
HTEE: AN HMAC BASED TAMPER EVIDENT ENCRYPTION

Bradley Baker, C. Edward Chow†
Department of Computer Science, University of Colorado at Colorado Springs

1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA
bbaker@uccs.edu , chow@cs.uccs.edu

Keywords: Encryption, Integrity, Confidentiality, HMAC, Tamper Detection, Hash

Abstract: This paper presents a HMAC based Temper Evident Encryption (HTEE) technique for providing
confidentiality and integrity of numeric data in a database environment through an encryption scheme based
on the keyed Hash Message Authentication Code (HMAC) function. The encryption scheme implemented
in this project extends and improves an existing HMAC based encryption scheme. The result is a symmetric
encryption process which detects unauthorized updates to ciphertext data, verifies integrity and provides
confidentiality. This encryption scheme provides an alternative to standard approaches that offer
confidentiality and integrity of data such as combining the Advanced Encryption Standard (AES) algorithm
with a hash digest. The purpose of the scheme is to provide a straightforward and efficient encryption that
supports data integrity, to investigate the use of HMAC for reversible encryption and key transformation,
and to improve upon an existing method.

1 INTRODUCTION

Databases are used to store a wide variety of
sensitive data ranging from personally identifiable
information to financial records and other critical
applications. The volume and importance of
sensitive data stored and processed electronically is
constantly growing, and this data must be protected
from unauthorized disclosure or modification.
Confidentiality and integrity of this sensitive data
must be maintained for legal or fiscal reasons
(Pavlou and Snodgrass, 2008), (Kher and Kim,
2005). Due to the wide range of problem domains, a
variety of solutions are of interest to suit particular
situations (Sivathanu et al., 2005).

This paper provides confidentiality and tamper
detection in a database environment. Existing work
supports tamper detection and integrity for database
systems using techniques such as access control,
auditing and other methods. Additional related work
includes forensic analysis of database tampering
(Pavlou and Snodgrass, 2008). Some techniques

†: This research work was supported in part by two

NISSSC AFOSR grant awards under numbers
FA9550-06-1-0477 and FA9550-04-1-0239.

apply encryption and authentication in parallel to
provide confidentiality and integrity (Torres et al.,
2006a), (Torres et al., 2006b). Unlike these
techniques, this paper uses an encryption scheme
based on the keyed Hash Message Authentication
Code (HMAC) (Bellare et al., 1996) (NIST, 2002)
for confidentiality and integrity. Existing work uses
HMAC for integrity but it is not typically used for
confidentiality. An exception is presented by Lee et
al. (2007), which investigates HMAC as an
encryption function.

The encryption scheme used for this paper offers
tamper detection and confidentiality directly in the
encrypted data field rather than externally or at the
system level. Cryptography provides standard
algorithms that also support confidentiality and
integrity in the encrypted data field, including
symmetric and asymmetric encryption algorithms
for confidentiality and hash digest or signature
algorithms for integrity. Combining these solutions
can require detailed processing by the end user and
may not be ideal for all problem domains.

1.1 Project Overview

In a database record sensitive data is paired with
information that uniquely identifies the record such
as primary key or hash digest. Each row in a
database table contains a combination of uniquely
identifying information and sensitive data, and this
relationship must be preserved from encryption
through decryption. The relationship can be
tampered with while data is encrypted, when this
occurs the integrity of the data is lost.

Typically encryption algorithms such as the
Advanced Encryption Standard (AES) provide
confidentiality but don’t provide integrity and hash
digest algorithms such as Secure Hash Algorithm
(SHA) provide integrity without confidentiality
(Forouzan, 2008). Traditional methods to obtain
both confidentiality and integrity involve combining
encryption and digest algorithms. Message
authentication codes such as HMAC provide an
alternative to traditional hash digests where the
digest is protected from unauthorized update with a
secret key.

This paper presents a HMAC based encryption
scheme that provides confidentiality and tamper
detection for positive integer data. This scheme is an
improvement in efficiency and tamper detection to
the HMAC integer encryption concept presented in
(Lee et al. 2007). The scheme is implemented in the
PostgreSQL database environment (PostgreSQL,
2009), and the developed process is named “HMAC
based Tamper Evident Encryption”, referred to as
HTEE in this paper. This process is simpler to use
than the standard AES with SHA solution, and more
efficient for encryption. However this process is
slower on decryption than AES with SHA, and the
security of this scheme is dependent on the security
of the underlying hash function.

