox, M.S. and Zweben, M.,
Morgan Kaufmann, 1993.

Kalman, R.E. and Falb, P.L. and Arbib, M.A.
Topics in Mathematical System &og.
McGraw-Hill, 1969.

Vilain, M. and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKautz, €3. and van Beek, P.
Constraint Propagation Algorithms for Temporal Reasoning: A Revised Report.
Qualitative Reasoning about Physical Systems.
Morgan Kaufmann, 1990.

Knoblock, C.A.
Automatically Generating Abstractions for Problem Solving.
PhD thesis, School of Computer Science, Carnegie Mellon University, 1991.

Lansky, A.
Localized Event-bawd Reasoning for Multiagent Domains.
Computational Intelligence 4 3 19-34. 1988.

Manna, 2. and Pnueli, A.
The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1991-, 1991.

Minton, S., Johnston, M. D., Philips, A. B., Laird, P.
Minimizing Conflicts: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa Heuristic Repair Method for Constraint Satisfaction and

Artificial Intelligence 58:361-205, 1992.

Muscettola, N.
Planning the Behavior of Dymmical Systems.
Technical Report CMU-RT-TR-90-10, The Robotics Institute, Carnegie Mellon

Scheduling Problems.

University, 1990.

33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[24] Muscettola, N., S.F. Smith.

A Probabilistic Framework for Resource-Constrained Multi-Agent Planning.
In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProceedings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the 10th International Joint Conference on Artificial Intelligence,

pages 1063-1066. Morgan Kaufmann, 1987.

Muscettola, N., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASmith, S.F., Cesta, A,, D'Aloisi, D.
Coordinating Space Telescope Operations in an Integrated Planning and Scheduling

[25]

Architecture.
IEEE Control SystemsMagazine 12(2), 1992.

r301

1311

Muscettola, N.
Scheduling by Zterative Partition of Bottleneck Conflicts.
Technical Report CMU-RI-TR-92-05, The Robotics Institute, Carnegie Mellon

Muscettola, N.
Scheduling by Iterative Partition of Bottleneck Conflicts.
In Proceedings of the 9th Conference on Artificial Intelligence for Applications. IEEE

Muscettola, N .
An Experimental Analysis of Bottleneck-Centered Opportunistic Scheduling.
Technical Report, The Robotics Institute, Carnegie Mellon University, 1993

Ow, P.S., Smith, S.F.
Viewing Scheduling as an Opportunistic Problem Solving Process.
In R.G. Jeroslow (editor), Annals of Operations Research 12. Baltzer Scientific

Publishing Co., 1988.

Panwalker, S.S., W. Iskander.
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASurvey of Scheduling Rules.
Operations Research 25:45-6 1, 1977.

Roth, S.F., Mattis, J.
Automating the Presentation of Information.
In Proceedings of the Conference on Artificial Intelligence Applications. IEEE, Miami

Sadeh, N.
Look-Ahead Techniques for Micro-Opportunis tic Job Shop Scheduling.
Technical Report CMU-CS-91-102, School of Computer Science, Carnegie Mellon

Norman Sadeh, Katia Sycara, and Yalin Xiong.
A Comparative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStudy of Backtracking Techniques for Hard Scheduling Problems.
Technical Report, The Robotics Institute, Carnegie Mellon University, 1993

Schrag, R., Boddy, M., Carciofmi, J.
Managing Disjunction for Practical Temporal Reasoning.
In Proceedings of the Third International Conference on Principles of Knowledge

University, February, 1992.

Computer Society Press, March, 1993.

(foahcoming).

Beach, February, 1991.

University, 1991.

(forthcoming).

Representation and Reasoning. Morgan Kaufmann, KR'92, Cambridge, MA, 1992.

34 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Smith, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS.F and D.K. Pathak.
Balancing Antagonistic Time and Resource Utilization Constraints in Over-Subscribed

Scheduling Problems.
In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProceedings 8th IEEE Conference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon AI Applications. March, 1992.

Smith, S.F., Ow, P.S., Potvin, J.Y., Muscettola, N., and Matthys, D.
An Integrated Framework for Generating and Revising Factory Schedules.
Journal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Operational Research Society 41(6):539-552, 1990.

STScI.
Proposal Instructions for the Hubble Space Telescope.
Technical Report, Space Telescope Science Institute, 1986.

Currie, K. and Tate, A.
0-plan: the Open Planning Architecture.
Artificial Intelligence 52(1):49-86, 1991.

Vere, S.
Planning in Time: Windows and Durations for Activities and Goals.
IEEE Tr;?nsactions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon Paitern Analysis andMachme Intelligence PAMI-5, 1983.

Wilkins, D.E.
Practical Planning.
Morgan Kaufrnann, 1988.

Yalin Xiong, Norman Sadeh, and Katia Sycara.
Intelligent Backtracking Techniques for Job Shop Scheduling. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tn Proceedings of the Third International Conference on Principles of Knowledge

Representation and Reasoning, pages 1423. KR’92, Cambridge, MA, October,
1992.

Zweben, M., Deale, M., Gargan, R.
Anytime Rescheduling.
In Proceeding of the DARPA Workshop on Innovative Approaches to Planning,

Scheduling and Control. 1990.

