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Abstract

The majority of search-based HTN planning systems can be divided into those searching
a space of partial plans (a plan space) and those performing progression search, i.e., that
build the solution in a forward manner. So far, all HTN planners that guide the search by
using heuristic functions are based on plan space search. Those systems represent the set of
search nodes more effectively by maintaining a partial ordering between tasks, but they have
only limited information about the current state during search. In this article, we propose
the use of progression search as basis for heuristic HTN planning systems. Such systems
can calculate their heuristics incorporating the current state, because it is tracked during
search. Our contribution is the following: We introduce two novel progression algorithms
that avoid unnecessary branching when the problem at hand is partially ordered and show
that both are sound and complete. We show that defining systematicity is problematic for
search in HTN planning, propose a definition, and show that it is fulfilled by one of our
algorithms. Then, we introduce a method to apply arbitrary classical planning heuristics
to guide the search in HTN planning. It relaxes the HTN planning model to a classical
model that is only used for calculating heuristics. It is updated during search and used to
create heuristic values that are used to guide the HTN search. We show that it can be used
to create HTN heuristics with interesting theoretical properties like safety, goal-awareness,
and admissibility. Our empirical evaluation shows that the resulting system outperforms
the state of the art in search-based HTN planning.

1. Introduction

Hierarchical structures in planning have often been seen as advice that is added to a non-
hierarchical model, which encodes the physics of the modeled system (McDermott, 2000).
However, as shown by Erol, Hendler, and Nau (1996), the hierarchy enables the definition
of much more complex problems and thus introduces an entire new class of planning prob-
lems. When using the representation to model such more complex behavior, the hierarchy
necessarily encodes physics and may not encode any advice (we will discuss this in more
detail in Section 2). Creating models that include not only physics but also advice increases
the effort for the domain designer. But for a planning system it is harder to find solutions
in a model without advice. As a consequence, a number of hierarchical planners have been
introduced during the past years that use search techniques, heuristics and/or reachabil-
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ity analysis as known from classical planning or even re-use heuristic search systems from
classical planning1.

HTN planning systems can be divided into two main categories: there are search-based
systems and compilation-based systems that compile the planning problem to other problem
classes (Bercher, Alford, & Höller, 2019).

There are compilations to Answer Set Programming (Dix, Kuter, & Nau, 2003), to classi-
cal planning (Alford et al., 2009, 2016), to ConGolog and the Situation Calculus (Gabaldon,
2002; Fritz, Baier, & McIlraith, 2008), and to propositional logic (Mali & Kambhampati,
1998; Behnke, Höller, & Biundo, 2018, 2019a; Schreiber, Pellier, Fiorino, & Balyo, 2019).
Translations from the undecidable HTN planning problem to a decidable problem have to
bound the size of the output or assume some restrictions on the input. For example, some
bound the length of solutions, some the depth of decomposition, others assume totally or-
dered HTN problems or a bound on the maximum size of task networks under progression
– all these restrictions make the problem decidable (Erol et al., 1996; Alford, Bercher, &
Aha, 2015b). When no solution is found, the bound needs to be increased.

In search-based HTN planning, there are essentially the same algorithms available as in
non-hierarchical planning, such as local search as done by the Duet planner (Gerevini et al.,
2008)2 or state-based forward search similar to classical planning. One of the currently
best-known search-based techniques does the latter. Progression-based planners generate
solutions in a forward manner, i.e., they process those (abstract or primitive) tasks first that
have no predecessors in the ordering. They commit to an ordering of the primitive tasks (a
prefix of the generated solution) and can thus progress the current state. Yet another kind
of HTN planners searches the space of partial plans (which are partially ordered sets of
tasks that are not necessarily executable yet). Such planners do not commit to a prefix of a
generated plan, but maintain a partial order between tasks. Since no state gets progressed,
such planners have less information about the current state – all information about the
planning progress is given by the current partial plan. But – due to the partial order –
they can represent (the set of reachable) search nodes more compactly therefore exploring
potentially smaller search spaces.

To prevent a system from doing exhaustive search, it needs to be guided by heuristics.
Since the hierarchy and the state restrict the set of valid solutions, planners need to con-
sider both when generating plans. This makes the design of heuristics difficult. Current
heuristic HTN planning systems rely on plan space-based search and thus have insufficient
information about the current state during search.

In this article, we propose the use of progression-based search as basis for heuristic HTN
planning systems. Such systems track the current state during search and can incorporate
it into their heuristic calculation. We contribute two novel progression algorithms as well as

1. See e.g. FAPE (Dvor̆ák, Barták, Bit-Monnot, Ingrand, & Ghallab, 2014a; Dvor̆ák, Bit-Monnot, In-
grand, & Ghallab, 2014b; Bit-Monnot, Smith, & Do, 2016), PANDA (Bercher, Keen, & Biundo, 2014;
Bercher, Behnke, Höller, & Biundo, 2017), HiPOP (Bechon, Barbier, Infantes, Lesire, & Vidal, 2014),
Duet (Gerevini, Kuter, Nau, Saetti, & Waisbrot, 2008), HGN-based systems (Shivashankar, Kuter, Nau,
& Alford, 2012) or the translations to STRIPS and ADL (Alford, Kuter, & Nau, 2009; Alford, Behnke,
Höller, Bercher, Biundo, & Aha, 2016).

2. We would like to note that while that planner makes extensive use of hierarchical concepts, it does not
solve HTN problems in the typical sense, as it is allowed to insert tasks using stochastic local search.
We discuss this in more detail in the next section.

