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Abstract: This paper presents a HMAC based Temper Evident Encryption (HTEE) technique for providing 
confidentiality and integrity of numeric data in a database environment through an encryption scheme based 
on the keyed Hash Message Authentication Code (HMAC) function. The encryption scheme implemented 
in this project extends and improves an existing HMAC based encryption scheme. The result is a symmetric 
encryption process which detects unauthorized updates to ciphertext data, verifies integrity and provides 
confidentiality. This encryption scheme provides an alternative to standard approaches that offer 
confidentiality and integrity of data such as combining the Advanced Encryption Standard (AES) algorithm 
with a hash digest. The purpose of the scheme is to provide a straightforward and efficient encryption that 
supports data integrity, to investigate the use of HMAC for reversible encryption and key transformation, 
and to improve upon an existing method. 

1 INTRODUCTION 

Databases are used to store a wide variety of 
sensitive data ranging from personally identifiable 
information to financial records and other critical 
applications. The volume and importance of 
sensitive data stored and processed electronically is 
constantly growing, and this data must be protected 
from unauthorized disclosure or modification. 
Confidentiality and integrity of this sensitive data 
must be maintained for legal or fiscal reasons 
(Pavlou and Snodgrass, 2008), (Kher and Kim, 
2005). Due to the wide range of problem domains, a 
variety of solutions are of interest to suit particular 
situations (Sivathanu et al., 2005). 

This paper provides confidentiality and tamper 
detection in a database environment. Existing work 
supports tamper detection and integrity for database 
systems using techniques such as access control, 
auditing and other methods. Additional related work 
includes forensic analysis of database tampering 
(Pavlou and Snodgrass, 2008). Some techniques         
  
†: This research work was supported in part by two 

NISSSC AFOSR grant awards under numbers 
FA9550-06-1-0477 and FA9550-04-1-0239. 

 
 
apply encryption and authentication in parallel to 
provide confidentiality and integrity (Torres et al., 
2006a), (Torres et al., 2006b). Unlike these 
techniques, this paper uses an encryption scheme 
based on the keyed Hash Message Authentication 
Code (HMAC) (Bellare et al., 1996) (NIST, 2002) 
for confidentiality and integrity. Existing work uses 
HMAC for integrity but it is not typically used for 
confidentiality. An exception is presented by Lee et 
al. (2007), which investigates HMAC as an 
encryption function. 

The encryption scheme used for this paper offers 
tamper detection and confidentiality directly in the 
encrypted data field rather than externally or at the 
system level. Cryptography provides standard 
algorithms that also support confidentiality and 
integrity in the encrypted data field, including 
symmetric and asymmetric encryption algorithms 
for confidentiality and hash digest or signature 
algorithms for integrity. Combining these solutions 
can require detailed processing by the end user and 
may not be ideal for all problem domains. 

1.1 Project Overview 



 

In a database record sensitive data is paired with 
information that uniquely identifies the record such 
as primary key or hash digest. Each row in a 
database table contains a combination of uniquely 
identifying information and sensitive data, and this 
relationship must be preserved from encryption 
through decryption. The relationship can be 
tampered with while data is encrypted, when this 
occurs the integrity of the data is lost.  

Typically encryption algorithms such as the 
Advanced Encryption Standard (AES) provide 
confidentiality but don’t provide integrity and hash 
digest algorithms such as Secure Hash Algorithm 
(SHA) provide integrity without confidentiality 
(Forouzan, 2008). Traditional methods to obtain 
both confidentiality and integrity involve combining 
encryption and digest algorithms. Message 
authentication codes such as HMAC provide an 
alternative to traditional hash digests where the 
digest is protected from unauthorized update with a 
secret key.  