The HTEE scheme is a symmetric encryption
process that relies on a secret key and processes
positive integer values. The integer plaintext values
are decomposed into components, or buckets, using
modulus arithmetic. The buckets have a fixed size of
1,000, so integer values are decomposed into the
value of the ones, thousands, millions, etc. places.
The plaintext buckets are encrypted using the
HMAC function, where the hash digest represents
the ciphertext. The secret key is modified for each
plaintext value and each bucket value using a
specific transformation process resulting in a
different key for every HMAC operation. The key
transformation process is based on a unique value
related to the sensitive data, such as a database
primary key. A primary goal of the HTEE process is
the detection of unauthorized updates or tampering
with ciphertext data, particularly when ciphertext

values are interchanged. The key transformation
process ensures ciphertext values can’t be changed
without detection.

The decryption process is similar to the
encryption process and uses the same key
transformation sequence. Because the HMAC
function produces a one-way hash digest, it is not
trivial to reverse the operation. In order to find the
correct plaintext for each bucket’s digest value a
search is performed across all 1,000 possible bucket
values, calculating the HMAC digest of each until a
match is found. The search is repeated for all
buckets and the modulus decomposition is reversed
to obtain the plaintext value. Any unauthorized
updates to ciphertext data are detected in the
decryption step by a failure to find a matching
HMAC digest.

2 BACKGROUND

2.1 Hash Message Authentication Code

HMAC is a symmetric process that uses a secret key
and a hash algorithm such as SHA to generate a
message authentication code, or digest. This
authentication code securely provides data integrity
and authenticity because the secret key is required to
reproduce the code. Digests for normal hash
functions can be reproduced with no such constraint.
HMAC can protect against man-in-the-middle
attacks on the message, but it is not designed to
encrypt the message itself. The HMAC function was
published by Bellare et al. (1996), which includes
analysis and a proof of the function’s security, and it
is standardized in FIPS PUB 198 (NIST, 2002). Any
hash algorithm can be used with HMAC including
MD5, SHA-1, SHA-256, etc.

The output of HMAC is a binary authentication
code equal in length to the hash function digest. The
security of HMAC is directly related to the
underlying hash function used, so it is weaker with
MD5 and stronger with SHA-512. Forgery and key
recovery attacks threaten HMAC, but typically
require a large number of message/digest pairs for
analysis. The HMAC functions used in the
implementation of the HTEE scheme are based on
the SHA-1 hash algorithm. The use of HMAC-
SHA1 specifies some data sizes that are important in
the HTEE implementation such as a 64 byte key size
20 byte digest output size.

2.2 HMAC Integer Encryption

The HTEE algorithm is based on an original HMAC
encryption scheme presented by Lee et al. (2007),
and provides several improvements. A detailed
analysis and discussion of this original scheme is
available in (Baker, 2009a). The original scheme
uses integer decomposition, HMAC for encryption,
and decryption with exhaustive search. Because the
original scheme does not combine related data with
the plaintext data it cannot be used for tamper
detection.

The original encryption scheme takes a positive
integer input as plaintext, and computes the
remainder of the plaintext and a predefined bucket
size. After calculating the remainder a bucket ID is
found as the quotient of division between plaintext
and bucket size.

Encryption uses a secret key, a seed value, the
plaintext bucket ID and the remainder. The
encrypted bucket ID is found by calculating the
HMAC function recursively N times, where N is
equal to the bucket ID. On the first iteration, the
secret key and a predefined seed value are input into
HMAC. For successive iterations, the output of the
previous HMAC is used as input into the next
iteration with the secret key. The bucket ID is not
directly encrypted, but the execution of recursive
HMAC is based on the value of the bucket ID.

The encrypted value for the remainder is found
in a similar operation differing only in the secret
key. When encrypting the remainder value the
corresponding bucket ID is appended to the
beginning of the secret key to form a new key. The
recursive HMAC operation is the same using the
new key. Beginning with the seed, the digest is
calculated N times where N is equal to the value of
the remainder.

Decryption uses an inverse transformation that
must search through potential bucket ID and
remainder values. The maximum bucket ID must be
defined to constrain the search process. The first step
for the decryption transformation is finding the
bucket ID of the ciphertext data. The same seed and
key value from encryption are used in the HMAC
operation, and this operation is executed N times for
the number of possible buckets. Each HMAC digest
is compared against the encrypted bucket ID for a
match. If a match is found, the bucket ID plaintext is
equal to the number of iterations executed.