836



HTN Planning as Heuristic Progression Search

a method to use classical heuristics to guide the search. More precisely, our contributions
are the following:

1. The canonical progression algorithm searches parts of the search space more than
once. We give two improved algorithms to avoid this. We show that they are complete,
sound, and that they outperform the canonical algorithm. For one of them, we show
that it explores every search node (at most) a single time, a property commonly known
as systematicity.

2. We introduce a method to use arbitrary heuristics from classical planning in HTN-
planning. This is done by relaxing the HTN planning problem to a classical planning
problem that includes both state transition and hierarchical reachability information
in its state. We show that classical heuristics computed on this heuristic model can
effectively guide HTN progression search. We show that, when using classical heuris-
tics with the respective property, the resulting HTN heuristics are safe, goal-aware,
and admissible.

The first of our new algorithms and the heuristic model have been presented before in a
conference paper (Höller, Bercher, Behnke, & Biundo, 2018a). Our systematic algorithm
is presented for the first time in this article. In HTN planning, a systematic algorithm is
especially interesting since it has been shown that checking whether a search node has been
visited before is infeasible (Behnke, Höller, & Biundo, 2015). Since there is no definition
of systematicity in this context, our new content includes a discussion of the issue and a
proposed definition. The heuristic model is presented in a more complete way than before
by introducing an elaborated example, giving an in-depth discussion of related work, and a
more detailed description of the empirical results.

The next section we discuss related work; then we introduce the formal framework that
we use throughout the article (Section 3) before showing how to improve the progression
algorithm (Section 4). Our method to use classical heuristics in HTN planning is given in
Section 5. The overall system is evaluated in Section 6.

2. Search-based HTN Planning

When modeling a certain system for planning, there is always more than one way to repre-
sent it. A central design decision is the amount of advice – parts of the model that help the
planning system to solve the problem – introduced into the model. In PDDL, the standard
representation used in classical planning, the philosophy is to model only the physics of the
domain without any advice.

“The PDDL language was designed to be a neutral specification of planning
problems. That is, every piece of a representation would be a necessary part of
the specification of what actions were possible and what their effects are. All
traces of “hints” to a planning system would be eliminated.”
(McDermott, 2000, p. 3)

The amount of advice has also been used to categorize planning systems into domain-specific,
domain-configurable, and domain-independent systems (Nau, 2007).
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Figure 1: Domain modeling a simple transport problem via the hierarchy as introduced by
Höller et al. (2018) (Copyright c© 2018, IEEE).

Besides the preconditions and the effects of actions that define a state transition system,
HTN planning introduces a second way to define properties of solutions. It distinguishes
two kinds of tasks: primitive tasks (also called actions) can be directly executed and cause
state transition like actions in classical planning. Abstract (or compound) tasks describe
more abstract things to do and can not be executed directly. Instead, they are iteratively
decomposed into subtasks (that can be either primitive or abstract) until only primitive
tasks are left. The subtasks can have a partial order, i.e., the subtasks of several tasks
might – in the general case – be interweaved. The overall plan must be a decomposition of
the initial task(s), it is not allowed to insert tasks apart from decomposition. The aim is
to find a decomposition that is executable. Usually, there is no state-based goal definition
given. The decomposition forms a grammar-like structure that has vast influence on the
set of solutions.

Hierarchical structures have often been regarded a means of re-introducing advice into
the classical representations modeling the physics of the domain (McDermott, 2000). As
a consequence, maybe the best known HTN planning system, SHOP2 (Nau, Au, Ilghami,
Kuter, Murdock, Wu, & Yaman, 2003), is – in the advice-based categorization given above
– characterized as domain-configurable system (Nau, 2007). Though it can be used to add
advice, the hierarchy adds a new means of modeling that makes the resulting formalism
more powerful than classical (non-hierarchical) planning. This can be seen from the different
complexity results on the plan existence problem (Bylander, 1994; Erol et al., 1996; Geier
& Bercher, 2011; Alford et al., 2015b). It is even more clear when studying which patterns
of behavior can be represented in the common planning formalisms. To do this, the set of
all solutions has been regarded a formal language, and the different formalisms have been
classified with respect to the Chomsky hierarchy (Höller, Behnke, Bercher, & Biundo, 2014,
2016). When using standard HTN planning, a superset of the context-free languages can be
expressed that contains a subset of the context-sensitive languages (Höller et al., 2014), while
classical planning formalisms can express a strict subset of the regular languages (Höller
et al., 2016). Whenever a problem requires plan structures similar to matching opening and
closing parenthesis, it can not be modeled in classical planning anymore, but easily using a
hierarchy. An example could be a domain modeling a road network containing loops where
vehicles have to pay a charge for each use of a road section when they are back home.

Consider a simple transport domain with a vehicle delivering packages. In a non-
hierarchical model, the position of the vehicle is stored in the state and actions change
this position until the vehicle reaches the position it needs to go. Figure 1 gives a sketch
of a hierarchical definition of this vehicle movement. The abstract task move may be de-
composed by one of two methods: the left one enables movement on a direct road between
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two locations using the drive action. The right method is recursive and enables movement
between locations without a direct road. That way, the model might store no information
on the current vehicle position in the state. However, after executing the task, the vehicle
will be at its intended final position. In this example, the hierarchy models physics, not
advice. In general, the hierarchy adds a second means of modeling that can, just like the
transition system implicitly defined via the state variables and actions, be used to model
physics or advice. Plans in HTN planning must suffice constraints introduced by hierarchy
as well as state. A broader discussion of this topic can be found in the paper on plan repair
by Höller, Bercher, Behnke, and Biundo (2018b).