This paper presents a HMAC based encryption 
scheme that provides confidentiality and tamper 
detection for positive integer data. This scheme is an 
improvement in efficiency and tamper detection to 
the HMAC integer encryption concept presented in 
(Lee et al. 2007). The scheme is implemented in the 
PostgreSQL database environment (PostgreSQL, 
2009), and the developed process is named “HMAC 
based Tamper Evident Encryption”, referred to as 
HTEE in this paper.  This process is simpler to use 
than the standard AES with SHA solution, and more 
efficient for encryption. However this process is 
slower on decryption than AES with SHA, and the 
security of this scheme is dependent on the security 
of the underlying hash function.  

The HTEE scheme is a symmetric encryption 
process that relies on a secret key and processes 
positive integer values. The integer plaintext values 
are decomposed into components, or buckets, using 
modulus arithmetic. The buckets have a fixed size of 
1,000, so integer values are decomposed into the 
value of the ones, thousands, millions, etc. places. 
The plaintext buckets are encrypted using the 
HMAC function, where the hash digest represents 
the ciphertext. The secret key is modified for each 
plaintext value and each bucket value using a 
specific transformation process resulting in a 
different key for every HMAC operation. The key 
transformation process is based on a unique value 
related to the sensitive data, such as a database 
primary key. A primary goal of the HTEE process is 
the detection of unauthorized updates or tampering 
with ciphertext data, particularly when ciphertext 

values are interchanged. The key transformation 
process ensures ciphertext values can’t be changed 
without detection.  

The decryption process is similar to the 
encryption process and uses the same key 
transformation sequence. Because the HMAC 
function produces a one-way hash digest, it is not 
trivial to reverse the operation. In order to find the 
correct plaintext for each bucket’s digest value a 
search is performed across all 1,000 possible bucket 
values, calculating the HMAC digest of each until a 
match is found. The search is repeated for all 
buckets and the modulus decomposition is reversed 
to obtain the plaintext value. Any unauthorized 
updates to ciphertext data are detected in the 
decryption step by a failure to find a matching 
HMAC digest.  

2 BACKGROUND 

2.1 Hash Message Authentication Code 

HMAC is a symmetric process that uses a secret key 
and a hash algorithm such as SHA to generate a 
message authentication code, or digest. This 
authentication code securely provides data integrity 
and authenticity because the secret key is required to 
reproduce the code. Digests for normal hash 
functions can be reproduced with no such constraint. 
HMAC can protect against man-in-the-middle 
attacks on the message, but it is not designed to 
encrypt the message itself. The HMAC function was 
published by Bellare et al. (1996), which includes 
analysis and a proof of the function’s security, and it 
is standardized in FIPS PUB 198 (NIST, 2002). Any 
hash algorithm can be used with HMAC including 
MD5, SHA-1, SHA-256, etc.  

The output of HMAC is a binary authentication 
code equal in length to the hash function digest. The 
security of HMAC is directly related to the 
underlying hash function used, so it is weaker with 
MD5 and stronger with SHA-512. Forgery and key 
recovery attacks threaten HMAC, but typically 
require a large number of message/digest pairs for 
analysis. The HMAC functions used in the 
implementation of the HTEE scheme are based on 
the SHA-1 hash algorithm. The use of HMAC-
SHA1 specifies some data sizes that are important in 
the HTEE implementation such as a 64 byte key size 
20 byte digest output size. 

2.2 HMAC Integer Encryption 



 

The HTEE algorithm is based on an original HMAC 
encryption scheme presented by Lee et al. (2007), 
and provides several improvements. A detailed 
analysis and discussion of this original scheme is 
available in (Baker, 2009a). The original scheme 
uses integer decomposition, HMAC for encryption, 
and decryption with exhaustive search. Because the 
original scheme does not combine related data with 
the plaintext data it cannot be used for tamper 
detection.  

The original encryption scheme takes a positive 
integer input as plaintext, and computes the 
remainder of the plaintext and a predefined bucket 
size. After calculating the remainder a bucket ID is 
found as the quotient of division between plaintext 
and bucket size.  