A similar search is made for the remainder value
using a new key constructed by appending the
decrypted bucket ID to the beginning of the secret
key. Once the plaintext bucket ID and remainder
values are known, the modulus decomposition is

reversed to generate the original plaintext from the
decrypted bucket ID and remainder.

Issues identified with the original scheme
include the problem that two buckets decrease
efficiency for large integer values, the key
transformation only occurs on the remainder value
rather than the bucket ID, and the highly recursive
use of HMAC is inefficient (Baker, 2009a).

3 DESIGN

The HTEE process is similar to the original HMAC
encryption scheme in that positive integer values are
processed, these values are decomposed into
components, also called buckets, and the bucket
values are processed through HMAC for encryption.
The combination of HMAC output for all bucket
values creates the ciphertext. The decryption step
calculates the HMAC digest for all possible bucket
values, where a match between calculated digest and
ciphertext data indicates the correct plaintext result.
HTEE uses multiple smaller buckets to reduce
decryption search ranges, and it adds a key
transformation process that ensures each bucket of
each plaintext uses a different encryption key. The
key transformation process ensures tamper
detection.

3.1 Plaintext Decomposition

The first step of the encryption process is
decomposition of the integer plaintext input. In the
HTEE scheme, the integer plaintext value is
decomposed into multiple buckets of size 1,000 to
improve search efficiency. The number of buckets
used for a given plaintext is calculated with:

floor(log1000(Plaintext)) + 1

(1)

Because each bucket produces one HMAC digest
value, larger plaintext values will produce a larger
ciphertext. In order to avoid leaking information
about the plaintext’s order of magnitude, a domain
specific maximum number of buckets are defined
and small plaintext values are padded. Using more
buckets of smaller sizes allows the decryption
operation to be more efficient because a smaller
number of HMAC searches must be performed.

Additional improvements to performance can be
achieved if fewer buckets are needed in a problem
domain, such as storing nine digit values versus
sixteen digit values.

3.2 Key Transformation

The second step of the encryption process is key
transformation, which prepares distinct secret keys
for the encryption of each bucket value. The HTEE
scheme improves the original process and adds
tamper detection by defining two key transformation
functions, an element transformation and a bucket
transformation. The element key transformation
creates a new secret key for each plaintext value
processed. This transformation is seeded with
information relating the plaintext data to its
environment, providing tamper detection. The
bucket key transformation produces a new secret key
used on each decomposed bucket value of a given
plaintext. The bucket key is the effective encryption
key because only decomposed bucket values are
encrypted. The method of key transformation used
for bucket values also contributes to tamper
detection because it is a continuation of the element
key process. Both the bucket and element
transformations use the HMAC function to generate
new secret key data. For its use here as a key
transformation function, HMAC is considered a
pseudo-random value generator. Research supports
HMAC as a pseudo-random function, as discussed
in (Bellare et al. 1996), (Bellare 2006), (Canetti
2007), (Kim et al. 2006). The key transformation
functions used for HTEE provide a critical security
feature that makes analysis of the ciphertext output
more difficult.

3.3 Element Key Transformation

The HTEE scheme transforms the element key based
on a unique value. This process constructs an
element key using the original secret key and
uniquely identifiable data related to the plaintext
value. Usually the unique value is the primary key of
the database record, but any data unique to the
plaintext can be used. The hash digest of the unique
value is found with the SHA-1 algorithm, and used
as input into the HMAC function alongside the
original secret key. The output of this HMAC
operation is used for the first 20 bytes of the element
key, and it is used as input into another HMAC
operation with the original secret key. The output of
the second operation is used for the second 20 bytes
of the element key, and it is processed through
HMAC again. This process repeats until four
recursive HMAC operations are executed, outputting
80 bytes of key data. The output is then truncated to
64 bytes, producing the element key. This process is
depicted graphically in Figure 1.

An attacker cannot reproduce the key if given the
unique value, because the process is secured with the
HMAC function and secret key. The key
transformation process is important for HTEE
tamper detection because it incorporates information
related to the plaintext value with the encryption of
the value. The result is that decryption of the
ciphertext is dependent on the unique value, and any
changes between ciphertext and unique value can be
detected.

Figure 1 - Element key transformation.