As mentioned before, SHOP2 is a domain-configurable system. It performs a progression-
based depth-first search and does not use heuristics to estimate goal distance. Instead,
search is controlled by several additional features like state-based preconditions that deter-
mine when a decomposition method can be applied, an if-then-else structure that defines a
precedence on methods, and even calls of external programs can be used. A good config-
uration results in a fast planning system that can be applied in large real-world domains,
but it also increases the effort for the domain designer. Because there is no other guidance
(e.g. by heuristics) the designer has to foresee all scenarios the system will be applied to
and provide advice for it.

There have been several other approaches to control the search in hierarchical planning
by using an extended or modified model. Waisbrot, Kuter, and Könik (2008) have added a
goal definition to methods to calculate heuristic values on these definitions. Shivashankar
et al. have introduced a new kind of hierarchical formalism that decomposes goals instead
of tasks (Shivashankar et al., 2012; Alford, Shivashankar, Roberts, Frank, & Aha, 2016) and
presented planning algorithms as well as heuristics for this new formalism (Shivashankar,
Alford, Kuter, & Nau, 2013; Shivashankar, Alford, Roberts, & Aha, 2016; Shivashankar,
Alford, & Aha, 2017). This simplifies the adaptation of classical heuristics.

Gerevini et al. (2008) have introduced an approach that interleaves HTN planning with
classical planning, allowing the planner to insert tasks apart from the hierarchy like in
HTN planning with task insertion (see e.g. Geier & Bercher, 2011; Alford, Bercher, & Aha,
2015a). As a consequence, they solve a different class of problems that is less expressive
than standard HTN planning where task insertion is strictly prohibited (for a discussion
of that feature see the survey by Bercher et al., 2019). Domain-independent (local) search
techniques are used in the part applying classical planners, not in the HTN search.

There have also been attempts to improve solvers in standard HTN planning. Lotem,
Nau, and Hendler (1999) have introduced a combination of a planning graph (Blum &
Furst, 1997) with a structure called decomposition graph, combining (relaxed) state-based
reachability and hierarchical reachability information. A solution is then extracted from
the combined graph using a specialized algorithm (as done by Graphplan, see Blum &
Furst, 1997), i.e. this approach does not use a standard search algorithm combined with
a heuristic estimation. Alford et al. have introduced a translation from standard HTN
planning to classical planning (Alford et al., 2009, 2016). To make this possible – translating
an undecidable problem into a PSPACE-complete yet decidable problem – the translation
needs a bound as input parameter. For a subset of all HTN planning problems, called
tail-recursive HTN planning problems, a maximum upper bound can be calculated (Alford
et al., 2016), i.e., when there is no solution for the translation using this bound, there is none
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for the HTN planning problem at all. When applied to arbitrary HTN planning problems,
the bound needs to be increased incrementally as in the translation from classical planning
to SAT. However, for HTN to STRIPS translations like the one of Alford et al., there is in
general no way to determine an upper limit for the bound. The problem resulting from the
translation can then be solved using arbitrary classical planning systems. We will further
discuss the relationship of our work to this encoding in Section 5.4 after we have introduced
our heuristic model.

So far we have discussed systems that (1) solve non-standard HTN planning problems,
(2) use specialized algorithms, or (3) use a translation. Apart from these, there are sev-
eral systems that use standard search combined with heuristic and/or pruning techniques.
However, all of the following systems search a plan space, not a state space. One of these
systems is FAPE (see Dvor̆ák et al., 2014a, 2014b; Bit-Monnot et al., 2016). FAPE has a
slightly different focus than the other systems given here: it comes with sophisticated sup-
port for planning with time, but does not support recursion in the HTN models (Dvor̆ák
et al., 2014b). The need for non-recursive models results in a far less expressive problem
class (Erol et al., 1996; Höller et al., 2014; Alford et al., 2015b). FAPE searches a plan
space and combines this with a pruning technique, it does not use heuristics (Bit-Monnot
et al., 2016). We will further discuss the relationship of the pruning technique to our
work in Section 5.4. A second system based on standard search is PANDA (Bercher et al.,
2014, 2017). PANDA combines techniques from Partial Order Causal Link (POCL) plan-
ning (Weld, 1994) with HTN planning. There are several heuristics available, all based on
the Task Decomposition Graph (TDG), a structure similar to the decomposition graph of
Lotem et al. (1999) that captures the dependencies in the decomposition hierarchy. Elka-
wkagy, Bercher, Schattenberg, and Biundo (2012) showed how to extract (task-)landmarks
– tasks that need to be done to reach a primitive decomposition – from a TDG. More recent
approaches extract heuristic values directly from the TDG (Bercher et al., 2017). This is
the work with the closest connection to our heuristic calculation. The relationship will be
further discussed in Section 5.4. A system that is – at least regarding its search mechanisms
– quite similar to PANDA is HiPOP (Bechon et al., 2014).

So far, all heuristic search systems were based on a plan space search. In the following
sections, we introduce a progression-based system. Here the current state is available during
search and can be exploited for calculating heuristic values.