Encryption uses a secret key, a seed value, the 
plaintext bucket ID and the remainder. The 
encrypted bucket ID is found by calculating the 
HMAC function recursively N times, where N is 
equal to the bucket ID. On the first iteration, the 
secret key and a predefined seed value are input into 
HMAC. For successive iterations, the output of the 
previous HMAC is used as input into the next 
iteration with the secret key. The bucket ID is not 
directly encrypted, but the execution of recursive 
HMAC is based on the value of the bucket ID.  

The encrypted value for the remainder is found 
in a similar operation differing only in the secret 
key. When encrypting the remainder value the 
corresponding bucket ID is appended to the 
beginning of the secret key to form a new key. The 
recursive HMAC operation is the same using the 
new key. Beginning with the seed, the digest is 
calculated N times where N is equal to the value of 
the remainder.  

Decryption uses an inverse transformation that 
must search through potential bucket ID and 
remainder values. The maximum bucket ID must be 
defined to constrain the search process. The first step 
for the decryption transformation is finding the 
bucket ID of the ciphertext data. The same seed and 
key value from encryption are used in the HMAC 
operation, and this operation is executed N times for 
the number of possible buckets. Each HMAC digest 
is compared against the encrypted bucket ID for a 
match. If a match is found, the bucket ID plaintext is 
equal to the number of iterations executed. 

A similar search is made for the remainder value 
using a new key constructed by appending the 
decrypted bucket ID to the beginning of the secret 
key. Once the plaintext bucket ID and remainder 
values are known, the modulus decomposition is 

reversed to generate the original plaintext from the 
decrypted bucket ID and remainder.  

Issues identified with the original scheme 
include the problem that two buckets decrease 
efficiency for large integer values, the key 
transformation only occurs on the remainder value 
rather than the bucket ID, and the highly recursive 
use of HMAC is inefficient (Baker, 2009a).  

3 DESIGN 

The HTEE process is similar to the original HMAC 
encryption scheme in that positive integer values are 
processed, these values are decomposed into 
components, also called buckets, and the bucket 
values are processed through HMAC for encryption. 
The combination of HMAC output for all bucket 
values creates the ciphertext. The decryption step 
calculates the HMAC digest for all possible bucket 
values, where a match between calculated digest and 
ciphertext data indicates the correct plaintext result. 
HTEE uses multiple smaller buckets to reduce 
decryption search ranges, and it adds a key 
transformation process that ensures each bucket of 
each plaintext uses a different encryption key. The 
key transformation process ensures tamper 
detection. 

3.1 Plaintext Decomposition 

The first step of the encryption process is 
decomposition of the integer plaintext input. In the 
HTEE scheme, the integer plaintext value is 
decomposed into multiple buckets of size 1,000 to 
improve search efficiency. The number of buckets 
used for a given plaintext is calculated with: 
 

floor(log1000(Plaintext)) + 1 
 

(1) 

Because each bucket produces one HMAC digest 
value, larger plaintext values will produce a larger 
ciphertext. In order to avoid leaking information 
about the plaintext’s order of magnitude, a domain 
specific maximum number of buckets are defined 
and small plaintext values are padded. Using more 
buckets of smaller sizes allows the decryption 
operation to be more efficient because a smaller 
number of HMAC searches must be performed.  

Additional improvements to performance can be 
achieved if fewer buckets are needed in a problem 
domain, such as storing nine digit values versus 
sixteen digit values. 



 

3.2 Key Transformation 

The second step of the encryption process is key 
transformation, which prepares distinct secret keys 
for the encryption of each bucket value. The HTEE 
scheme improves the original process and adds 
tamper detection by defining two key transformation 
functions, an element transformation and a bucket 
transformation. The element key transformation 
creates a new secret key for each plaintext value 
processed. This transformation is seeded with 
information relating the plaintext data to its 
environment, providing tamper detection. The 
bucket key transformation produces a new secret key 
used on each decomposed bucket value of a given 
plaintext. The bucket key is the effective encryption 
key because only decomposed bucket values are 
encrypted. The method of key transformation used 
for bucket values also contributes to tamper 
detection because it is a continuation of the element 
key process. Both the bucket and element 
transformations use the HMAC function to generate 
new secret key data. For its use here as a key 
transformation function, HMAC is considered a 
pseudo-random value generator. Research supports 
HMAC as a pseudo-random function, as discussed 
in (Bellare et al. 1996), (Bellare 2006), (Canetti 
2007), (Kim et al. 2006). The key transformation 
functions used for HTEE provide a critical security 
feature that makes analysis of the ciphertext output 
more difficult.  