3.4 Bucket Key Transform

The second key transformation function used by
HTEE is the bucket key transformation. The HTEE
process uses a different key for each bucket’s
HMAC function so that buckets with equal values
do not have equal digests. The bucket key
transformation is iterative, and 20 bytes of the
bucket key are replaced for each bucket processed in
a plaintext. The first bucket key is equal to the
element key generated for the plaintext value. Each
succeeding bucket key is generated by processing
the bucket’s HMAC encryption ciphertext through
HMAC again with the original secret key. The result
of this HMAC operation is appended to the
beginning of the bucket key, and the result is
truncated to 64 bytes resulting in the succeeding
bucket key.

The bucket key transformation is summarized
graphically in Figure 2. The function presented in
Figure 2 depicts both the calculation of the bucket
ciphertext as well as the transformation of the bucket
key. The bucket key transformation makes
encryption keys dependent on both the unique value
used to generate the element key, and the order of
processing for the bucket values. The combination
of element and bucket key transformations produces
distinct keys for each plaintext bucket value
provided that differing unique values are input. The
only cases when the key generation process will not
result in distinct keys are for hash collisions of the
unique value data, which are extremely rare cases.

3.5 Encryption

The encryption step of the process calculates the
HMAC digest using the key and plaintext values for
each bucket. The digests are concatenated to form
the ciphertext output.

The HTEE encryption operation is a very
efficient process regarding computation time,
because the HMAC function is executed a small
number of times. For example, when processing a
plaintext value using four buckets, HMAC will be
invoked twelve times. However, the decryption

process for HTEE presents a performance challenge
due to the need for exhaustive searching across
possible plaintext values. In the example of a four
bucket plaintext, HMAC could be executed up to
4,008 times.

3.6 Decryption

The HTEE decryption operation is similar to the
encryption operation, particularly with the key
transformation functions. The same progression of
element keys and bucket keys is calculated, except
these keys are used for a search across all plaintext
bucket values. The first step in the decryption
process is splitting the concatenated ciphertext string
into individual bucket digests. Then the key
transformation process is used with the unique value
data (which cannot be encrypted) to find the same
bucket key values used during encryption. The
process then iterates through all possible bucket
plaintext values, 0 through 999, calculating the
HMAC digest for each one with the bucket key. The
intermediate digest is compared with the stored
bucket digest, if the values match then the current
iteration is the bucket’s plaintext value. If no records
from 0 through 999 match the bucket digest, then
some corruption or tampering of the ciphertext has

Figure 2 - Bucket key transformation and encryption.

occurred. This step is the critical tamper detection
operation for HMAC; the absence of a correct
decryption match indicates that the ciphertext data or
unique value has changed since encryption. Once all
bucket plaintext values are identified, the modulus
decomposition is reversed.

4 ANALYSIS

4.1 HMAC security

The security of the HTEE scheme is primarily based
on the security of the HMAC function, because
HMAC is used for both key transformation and
encryption. Existing work has established that the
security or cryptographic strength of the HMAC
function is directly related to the security of the
underlying hash function on which is it based
(Bellare et al. 1996), (Bellare 2005), (Bellare 2006).
Although recent findings on collision attacks have
invalidated the use of the MD5 hash algorithm and
decreased confidence in the SHA-1 algorithm, these
attacks have limited impact on HMAC security.
HMAC is proven to be secure provided that the hash
compression operation is a pseudo-random function
(Bellare 2006), (Contini et al. 2006). In addition the
secret key reduces the effect of collision based
attacks on the HMAC function (Bellare 2005),
(Bellare 2006), (Kim et al. 2006).

While the strength of HMAC security is based
on the compression operation of the underlying hash
function, the measure of security is the difficulty to
produce a forgery of the authentication code. There
are several methods researched to produce forgeries
in the HMAC function, the primary being the
birthday attack. Although collisions of the
underlying hash function are not a concern for the
HMAC, it is still the case the HMAC output is a
digest of a message and secret key input, and it can
produce its own collisions. It is possible for an
attacker to observe two different messages that have
the same digest output. The probability of this
occurrence is controlled by the birthday paradox,
where a HMAC collision becomes probable after 2n/2
message pairs are observed, where n is the number
of bits in the output digest (Bellare 2005), (Kim et
al. 2006). A HMAC-SHA1 function would be
susceptible to a forgery based on the birthday
paradox after 280 message pairs are observed. When
attacking HMAC with the birthday paradox, the
attacker relies on a legitimate user to generate all 280
digests. Also the effect of a birthday attack is a

forgery, and does not yield the secret key so impact
is limited.