3. Formal Framework

We need to formalize both classical and hierarchical planning problems, so we use a formal-
ization that defines HTN planning problems as extension to classical problems to have a
common formalism for both. It was first introduced by Höller et al. (2016) and is based on
the (pure HTN) formalism by Geier and Bercher (2011). Recent work on HTN planning has
often been based on the formalism by Geier and Bercher (2011). It is much more simplistic
than e.g. the one used by Erol et al. (1996), yet still capable of describing undecidable
problems (Geier & Bercher, 2011). One reason for its simplicity is that it does not support
as many constraint types as Erol et al.’s formalism and also restricts the ordering definition
between tasks to a partial order.
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There is also a lifted variant of the formalism in the literature (Alford et al., 2015b), but
we use the propositional one. Since input models will often be provided in a lifted language
(e.g. HDDL, see Höller, Behnke, Bercher, Biundo, Fiorino, Pellier, & Alford, 2020), we
assume a grounding process prior to the actual search (like it is often used in classical
planning). Little work has been done on grounding in HTN planning, but two approaches
have recently been introduced by Ramoul, Pellier, Fiorino, and Pesty (2017) and by Behnke,
Höller, Schmid, Bercher, and Biundo (2020).

3.1 Classical Planning

A classical planning problem is a tuple Pc = (L,A, s0, g, δ), where L is a set of propositional
environment facts, s0 ⊆ L defines the initial state and g ⊆ L gives the goal definition. A is
a set of action names. These are symbols that are mapped to preconditions and effects by
the functions contained in δ = (prec, add , del). All these functions map an action name to
a subset of the environment facts {prec, add , del} : A→ 2L.

A state is given by the set of facts that hold in that state, all other facts are supposed to
be false (closed world assumption). Whether an action a is applicable in a state s is given
by the relation τ ⊆ A × 2L with τ(a, s) ⇔ prec(a) ⊆ s. When it is applicable (i.e., τ(a, s)
holds) the state resulting from the application is given by the function γ : A × 2L → 2L

with γ(a, s) = (s \ del(a)) ∪ add(a). γ is called the state transition function.

A sequence of actions 〈a0a1 . . . al〉 with ai ∈ A is applicable in a state s0 if and only if
ai is applicable in si (i.e., τ(ai, si) holds), where si is defined as γ(ai−1, si−1) for i > 0. We
will say that the state sl+1 results from the application. A solution to a classical planning
problem is a sequence 〈a0a1 . . . al〉 that is applicable in s0 and that results in a state sl+1

that is a goal state, i.e., sl+1 ⊇ g.

3.2 HTN Planning

An HTN planning problem is defined as a tuple P = (L,C,A,M, s0, tnI , g, δ), where L,
A, s0, g, and δ are defined as in classical planning. C is the set of abstract task names,
symbols representing abstract courses of action. It is disjunct with the primitive task names
C ∩ A = ∅. Tasks are organized in task networks tn = (T ,≺, α), where T is a (possibly
empty) set of (task) identifiers (ids). Ids are symbols that are mapped to task names by
the function α : T → A∪C. This definition allows a task (name) to be contained in a task
network more than once. ≺ ⊆ T ×T is a strict (i.e. irreflexive, transitive and asymmetric)
partial order on the ids.

Two task networks tn = (T ,≺, α) and tn ′ = (T ′,≺′, α′) that differ only in their iden-
tifiers are isomorphic (denoted tn ∼= tn ′). Formally, there must be a bijection σ : T → T ′

such that ∀t, t′ ∈ T : [(t, t′) ∈ ≺]⇔ [(σ(t), σ(t′)) ∈ ≺′] and α(t) = α′(σ(t)).

Decomposition is defined by (decomposition) methods. A method is a pair (c, tn), where
c ∈ C is an abstract task name and tn a task network (also called the method’s subtask
network). When a task t with α(t) = c is decomposed using a method (c, tn), it is removed
from the task network, the tasks in the subtask network are added and inherit the ordering
constraints from t. Formally, a method (c, tn) decomposes a task network tn1 = (T1,≺1, α1)
into a task network tn2 = (T2,≺2, α2) if t ∈ T1 with α1(t) = c and there is a task network
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Höller, Bercher, Behnke & Biundo

tn ′ = (T ′,≺′, α′) with tn ′ ∼= tn and T1∩T ′ = ∅. The task network tn2 is defined as follows:

tn2 =
(
(T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′

)
≺D = {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

M is the set of decomposition methods. We will write tn −−→t,m tn ′ to denote that tn can be
decomposed into a task network tn ′ by applying the method m to the task t, and tn →∗ tn ′

if it is possible to decompose tn into tn ′ using a sequence of methods.
Decomposition starts either with a single initial task or with a task network (that may

include more than one task). A definition using a single initial task is sometimes beneficial
to keep proofs simple. Using an initial task network makes it possible to interpret every
search node in the search space as a new planning problem (Alford, Shivashankar, Kuter,
& Nau, 2012). However, both definitions are equivalent: Given an initial task network tnI ,
it can be compiled away by introducing a new task cI (that is the new initial task) and
a method m that decomposes the new task into the original task network m = (cI , tnI).
Throughout the article, we will use the variant that is most convenient for the definition at
hand. The definition given above uses an initial task network tnI .

A task network tn = (T ,≺, α) is a solution to a given HTN planning problem P =
(L,C,A,M, s0, tnI , g, δ) if and only if the following solution criteria hold:

• tnI →∗ tn, i.e. it can be reached by decomposing the initial task network.

• ∀t ∈ T : α(t) ∈ A, i.e. all task names are primitive.

• There is a sequence 〈t1t2 . . . tn〉 of the tasks in T that is in line with ≺, i.e. ∀i < j :
(tj , ti) 6∈≺, and the application of 〈α(t1)α(t2) . . . α(tn)〉 in s0 results in a goal state.