3.3 Element Key Transformation 

The HTEE scheme transforms the element key based 
on a unique value. This process constructs an 
element key using the original secret key and 
uniquely identifiable data related to the plaintext 
value. Usually the unique value is the primary key of 
the database record, but any data unique to the 
plaintext can be used. The hash digest of the unique 
value is found with the SHA-1 algorithm, and used 
as input into the HMAC function alongside the 
original secret key. The output of this HMAC 
operation is used for the first 20 bytes of the element 
key, and it is used as input into another HMAC 
operation with the original secret key. The output of 
the second operation is used for the second 20 bytes 
of the element key, and it is processed through 
HMAC again. This process repeats until four 
recursive HMAC operations are executed, outputting 
80 bytes of key data. The output is then truncated to 
64 bytes, producing the element key. This process is 
depicted graphically in Figure 1. 

An attacker cannot reproduce the key if given the 
unique value, because the process is secured with the 
HMAC function and secret key. The key 
transformation process is important for HTEE 
tamper detection because it incorporates information 
related to the plaintext value with the encryption of 
the value. The result is that decryption of the 
ciphertext is dependent on the unique value, and any 
changes between ciphertext and unique value can be 
detected.  

 

Figure 1 - Element key transformation. 

3.4 Bucket Key Transform 

The second key transformation function used by 
HTEE is the bucket key transformation. The HTEE 
process uses a different key for each bucket’s 
HMAC function so that buckets with equal values 
do not have equal digests. The bucket key 
transformation is iterative, and 20 bytes of the 
bucket key are replaced for each bucket processed in 
a plaintext. The first bucket key is equal to the 
element key generated for the plaintext value. Each 
succeeding bucket key is generated by processing 
the bucket’s HMAC encryption ciphertext through 
HMAC again with the original secret key. The result 
of this HMAC operation is appended to the 
beginning of the bucket key, and the result is 
truncated to 64 bytes resulting in the succeeding 
bucket key.  



 

The bucket key transformation is summarized 
graphically in Figure 2. The function presented in 
Figure 2 depicts both the calculation of the bucket 
ciphertext as well as the transformation of the bucket 
key. The bucket key transformation makes 
encryption keys dependent on both the unique value 
used to generate the element key, and the order of 
processing for the bucket values. The combination 
of element and bucket key transformations produces 
distinct keys for each plaintext bucket value 
provided that differing unique values are input. The 
only cases when the key generation process will not 
result in distinct keys are for hash collisions of the 
unique value data, which are extremely rare cases. 

3.5 Encryption 

The encryption step of the process calculates the 
HMAC digest using the key and plaintext values for 
each bucket. The digests are concatenated to form 
the ciphertext output.  

The HTEE encryption operation is a very 
efficient process regarding computation time, 
because the HMAC function is executed a small 
number of times. For example, when processing a 
plaintext value using four buckets, HMAC will be 
invoked twelve times. However, the decryption 

process for HTEE presents a performance challenge 
due to the need for exhaustive searching across 
possible plaintext values. In the example of a four 
bucket plaintext, HMAC could be executed up to 
4,008 times. 

3.6 Decryption 

The HTEE decryption operation is similar to the 
encryption operation, particularly with the key 
transformation functions. The same progression of 
element keys and bucket keys is calculated, except 
these keys are used for a search across all plaintext 
bucket values. The first step in the decryption 
process is splitting the concatenated ciphertext string 
into individual bucket digests. Then the key 
transformation process is used with the unique value 
data (which cannot be encrypted) to find the same 
bucket key values used during encryption. The 
process then iterates through all possible bucket 
plaintext values, 0 through 999, calculating the 
HMAC digest for each one with the bucket key. The 
intermediate digest is compared with the stored 
bucket digest, if the values match then the current 
iteration is the bucket’s plaintext value. If no records 
from 0 through 999 match the bucket digest, then 
some corruption or tampering of the ciphertext has 

Figure 2 - Bucket key transformation and encryption. 