Full key recovery attacks are another threat to
the HMAC function. These attacks still appear
infeasible, although some methods have efficiency
improvements (Fouque et al. 2007), (Contini et al.
2006), (Sasaki 2009). These methods have an
underlying requirement of a very large number of
HMAC message/authentication code pairs for
analysis, more than are required for the birthday
attack.

4.2 HTEE security

In the context of the HTEE scheme, the HMAC
operation is secure considering typical birthday and
key recovery attacks. In an environment with 240
records and six buckets of HMAC digest data for
each record, this is not close enough to the number
of messages required to perform key retrieval or
birthday attacks if HMAC-SHA1 is used (Bellare et
al. 1996), (Fouque et al. 2007), (Contini et al. 2006).

An additional consideration for security of the
HTEE scheme includes the input of unique value
and plaintext value as messages for the HMAC
function. The data ranges for unique value can vary
widely according to the problem domain, and the
plaintext value will always have a small range due to
the HTEE bucket decomposition limiting values to
integers (0-999). The key transformation process
provides a layer of protection for small values
because any analysis of the ciphertext data will be
challenged with constantly varying keys. However,
the key transformation process begins with the
unique value input which is known to the attacker
since it cannot be encrypted in the database. A likely
method for an attacker to pursue is attacking the key
transformation function using the unencrypted
unique values. The natural variation of the unique
value is masked by the hash and recursive HMAC
functions in the element key transformation.

Considering the use of HMAC as a pseudo-
random function, the variation in key values through
the transformation process should be unpredictable.
This is expected even if the unique value size is
small, due to the pseudo-random feature of the
underlying hash compression function. Additional
data could be provided for the unique related value,
thus expanding it beyond the range of small input
values.

The structure of the HTEE scheme provides
additional protection by obscuring internal values in
a similar way to the inner and outer hash operations
of the HMAC function. Consider that the attacker

knows two values: the ciphertext output from HTEE,
and the unique value input. The HTEE function can
be written in a short format as:

HTEE(P,K,U) = HMAC(P, fK(K,U)) (2)

Where P is the plaintext value, K is the original
secret key, U is the unique value, and fK is the key
transformation function. The fK function is a
combination of several HMAC steps as described
previously, and produces intermediate keys. It is
difficult for the attacker to generate the intermediate
key used with a plaintext value, based on the
analysis of HMAC key recovery attacks. It is also
difficult for the attacker to identify the secret key
using the unique input message because the result of
function fK is not known.

4.3 HTEE Tamper Detection

Tamper detection is an important feature of the
HTEE scheme and can be defined as the failure in
data integrity between the ciphertext and the
remainder of the database record. The data integrity
relationship can be defined at a minimum as the
record’s primary key and the plaintext/ciphertext
value.

An attacker can try to modify the data record in
three ways: Case 1) Make a random change to
ciphertext, Case 2) Interchange two ciphertext
values and Case 3) Make a change to the unique
value. The tamper detection feature of HTEE will
detect each of these changes through the decryption
viability test. If the modifications in Cases 1 or 2
were used, the unique value would be unchanged
and the key transformation sequence for decryption
would be identical to the encryption operation. Each
step in the decryption search would iterate through
possible plaintext values, but none of the HMAC
digests would match the stored value. The
probability of a false positive would be extremely
small, approximately 3.42 x 10-43, based on the
birthday attack with 1,000 values (Forouzan 2008).
This result is obtained with the formula:

P = 1 – e(-k^2/2N) (3)

Where k is the sample size, equal to 1,000 and N
is the number of possible values, equal to 2160 for
SHA-1. If the modification in Case 3 was used, the
key transformation sequence would be changed
resulting in a similarly improbable collision. The
new key transformation and a value between (0-999)

would have to collide with the original transformed
key and a value between (0-999).

5 IMPLEMENTATION

The HTEE scheme was implemented to validate the
designed algorithm, evaluate performance, and
provide a tool that could be used for future
applications. The implementation is an add-on for
the PostgreSQL database management system and
provides encryption and tamper detection features.