The last solution criterion requires an HTN solution to result in a goal state. This
is quite unusual, since most hierarchical formalisms lack a (state-based) goal definition
(though some have one, e.g. these introduced by Bercher, Höller, Behnke, & Biundo, 2016,
or by Bercher et al., 2017). This is because it is easy to compile a state-based goal into the
hierarchy. The approach presented in this article smoothly combines task decomposition
with state-based goals, so we decided to include a state-based goal. However, be aware
that our approach works perfectly without state-based goal (in fact, most domains in the
evaluation do not include one).

4. Progression Search in HTN Planning

In this section we introduce the canonical progression algorithm that is given in Algorithm 1.
It is equal to those known from the literature (see e.g. those introduced by Ghallab, Nau,
& Traverso, 2004, p. 243; or Alford et al., 2012, p. 5). We show that it searches parts of
the search space more than once. We then introduce a progression algorithm (Algorithm 2)
from previous work (Höller et al., 2018a) that prevents this behavior to a certain extent but
is still not systematic. Finally we introduce a novel algorithm (Algorithm 3) first presented
here that is systematic. We prove completeness and soundness of Algorithm 2 and 3 and
systematicity for Algorithm 3.
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1 fringe ← {(s0, tnI , ε)}
2 while fringe 6= ∅ do
3 n← fringe.pop()
4 if n.isgoal then return n
5 U ← n.unconstrainedNodes
6 for t ∈ U do
7 if isPrimitive(t) then
8 if isApplicable(t) then
9 n ′ ← n.apply(t)

10 fringe.add(n′)

11 else
12 for m ∈ t .methods do
13 n ′ ← n.decompose(t ,m)
14 fringe.add(n′)

15 return unsolvable
Algorithm 1: The canonical progression-based HTN planning algorithm as grounded,
fringe-based formulation as given by Höller et al. (2018a).

4.1 Algorithms

First we introduce the canonical progression algorithm. It includes multiple nondetermin-
istic choice points. When it is implemented, they can be realized by using recursion or a
fringe. A fringe-based formulation enables a simple realization of different search strategies
by replacing the data-structure underlying the fringe. We use such a fringe-based formula-
tion that is depicted in Algorithm 1. It is now discussed in detail.

A search node is composed of three elements:

1. The current state.

2. A task network holding the tasks that still need to be processed.

3. We additionally maintain the sequence of actions progressed so far, this is the prefix
of the generated solution.

The fringe is initialized with the triple containing the initial state, the initial task network,
and – since there are no progressed actions so far – an empty sequence (s0, tnI , ε). While
the fringe is not empty, a search node n = (s, (T ,≺, α) , π) is removed (popped) from it
(Line 3). The order in which the nodes are returned determines the search behavior (such
as Depth First Search). We will have a short discussion on that later on page 847. Next, it
is tested if the popped node is a solution (Line 4).

Definition 1 (Solution). A node n = (s, (T ,≺, α) , π) is a solution (also called goal node)
if and only if its task network is empty (T = ∅) and its state is a goal state (s ⊇ g).

By performing the goal test after popping a node from the fringe, it is – in combination
with a certain ordering of the fringe, e.g. one that results in a Uniform Cost Search – possible

843
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to find optimal solutions. If this is not important, the goal test might be done before adding
a node to the fringe (before Line 10 and Line 14). This might result in finding a solution
in less time.

A central characteristic of progression search is that only those tasks are processed that
have no predecessors in the network, the unconstrained tasks (denoted U in the algorithm,
Line 5).

Definition 2 (Unconstrained Tasks). A task id t is unconstrained in a task network
(T ,≺, α) if and only if there is no task t′ ∈ T such that (t′, t) ∈ ≺.

We divided the task names in a domain into primitive and abstract tasks. The elements
in U are task ids (no task names). By abuse of notation, we will denote an id as primi-
tive (Line 7) if it is mapped to an action, or call it abstract, otherwise. In the same way,
we will call a primitive id applicable if the corresponding task is applicable in the corre-
sponding search node’s state. For unconstrained (grounded) actions, there is no (when it
is not applicable) or exactly one (when it is applicable) possible modification: progressing
the action and updating the state. The resulting node is inserted into the fringe (Line 10).

Definition 3 (Progression). Given a search node n = (s, (T ,≺, α) , π) and an unconstrained
task id t ∈ T that is mapped to an applicable action, the search node n′ that results from
progressing t is defined as follows (where ◦ is the concatenation operator):

n′ = (s′, (T ′,≺′, α′), π′) with

s′ = γ(α(t), s),T ′ = T \ {t},
≺′ = ≺ \ {(t, t′) | t′ ∈ T}
α′ = α \ {t 7→ α(t)}, and

π′ = π ◦ α(t).

For unconstrained abstract tasks t ∈ U , a set of new search nodes is generated, one for
every method that is applicable to t (this is done in the loop in Line 12).

Definition 4 (Decomposition). Given a search node n = (s, (T ,≺, α) , π), an unconstrained
task id t ∈ T with α(t) = c, and a method (c, tn), the search node n′ that results from
decomposing t is defined as n′ = (s, tn ′, π) with tn −−→t,m tn ′.