 

occurred. This step is the critical tamper detection 
operation for HMAC; the absence of a correct 
decryption match indicates that the ciphertext data or 
unique value has changed since encryption. Once all 
bucket plaintext values are identified, the modulus 
decomposition is reversed.  

4 ANALYSIS 

4.1 HMAC security 

The security of the HTEE scheme is primarily based 
on the security of the HMAC function, because 
HMAC is used for both key transformation and 
encryption. Existing work has established that the 
security or cryptographic strength of the HMAC 
function is directly related to the security of the 
underlying hash function on which is it based 
(Bellare et al. 1996), (Bellare 2005), (Bellare 2006). 
Although recent findings on collision attacks have 
invalidated the use of the MD5 hash algorithm and 
decreased confidence in the SHA-1 algorithm, these 
attacks have limited impact on HMAC security. 
HMAC is proven to be secure provided that the hash 
compression operation is a pseudo-random function 
(Bellare 2006), (Contini et al. 2006 ). In addition the 
secret key reduces the effect of collision based 
attacks on the HMAC function (Bellare 2005), 
(Bellare 2006), (Kim et al. 2006).  

While the strength of HMAC security is based 
on the compression operation of the underlying hash 
function, the measure of security is the difficulty to 
produce a forgery of the authentication code. There 
are several methods researched to produce forgeries 
in the HMAC function, the primary being the 
birthday attack. Although collisions of the 
underlying hash function are not a concern for the 
HMAC, it is still the case the HMAC output is a 
digest of a message and secret key input, and it can 
produce its own collisions. It is possible for an 
attacker to observe two different messages that have 
the same digest output. The probability of this 
occurrence is controlled by the birthday paradox, 
where a HMAC collision becomes probable after 2n/2 
message pairs are observed, where n is the number 
of bits in the output digest (Bellare 2005 ), (Kim et 
al. 2006). A HMAC-SHA1 function would be 
susceptible to a forgery based on the birthday 
paradox after 280 message pairs are observed. When 
attacking HMAC with the birthday paradox, the 
attacker relies on a legitimate user to generate all 280 
digests. Also the effect of a birthday attack is a 

forgery, and does not yield the secret key so impact 
is limited. 

Full key recovery attacks are another threat to 
the HMAC function. These attacks still appear 
infeasible, although some methods have efficiency 
improvements (Fouque et al. 2007), (Contini et al. 
2006), (Sasaki 2009). These methods have an 
underlying requirement of a very large number of 
HMAC message/authentication code pairs for 
analysis, more than are required for the birthday 
attack. 

4.2 HTEE security 

In the context of the HTEE scheme, the HMAC 
operation is secure considering typical birthday and 
key recovery attacks. In an environment with 240 
records and six buckets of HMAC digest data for 
each record, this is not close enough to the number 
of messages required to perform key retrieval or 
birthday attacks if HMAC-SHA1 is used (Bellare et 
al. 1996), (Fouque et al. 2007), (Contini et al. 2006). 

An additional consideration for security of the 
HTEE scheme includes the input of unique value 
and plaintext value as messages for the HMAC 
function. The data ranges for unique value can vary 
widely according to the problem domain, and the 
plaintext value will always have a small range due to 
the HTEE bucket decomposition limiting values to 
integers (0-999). The key transformation process 
provides a layer of protection for small values 
because any analysis of the ciphertext data will be 
challenged with constantly varying keys. However, 
the key transformation process begins with the 
unique value input which is known to the attacker 
since it cannot be encrypted in the database. A likely 
method for an attacker to pursue is attacking the key 
transformation function using the unencrypted 
unique values. The natural variation of the unique 
value is masked by the hash and recursive HMAC 
functions in the element key transformation.  