The implementation uses the HMAC operation
with SHA-1 as underlying hash function and for the
element key transformation. The use of HMAC-
SHA1 specifies several parameter sizes that are
important during implementation including the key
size of 64 bytes and the digest size as a multiple of
20 bytes per bucket. The bucket size used for the
implementation is 1,000, which breaks numbers into
buckets by order of magnitude such as millions,
billions, etc.

Each bucket value is up to three plaintext digits
(values 0-999) which are encrypted into 28 base64
encoded characters. A six bucket HTEE ciphertext
would require 168 bytes of text data. This is a nine-
fold increase in storage space when the plaintext is
stored as a text string. However, the equivalent AES
ciphertext requires 116 bytes of base64 text data in
PostgreSQL, so HTEE is only a 44% increase over
the AES requirement. The large increase in storage
space is one of the costs of using the more efficient
small bucket solution employed by HTEE. The other
primary cost is decryption processing time.

5.1 Testing Summary

Several tests were performed on HTEE including
comparisons to AES based techniques. Three
encryption techniques were tested in a PostgreSQL
database system: 1) Raw AES encryption, 2) AES
encryption with unique value data and 3) the HTEE
encryption scheme. Method 1, the raw AES
encryption scheme, is straightforward and uses AES
with a secret key value. This method can detect
random changes to ciphertext data, but it cannot
detect other tampering. Method 2, using AES
encryption with unique value data is a solution that
adds tamper detection to the raw AES encryption.
The approach used for AES tamper detection
includes concatenating the unique value data with
the plaintext data, and encrypting the combined
string. On decryption, the unique value is separated
from the plaintext, and the plaintext is recovered. If

the decrypted unique value differs from the current
unique value, the data was tampered with. The
HTEE encryption scheme used the primary key as
unique value and managed tamper detection
internally.

The testing process used six datasets, each
composed of 20,000 randomly generated integers.
The datasets were each configured with a different
number of buckets, so one dataset had values
between 0 and 999 (one bucket), another dataset had
values between 1,000 and 999,000 (two buckets),
etc. up to the six buckets or 18 digits. Performance
was timed for the encryption, decryption and tamper
detection operations. The tamper detection dataset
was built by interchanging half of the ciphertext
records.

5.2 Testing Results

Performance results from testing are summarized in
Table 1. The average performance times
demonstrate the trade-off in efficiency between the
HTEE scheme and AES based schemes. The
encryption operation for AES with tamper detection
was about 4.5 times slower than the encryption
operation for HTEE. Conversely, the decryption
operation for HTEE was about 4.1 times slower than
the decryption operation for AES.

Table 1 - Average performance across bucket sizes.

Average Performance
(time in seconds)

Encrypt Method Mode Time

Original AES encrypt 18.1

Original AES decrypt 15.3

Original AES tamper 18.3

Tamper Detect AES encrypt 15.8

Tamper Detect AES decrypt 18.2

Tamper Detect AES tamper 17.8

HTEE encrypt 3.5

HTEE decrypt 75.4

HTEE tamper 58.8

Performance of HTEE varies according to the
bucket size used. The number of buckets processed
affected HTEE encryption marginally, but more
buckets decreased performance of decryption and
tamper detection greatly. This was due to the
exhaustive search required for decryption, where
processing time increases with number of buckets.

Efficiency improved for tampered datasets because
the process could identify the tampering early in
processing. The AES methods provide consistent
performance for encryption and decryption - near
seventeen seconds for each run regardless of bucket
size. The HTEE scheme provides consistent fast
performance for encryption at less than five seconds
per run, but the processing time for decryption
increases to over two minutes depending on the
number of buckets processed.

5.3 Performance Analysis

The performance results from testing indicate a four-
fold decrease in encryption time and four-fold
increase in decryption time over AES. This would be
a reasonable trade-off for some encryption heavy
domains. The HTEE scheme also shows a
performance improvement over the original HMAC
encryption scheme (Lee et al. 2007) based on the
algorithmic structure of the methods. The
performance of the two schemes is generalized
based on the number of HMAC operations required
for encryption and decryption. The complexity of
the HTEE algorithm can be summarized as
approximately:

2*log1000(n) (4)
1001*log1000(n) (5)

Where (4) is the encryption complexity because

of the encryption and key transformation HMAC
functions, and (5) is the decryption complexity for
the exhaustive search and key transformation.