4.1.1 Towards Systematic Progression Search

It is known that an HTN planning problem is solvable if and only if there is a solution in
progression space (Alford et al., 2012, Thm. 3). However, the given algorithm searches parts
of the search space more than once. An example is given in Figure 2. Every node contains
the tasks that need to be decomposed as well as the prefix progressed so far (starting with
π = . . . ). The initial task network contains the two unordered abstract tasks Y and Z.
There is a method decomposing Y into the action a, and a method decomposing Z into b.
Both primitive tasks have neither preconditions nor effects. The figure depicts the entire
search space that will be explored by Algorithm 1. It can be seen that every solution is
found three times. This is caused by branching over primitive as well as abstract tasks, in
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∅, π = ab ∅, π = ba ∅, π = ab ∅, π = ba ∅, π = ba ∅, π = ab

b, π = a a, π = b b, π = a a, π = b a, π = b b, π = a

Z, π = a
a
b

, π = () Y , π = b
a
b

, π = ()

a
Z

, π = ()
Y
b

, π = ()

Y
Z

, π = ()

B

A

Figure 2: The search space of Algorithm 1 on a small HTN problem. Capital letters repre-
sent abstract tasks, lower case letters represent actions. The initial task network
and all methods are totally unordered. In each node, tasks that need to be pro-
cessed are given on the left, the prefix of the generated plan π on the right. The
arrows indicate the application of a method, the dashed arrows the progression
of an action. We will come back to the edges labeled with A and B later in
Section 4.1.1 and 4.1.2.
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1 fringe ← {(s0, tnI , ε)}
2 while fringe 6= ∅ do
3 n← fringe.pop()
4 if n.isgoal then return n
5 (UC , UA)← n.unconstrainedNodes
6 for t ∈ UA do
7 if isApplicable(t) then
8 n ′ ← n.apply(t)
9 fringe.add(n′)

10 t ← selectAbstractTask(UC)
11 for m ∈ t .methods do
12 n ′ ← n.decompose(t ,m)
13 fringe.add(n′)

14 return unsolvable
Algorithm 2: Optimized algorithm presented by Höller et al. (2018a).

combination with the partial ordering of Y and Z. So the question is: When is branching,
i.e. a nondeterministic choice, actually needed?

To find all possible plans, the algorithm only needs to branch when a commitment
to the plan is made. This is the case for every progression of an action. However, the
order in which two tasks are decomposed implies no commitment to the solution (only the
choice by which method they are decomposed does). So the algorithm does not need to
branch over the available abstract tasks (but only over the methods for a chosen task to
decompose). This was already exploited by Erol, Hendler, and Nau (1994, p. 28) for the
plan space-based planner UMCP (Fig. 7, p. 17), where an abstract task is picked rather
than being branched over. This is a standard behavior in plan space-based planning, such
as also done, for example, by PANDA (Bercher et al., 2014, 2017) and FAPE (Dvor̆ák et al.,
2014a, 2014b; Bit-Monnot et al., 2016). Most plan space-based planners (like PANDA and
FAPE) usually rely on techniques based on POCL planning (Weld, 1994), where algorithms
need to pick flaws (syntactical representations of plan elements that prevent a plan from
being a solution) in order to resolve them thereby refining the partial plan until it is turned
into a solution. Picking an abstract task to decompose (rather than branching over them)
is similar to the (non-branching) flaw selection in POCL planning (Williamson & Hanks,
1996).

In previous work (Höller et al., 2018a), we introduced Algorithm 2. The function that
returns the unconstrained tasks (Line 5) now returns two sets: UC contains the abstract and
UA contains the primitive tasks. Instead of branching over the unconstrained abstract tasks,
it picks a single abstract task (Line 10) and branches over all applicable methods (Line 11).
We have shown its soundness, completeness, and empirical efficiency gain (Höller et al.,
2018a). When we come back to Figure 2, the new algorithm will reduce the part of the
search space that is searched more than once. In the initial node, it selects a single abstract
task and decomposes it. WLOG, we assume it picks Y . Then, the right part beginning
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1 fringe ← {(s0, tnI , ε)}
2 while fringe 6= ∅ do
3 n← fringe.pop()
4 if n.isgoal then return n
5 (UC , UA)← n.unconstrainedNodes
6 if UC = ∅ then
7 for t ∈ UA do
8 if isApplicable(t) then
9 n ′ ← n.apply(t)

10 fringe.add(n′)

11 else
12 t ← selectAbstractTask(UC)
13 for m ∈ t .methods do
14 n ′ ← n.decompose(t ,m)
15 fringe.add(n′)

16 return unsolvable
Algorithm 3: Novel progression algorithm.

with the edge that is labeled with an A is not explored. Though it searches a significantly
smaller search space, it can be seen that there are still parts searched twice.

4.1.2 A Systematic Progression Algorithm

Here we present a progression algorithm that is still sound and complete, but it searches
every part of the search space exactly once. It is given in Algorithm 3. In search nodes that
contain at least one unconstrained abstract task, it does not progress any action, but first
decomposes one of the abstract tasks. When we come back to Figure 2, the new algorithm
“prunes” not only the edge labeled with an A, but also the one labeled B, and generates
both solutions only once. Please be aware that it does not decompose all abstract tasks
before progressing any action, but the unconstrained abstract tasks. It highly depends on
the ordering of the problem at hand how many there are.

Before we come to the theoretical properties of the algorithms, we want to point out
two lines of the algorithms that determine their behavior:

1. In Line 3 of the three algorithms, the data structure used as fringe determines the
search behavior of the algorithm, e.g. a stack results in a Depth First Search, a queue
in a Breadth First Search. Since we want to do heuristic search, we will mainly use
a priority queue combined with different heuristics and weights to get the standard
strategies like Greedy Best-First search, A∗ search, or Weighted A∗ search. Our
heuristics are discussed in Section 5.

2. In Line 10 of Algorithm 2 and Line 12 of Algorithm 3, the algorithms have to pick a
single abstract task that is decomposed. As argued before, the choice of the abstract
task does not affect the success or failure of the search, but only its efficiency.
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4.2 Formal Properties

For the progression algorithm given in Algorithm 1 it is known that it is sound and com-
plete (Ghallab et al., 2004, p. 243). This means that the soundness of our two improved
algorithms Algorithm 2 and Algorithm 3 follows directly. However, there is no formal proof
published for that, so we provide self-contained proofs for soundness and completeness of
our algorithms.