Considering the use of HMAC as a pseudo-
random function, the variation in key values through 
the transformation process should be unpredictable. 
This is expected even if the unique value size is 
small, due to the pseudo-random feature of the 
underlying hash compression function. Additional 
data could be provided for the unique related value, 
thus expanding it beyond the range of small input 
values.  

The structure of the HTEE scheme provides 
additional protection by obscuring internal values in 
a similar way to the inner and outer hash operations 
of the HMAC function. Consider that the attacker 



 

knows two values: the ciphertext output from HTEE, 
and the unique value input. The HTEE function can 
be written in a short format as: 
 

HTEE(P,K,U) = HMAC(P, fK(K,U)) (2) 
 

Where P is the plaintext value, K is the original 
secret key, U is the unique value, and fK is the key 
transformation function. The fK function is a 
combination of several HMAC steps as described 
previously, and produces intermediate keys. It is 
difficult for the attacker to generate the intermediate 
key used with a plaintext value, based on the 
analysis of HMAC key recovery attacks. It is also 
difficult for the attacker to identify the secret key 
using the unique input message because the result of 
function fK is not known.  

4.3 HTEE Tamper Detection 

Tamper detection is an important feature of the 
HTEE scheme and can be defined as the failure in 
data integrity between the ciphertext and the 
remainder of the database record. The data integrity 
relationship can be defined at a minimum as the 
record’s primary key and the plaintext/ciphertext 
value. 

An attacker can try to modify the data record in 
three ways: Case 1) Make a random change to 
ciphertext, Case 2) Interchange two ciphertext 
values and Case 3) Make a change to the unique 
value. The tamper detection feature of HTEE will 
detect each of these changes through the decryption 
viability test. If the modifications in Cases 1 or 2 
were used, the unique value would be unchanged 
and the key transformation sequence for decryption 
would be identical to the encryption operation. Each 
step in the decryption search would iterate through 
possible plaintext values, but none of the HMAC 
digests would match the stored value. The 
probability of a false positive would be extremely 
small, approximately 3.42 x 10-43, based on the 
birthday attack with 1,000 values (Forouzan 2008). 
This result is obtained with the formula: 
 

P = 1 – e(-k^2/2N) (3) 
 

Where k is the sample size, equal to 1,000 and N 
is the number of possible values, equal to 2160 for 
SHA-1. If the modification in Case 3 was used, the 
key transformation sequence would be changed 
resulting in a similarly improbable collision. The 
new key transformation and a value between (0-999) 

would have to collide with the original transformed 
key and a value between (0-999). 

5 IMPLEMENTATION 

The HTEE scheme was implemented to validate the 
designed algorithm, evaluate performance, and 
provide a tool that could be used for future 
applications. The implementation is an add-on for 
the PostgreSQL database management system and 
provides encryption and tamper detection features.  

The implementation uses the HMAC operation 
with SHA-1 as underlying hash function and for the 
element key transformation. The use of HMAC-
SHA1 specifies several parameter sizes that are 
important during implementation including the key 
size of 64 bytes and the digest size as a multiple of 
20 bytes per bucket. The bucket size used for the 
implementation is 1,000, which breaks numbers into 
buckets by order of magnitude such as millions, 
billions, etc.  

Each bucket value is up to three plaintext digits 
(values 0-999) which are encrypted into 28 base64 
encoded characters. A six bucket HTEE ciphertext 
would require 168 bytes of text data. This is a nine-
fold increase in storage space when the plaintext is 
stored as a text string. However, the equivalent AES 
ciphertext requires 116 bytes of base64 text data in 
PostgreSQL, so HTEE is only a 44% increase over 
the AES requirement. The large increase in storage 
space is one of the costs of using the more efficient 
small bucket solution employed by HTEE. The other 
primary cost is decryption processing time. 