These performance expectations are compared
against the original HMAC encryption scheme.
Based on the analysis of the original scheme
presented in (Baker, 2009a), the encryption and
decryption operations are equal in efficiency if
processing a single plaintext value. For large
numbers the complexity can be summarized as
approximately:

2*n0.5 (6)

For both encryption and decryption because of

the larger bucket sizes, ideally set to the square root
of the maximum plaintext value. HTEE has a
constant relative complexity, and the original
scheme has polynomial performance.

Performance testing verifies the improvement in
processing time with the HTEE scheme over the
original HMAC encryption method. As presented in
(Baker, 2009a), a test of the original scheme with

2,000 integer values took 2 minutes and decryption
took 3 minutes. These results are much slower than
the HTEE performance times seen with all of the
20,000 integer datasets, represented by the average
in Table 1.

6 CONCLUSION

The HTEE scheme provides a framework for tamper
detection and encryption of integers in a database
environment that can be useful in some applications.
Benefits to the approach include the simplicity of a
single-column confidentiality and integrity solution,
trustworthy tamper detection based on a hash
function, and efficient encryption speed. Drawbacks
to the approach include inefficient decryption and
increased volume of ciphertext.

The security analysis shows that the
cryptographic strength of HTEE is based on the
HMAC function and in turn the underlying hash
function, SHA-1. Recent work suggests that HMAC
is not affected by collision attacks against SHA-1
(Bellare, 2005). (Bellare, 2006). Key recovery
attacks are a threat to the HTEE scheme but these
are still considered infeasible, and require a very
large number of valid HMAC authentication codes
(Fouque et al. 2007), (Contini et al. 2006). Until a
complete mathematical proof is generated, HTEE is
considered not as secure as the AES encryption
standard, and applications bound by regulatory
requirements should continue to use AES methods.

The HTEE scheme is distinguished by plaintext
decomposition into multiple buckets and secret key
transformation functions. The multiple bucket
solution makes decryption feasible for large integers,
and key transformation functions increase security
through layering and provide tamper detection
through unique related values. The scheme can
detect changes between a stored ciphertext value and
other data related to it such as a record’s primary
key or hash digest value. The tamper detection
feature is only provided on decryption, in order to be
alerted to database tampering, the records must be
decrypted.

The performance of the HTEE scheme is faster
on encryption than AES, but slower on decryption.
The differences are a factor of four in each case. For
large numbers, the HTEE scheme is several orders
of magnitude faster than the HMAC based
encryption scheme it is based on. The HTEE scheme
produces 44% more ciphertext data than an
equivalent AES encryption scheme.

Applications for the HTEE scheme include areas
where integer data is used, fast encryption speed is
desired, slow decryption speed is not a significant
concern, and tamper detection is needed. An
example of this would be auditing systems or the
archival of financial transactions. In these cases, a
large number of records can be created on a daily
basis, but the records might be infrequently
referenced in the future. The HTEE method can
support regular insertions into archive tables as
opposed to a block encryption method that would
require re-encryption of the entire data column. In a
database that is write-only, or has little read access
of encrypted records, HTEE can provide efficient
tamper evident encryption as a supplementary
protection for the database system. The full paper
and project materials are presented in (Baker,
2009b)

6.1 Future Work

Some opportunities for future work related to the
HTEE scheme include support for expanded
plaintext values and a rigorous security proof. The
HTEE scheme improved the original HMAC
encryption concept to make encryption of larger
integers (up to 9x1017) feasible. However, the
scheme is still limited to positive integer values
because there is no way to encode negative or
floating point values. A future improvement to the
method could be a mechanism to process negative
numbers, floating point numbers, and potentially
ASCII-encoded text data.

This paper presented a conceptual argument for
HTEE security based on existing work for HMAC
security and key recovery. Based on the designed
structure of HTEE, this provides a reasonable
assurance of cryptographic strength because HMAC
is the underlying function used, and it is widely
considered to be a secure process. The security of
HTEE is based on the HMAC function as a pseudo-
random generator, both for key transformation and
encryption. Future work can present a proof of the
security for HTEE, which should focus on the
random-generation capability of HMAC with the
unique values used in the key transformation
process.