In the following proofs, we need to show that a certain task network can be reached
via decomposition of the initial task network. This can be done by showing that there is
a valid decomposition tree (DT) for it (Geier & Bercher, 2011, Prop. 1). Please be aware
that none of the algorithms actually builds the tree, it is only shown in the following proofs
that this is possible. DTs are tree representations of sequences of method applications and
the resulting task network (Ghallab et al., 2004). We use the formalization by Geier and
Bercher (2011, Def. 7-9):

Definition 5 (Decomposition Tree). Given an HTN planning problem P = (L, C, A, M, s0,
tnI , g, δ), a Decomposition Tree (DT) is a tuple g = (Tg, Eg,≺g, αg, βg) with the following
elements:

1. Tg and Eg are nodes and (directed) edges that form a tree.

2. ≺g is a strict partial order on its nodes.

3. The function αg labels each node of the tree with a task name: αg : Tg → C ∪A.

4. The nodes NC = {n | αg(n) ∈ C} are additionally labeled with methods that are
assigned by the function βg : NC →M .

Definition 6 (Valid DTs). A DT is valid if and only if its root is labeled with the problem’s
initial task3 and for any node t ∈ NC with βg(t) = (c, tn), the following conditions hold:

1. αg(t) = c the node is mapped to the task decomposed by the method.

2. The task network induced in g by the children of t are isomorphic to tn.

3. Let ch(g , t) be the children of t in g. For all t′ ∈ Tg and c′ ∈ ch(g , t), it holds that

(a) if (t, t′) ∈ ≺g, then (c′, t′) ∈ ≺g, and

(b) if (t′, t) ∈ ≺g, then (t′, c′) ∈ ≺g

I.e., ordering constraints between the children of t in g are inherited as defined for
decomposition.

4. ≺g includes only ordering constraints necessary due to 2 or 3.

Definition 5 specifies the syntactical representation of decomposition trees, Definition 6
specifies the semantics by connecting a DT to a certain planning problem. We had to adapt
the definitions to allow for empty subtask networks of methods (a feature not supported by

3. Please be aware of the equivalence of HTN planning problems with initial task and initial task network,
which has been discussed in Section 3.2 on page 842.
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Geier & Bercher, 2011)4. In the rest of this article, we will only discuss valid trees and –
to improve readability – therefore just write decomposition tree.

Definition 7 (Yield of DTs). The yield of a DT is a task network tn = (T ,≺, α) that
contains tasks represented by the nodes of the tree that are mapped to primitive tasks: T =
{tn | n ∈ NP } and α = {tn 7→ αg(n) | n ∈ NP } with NP = {n | n ∈ Tg, αg(n) ∈ A}. Let ≺′g
be the transitive closure of ≺g, then ≺ = {(tn, tm) | n,m ∈ NP and (n,m) ∈ ≺′g}.

A DT is a witness for a valid decomposition leading to a task network, i.e., for a given
planning problem, there is a valid decomposition tree g with yield(g) = tn if and only if
tnI →∗ tn (Geier & Bercher, 2011, Prop. 1).

We call two DTs to be isomorphic if they only differ in their identifiers:

Definition 8 (Isomorphic DTs). Two DTs g = (Tg, Eg, ≺g, αg, βg) and g′ = (T ′g, E
′
g,

≺′g, α′g, β′g) are called to be isomorphic (denoted g ∼= g′) if and only if there is a bijection
σ : Tg → T ′g such that

• ∀t, t′ ∈ Tg : [(t, t′) ∈ Eg]⇔ [(σ(t), σ(t′)) ∈ E′g],

• ∀t, t′ ∈ Tg : [(t, t′) ∈ ≺g]⇔ [(σ(t), σ(t′)) ∈ ≺′g],

• αg(t) = α′g(σ(t)),

• βg(t) is defined if and only if β′g(σ(t)) is defined, and

• βg(t) = β′g(σ(t)).

4.2.1 Soundness

Now we can show that every path in the search space of the algorithm corresponds to a
valid decomposition of the initial task, i.e. to the construction of a valid DT and that nodes
that are returned also fulfill the other solution criteria that are concerned with executability
and generation of a goal state.

The steps in the algorithms that change search nodes, i.e. those that step through the
search space, are decomposition and progression. They are equal for the three algorithms,
so the following proof holds for all of them.

Theorem 1. The algorithms given in Algorithm 1, 2, and 3 are sound.

Proof. The tree can be maintained during search as follows: For the initial task, the tree is
defined as g = ({t} , ∅, ∅, {t 7→ cI} , ∅), where cI is the initial task. For every decomposition,
a new tree is generated as follows: Let g = (Tg, Eg,≺g, αg, βg) be the tree of the current
search node (s, (T ,≺, α), π). When a task t ∈ T , α(t) = c is decomposed using the method
m = (c, (Tm,≺m, αm)) the resulting tree of the new search node is defined as follows (where
(T ′m,≺′m, α′m) is an isomorphic copy of the subtask network of m with Tm ∩ T ′m = ∅):
g = (Tg ∪ T ′m, Eg ∪ {(t, t′) | t′ ∈ T ′m}, ≺′g, αg ∪ α′m, βg ∪ {t 7→ m)}). The ordering relation

4. Geier and Bercher (2011) assume that exactly the leafs of the tree are mapped to primitive tasks, this is
not the case when there are abstract tasks that are decomposed using a method without subtasks. So
we have changed the definitions.
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≺′g is maintained by adding new relations according to the definition of task decomposition
to those of the current tree. In progression steps, the tree remains the same as in the parent
node, i.e. progression does not change the DT.