5.1 Testing Summary 

Several tests were performed on HTEE including 
comparisons to AES based techniques. Three 
encryption techniques were tested in a PostgreSQL 
database system: 1) Raw AES encryption, 2) AES 
encryption with unique value data and 3) the HTEE 
encryption scheme. Method 1, the raw AES 
encryption scheme, is straightforward and uses AES 
with a secret key value. This method can detect 
random changes to ciphertext data, but it cannot 
detect other tampering. Method 2, using AES 
encryption with unique value data is a solution that 
adds tamper detection to the raw AES encryption. 
The approach used for AES tamper detection 
includes concatenating the unique value data with 
the plaintext data, and encrypting the combined 
string. On decryption, the unique value is separated 
from the plaintext, and the plaintext is recovered. If 



 

the decrypted unique value differs from the current 
unique value, the data was tampered with. The 
HTEE encryption scheme used the primary key as 
unique value and managed tamper detection 
internally. 

The testing process used six datasets, each 
composed of 20,000 randomly generated integers. 
The datasets were each configured with a different 
number of buckets, so one dataset had values 
between 0 and 999 (one bucket), another dataset had 
values between 1,000 and 999,000 (two buckets), 
etc. up to the six buckets or 18 digits. Performance 
was timed for the encryption, decryption and tamper 
detection operations. The tamper detection dataset 
was built by interchanging half of the ciphertext 
records. 

5.2 Testing Results 

Performance results from testing are summarized in 
Table 1. The average performance times 
demonstrate the trade-off in efficiency between the 
HTEE scheme and AES based schemes. The 
encryption operation for AES with tamper detection 
was about 4.5 times slower than the encryption 
operation for HTEE. Conversely, the decryption 
operation for HTEE was about 4.1 times slower than 
the decryption operation for AES. 

Table 1 - Average performance across bucket sizes. 

Average Performance 
(time in seconds) 

Encrypt Method Mode Time 

Original AES encrypt 18.1 

Original AES decrypt 15.3 

Original AES tamper 18.3 

Tamper Detect AES encrypt 15.8 

Tamper Detect AES decrypt 18.2 

Tamper Detect AES tamper 17.8 

HTEE encrypt 3.5 

HTEE decrypt 75.4 

HTEE tamper 58.8 
 

Performance of HTEE varies according to the 
bucket size used. The number of buckets processed 
affected HTEE encryption marginally, but more 
buckets decreased performance of decryption and 
tamper detection greatly. This was due to the 
exhaustive search required for decryption, where 
processing time increases with number of buckets. 

Efficiency improved for tampered datasets because 
the process could identify the tampering early in 
processing. The AES methods provide consistent 
performance for encryption and decryption - near 
seventeen seconds for each run regardless of bucket 
size. The HTEE scheme provides consistent fast 
performance for encryption at less than five seconds 
per run, but the processing time for decryption 
increases to over two minutes depending on the 
number of buckets processed.  
 
5.3 Performance Analysis 

The performance results from testing indicate a four-
fold decrease in encryption time and four-fold 
increase in decryption time over AES. This would be 
a reasonable trade-off for some encryption heavy 
domains. The HTEE scheme also shows a 
performance improvement over the original HMAC 
encryption scheme (Lee et al. 2007) based on the 
algorithmic structure of the methods. The 
performance of the two schemes is generalized 
based on the number of HMAC operations required 
for encryption and decryption. The complexity of 
the HTEE algorithm can be summarized as 
approximately: 
 

2*log1000(n) (4) 
1001*log1000(n) (5) 

 
Where (4) is the encryption complexity because 

of the encryption and key transformation HMAC 
functions, and (5) is the decryption complexity for 
the exhaustive search and key transformation.  

These performance expectations are compared 
against the original HMAC encryption scheme. 
Based on the analysis of the original scheme 
presented in (Baker, 2009a), the encryption and 
decryption operations are equal in efficiency if 
processing a single plaintext value. For large 
numbers the complexity can be summarized as 
approximately: 

 
2*n0.5 (6) 

 
For both encryption and decryption because of 

the larger bucket sizes, ideally set to the square root 
of the maximum plaintext value. HTEE has a 
constant relative complexity, and the original 
scheme has polynomial performance.  