REFERENCES

Brad Baker, 2009a "Analysis of an HMAC Based
Database Encryption Scheme," UCCS Summer 2009
Independent study July. 2009

URI: http://cs.uccs.edu/~gsc/pub/master/bbaker/doc/fi
nal_paper_bbaker_cs592.doc

Brad Baker, 2009b “Tamper Evident Encryption of
Integers using keyed Hash Message Authentication
Code” Project materials and documentation.
December 2009
URI = http://cs.uccs.edu/~gsc/pub/master/bbaker/

Forouzan, Behrouz A. 2008. Cryptography and Network
Security. McGraw Hill higher Education. ISBN 978-0-
07-287022-0

Mihir Bellare; Ran Canetti; Hugo Krawczyk; “Keying
Hash Functions for Message Authentication”, IACR
Crypto 1996
URI:
http://cseweb.ucsd.edu/users/mihir/papers/kmd5.pdf

Mihir Bellare, “Attacks on SHA-1,” 2005
URI:
http://www.openauthentication.org/pdfs/Attacks%20o
n%20SHA-1.pdf

Mihir Bellare, “New Proofs for NMAC and HMAC:
Security without Collision-Resistance,” IACR Crypto
2006
URI: http://eprint.iacr.org/2006/043.pdf

Ran Canetti, “The HMAC construction: A decade later,”
2007
URI:
http://people.csail.mit.edu/canetti/materials/hmac-
10.pdf

Scott Contini; Yiqun Lisa Yin, “Forgery and Partial Key-
Recovery Attacks on HMAC and NMAC using Hash
Collisions (Extended Version),” 2006
URI: http://eprint.iacr.org/2006/319.pdf

Pierre-Alain Fouque; Gaëtan Leurent; Phong Q. Nguyen,
"Full Key-Recovery Attacks on HMAC/NMAC-MD4
and NMAC-MD5," IACR Crypto 2007
URI:
ftp://ftp.di.ens.fr/pub/users/pnguyen/Crypto07.pdf

Vishal Kher; Yongdae Kim, “Securing Distributed
Storage: Challenges, Techniques, and Systems”
Workshop On Storage Security And Survivability,
Nov. 2005
URI = http://doi.acm.org/10.1145/1103780.1103783

Jongsung Kim; Alex Biryukov; Bart Preneel; and Seokhie
Hong, “On the Security of HMAC and NMAC Based
on HAVAL, MD4, MD5, SHA-0 and SHA-1”, 2006
URI: http://eprint.iacr.org/2006/187.pdf

Dong Hyeok Lee; You Jin Song; Sung Min Lee; Taek
Yong Nam; Jong Su Jang, 2007 "How to Construct a
New Encryption Scheme Supporting Range Queries on
Encrypted Database," Convergence Information
Technology, 2007. International Conference on , vol.,
no., pp.1402-1407, 21-23 Nov. 2007
URI: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=4420452&isnumber=4420217

NIST, March 2002. FIPS Pub 198 HMAC specification.
URI =
http://csrc.nist.gov/publications/fips/fips198/fips-
198a.pdf

Kyriacos Pavlou; Richard Snodgrass, “Forensic Analysis
of Database Tampering,” ACM Transactions on

Database Systems (TODS), 2008
URI = http://doi.acm.org/10.1145/1412331.1412342

PostgreSQL, October 2009. Server Documentation.
URI=
http://www.postgresql.org/docs/8.4/static/index.html

Yu Sasaki, “A Full Key Recovery Attack on HMAC-
AURORA-512,” 2009
URI: http://eprint.iacr.org/2009/125.pdf

Gopalan Sivathanu; Charles P. Wright; and Erez Zadok,
“Ensuring data integrity in storage: techniques and
applications,” Workshop On Storage Security And
Survivability, Nov. 2005
URI = http://doi.acm.org/10.1145/1103780.1103784
Torres et al. 2006a

Elbaz, R.; Torres, L.; Sassatelli, G.; Guillemin, P.;
Bardouillet, M.; Rigaud, J.B., 2006a "How to Add the
Integrity Checking Capability to Block Encryption
Algorithms," Research in Microelectronics and
Electronics 2006, Ph. D. , vol., no., pp.369-372, 0-0 0
URI: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=1689972&isnumber=35631
Torres et al. 2006b

Elbaz, R.; Torres, L.; Sassatelli, G.; Guillemin, P.;
Bardouillet, M., 2006b "PE-ICE: Parallelized
Encryption and Integrity Checking Engine," Design
and Diagnostics of Electronic Circuits and systems,
2006 IEEE , vol., no., pp.141-142, 0-0 0
URI: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnum
ber=1649595&isnumber=34591