Performance testing verifies the improvement in 
processing time with the HTEE scheme over the 
original HMAC encryption method. As presented in 
(Baker, 2009a), a test of the original scheme with 



 

2,000 integer values took 2 minutes and decryption 
took 3 minutes. These results are much slower than 
the HTEE performance times seen with all of the 
20,000 integer datasets, represented by the average 
in Table 1. 

6 CONCLUSION 

The HTEE scheme provides a framework for tamper 
detection and encryption of integers in a database 
environment that can be useful in some applications. 
Benefits to the approach include the simplicity of a 
single-column confidentiality and integrity solution, 
trustworthy tamper detection based on a hash 
function, and efficient encryption speed. Drawbacks 
to the approach include inefficient decryption and 
increased volume of ciphertext.  

The security analysis shows that the 
cryptographic strength of HTEE is based on the 
HMAC function and in turn the underlying hash 
function, SHA-1. Recent work suggests that HMAC 
is not affected by collision attacks against SHA-1 
(Bellare, 2005). (Bellare, 2006). Key recovery 
attacks are a threat to the HTEE scheme but these 
are still considered infeasible, and require a very 
large number of valid HMAC authentication codes 
(Fouque et al. 2007), (Contini et al. 2006 ). Until a 
complete mathematical proof is generated, HTEE is 
considered not as secure as the AES encryption 
standard, and applications bound by regulatory 
requirements should continue to use AES methods. 

The HTEE scheme is distinguished by plaintext 
decomposition into multiple buckets and secret key 
transformation functions. The multiple bucket 
solution makes decryption feasible for large integers, 
and key transformation functions increase security 
through layering and provide tamper detection 
through unique related values. The scheme can 
detect changes between a stored ciphertext value and 
other data related to it such as a record’s primary 
key or hash digest value. The tamper detection 
feature is only provided on decryption, in order to be 
alerted to database tampering, the records must be 
decrypted.  

The performance of the HTEE scheme is faster 
on encryption than AES, but slower on decryption. 
The differences are a factor of four in each case. For 
large numbers, the HTEE scheme is several orders 
of magnitude faster than the HMAC based 
encryption scheme it is based on. The HTEE scheme 
produces 44% more ciphertext data than an 
equivalent AES encryption scheme.  

Applications for the HTEE scheme include areas 
where integer data is used, fast encryption speed is 
desired, slow decryption speed is not a significant 
concern, and tamper detection is needed. An 
example of this would be auditing systems or the 
archival of financial transactions. In these cases, a 
large number of records can be created on a daily 
basis, but the records might be infrequently 
referenced in the future. The HTEE method can 
support regular insertions into archive tables as 
opposed to a block encryption method that would 
require re-encryption of the entire data column. In a 
database that is write-only, or has little read access 
of encrypted records, HTEE can provide efficient 
tamper evident encryption as a supplementary 
protection for the database system. The full paper 
and project materials are presented in (Baker, 
2009b) 

6.1 Future Work 

Some opportunities for future work related to the 
HTEE scheme include support for expanded 
plaintext values and a rigorous security proof. The 
HTEE scheme improved the original HMAC 
encryption concept to make encryption of larger 
integers (up to 9x1017) feasible. However, the 
scheme is still limited to positive integer values 
because there is no way to encode negative or 
floating point values. A future improvement to the 
method could be a mechanism to process negative 
numbers, floating point numbers, and potentially 
ASCII-encoded text data.  

This paper presented a conceptual argument for 
HTEE security based on existing work for HMAC 
security and key recovery. Based on the designed 
structure of HTEE, this provides a reasonable 
assurance of cryptographic strength because HMAC 
is the underlying function used, and it is widely 
considered to be a secure process. The security of 
HTEE is based on the HMAC function as a pseudo-
random generator, both for key transformation and 
encryption. Future work can present a proof of the 
security for HTEE, which should focus on the 
random-generation capability of HMAC with the 
unique values used in the key transformation 
process.  
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