When the algorithms return a node as solution the corresponding tree constructed ac-
cording to that definition has the following properties:

• It has cI as its root node,

• its mappings αg and βg are consistent, i.e., for each node n it holds that βg(n) =
(αg(n), tn),

• the children of a node n match its method βg(n).

The latter property follows from the fact that if any algorithm returns a solution, it has
reached an empty task network (cf. Definition 1), i.e. it has decomposed every abstract task
in the constructed tree. The order ≺g of the tree is also correct with respect to the applied
methods. Further, the ordering constraints that are present in the tree have been inserted
into the task networks contained in the search nodes. They were inherited according to the
definition of decomposition (cf. Section 3.2) and are only removed once a task to which they
pertain is progressed.

What remains to be shown is that the yield of the tree g is executable. First, note that a
primitive task can only be inserted into the task network of a search node via decomposition.
Thus it is also contained in the yield of g. Similarly, every task in the yield was at one
point inserted into the current task network of a search node. Since, whenever any of the
algorithms returns a solution, the current task network is empty (cf. Definition 1), all of
the primitive tasks in the yield will have been progressed at some point. Let the order in
which the primitive tasks have been progressed be π. Since π was progressed successfully, it
is an executable sequence of the actions in the yield of g. Lastly, we have to show that this
order is a valid linearization of the yield of g. Assume that it is not. Then two primitive
tasks pi, pj ∈ π where pi occurs before pj exist such that the yield of g contains the order
pj ≺ pi. Further, the algorithm progressed pi before it progressed pj . At the time at which
pi was progressed, either pj or any of its ancestors in g must still have been in the search
node’s current task network. Since the forced order between pi and pj in the yield of g
can only have been inserted by the decomposition method applied to their last common
ancestor in g (Behnke, Höller, & Biundo, 2019b) and these methods must have already
been applied, as pi is already in the task network, this order is still present. Thus pi was
not an unconstrained task when it was decomposed, which is a contradiction. Thus π is
a valid linearization of the order of the yield of g, and thus g is a valid witness that the
constructed plan π is a solution.

4.2.2 Completeness

Each of the three algorithms is compatible with multiple different search strategies, such as
Depth First Search (DFS), Breadth First Search (BFS), Uniform Cost Search, and heuris-
tic search strategies like A* or Weighted A* search. Technically, the concrete strategy is
determined by the behavior of the fringe.

The different strategies will lead to different properties regarding completeness. De-
pending on the given input model, a strategy like DFS might often fail to find a solution
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(even though there is one). The following theorem will only hold for certain search strate-
gies, because it must be guaranteed that a node that is put into the fringe is at some point
given back for further expansion. We therefore assume the system to do a BFS.

Theorem 2. The algorithms given in Algorithm 1, 2, and 3 are complete.

We prove the theorem for Algorithm 3. Since Algorithm 2 visits a subset of the search
nodes visited by Algorithm 1, and Algorithm 3 a subset of Algorithm 2, their completeness
follows directly.

Proof. Let tnS be an arbitrary but fixed solution of a planning problem at hand. We
know that there is a valid decomposition tree g = (Tg, Eg,≺g, αg, βg) that resulted in tnS ,
i.e. yield(g) = tnS . As given in the proof of Theorem 1, every path in the search space
corresponds to a DT. We need to show that Algorithm 3 will eventually explore a path that
corresponds to a tree isomorphic to g.

The algorithm uses two types of modification: decomposition and progression. But
while there are unconstrained abstract tasks left, it does not use progression. When no
unconstrained abstract task is left, i.e. all unconstrained tasks are primitive, the algorithm
progresses a primitive task, which is added to the prefix of the solution. This procedure is
continued until a solution has been found.

The search starts with a single node containing the initial task cI that is also the label
of the root node of g. While there is at least one unconstrained abstract task, Algorithm 3
selects one of them (Line 12). Let t be that task. The algorithm branches and applies all
methods (one per branch) that are applicable to that task (Line 14). This means that there
must be a resulting search node that is added to the fringe that resulted from applying the
method βg(t) used in the given solution (and since a BFS is used, this node will eventually
be processed). Since t is decomposed by the same method as in the given solution, the tasks
added by the decomposition are also the same as the subtasks in g.

Eventually, all unconstrained abstract tasks will be processed and the algorithm needs to
progress primitive tasks from the network. Since we know that tnS is a solution, there must
be a sequence πS of its primitive tasks that is applicable and is in line with the ordering
constraints introduced by the methods in βg. Since there is a branch where the algorithm
applied the same methods as given in the tree, there must be a search node where it ended
up with the same set of tasks. Since no further decomposition is possible (i.e. the set of tasks
available for progression will not increase anymore), the first task of the original solution
must be in the set of available tasks. There is a prefix of one or more action(s) that equals
the prefix of the solution πS , and the algorithm can progress it. The algorithm will branch
over the actions available for branching, i.e. all possible orderings are applied, and the one
of the given solution will be included. After progressing the first action, one of the following
cases holds:

1. There might be a newly unconstrained abstract task that had been ordered after the
progressed task and the algorithm will start as given above.

2. Another progression is needed to make more abstract tasks unconstrained.

3. The given solution might be fully reconstructed, then the task network is empty, the
algorithm will have processed all tasks using the same methods as in g, and it will
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have progressed the primitive tasks in the same order as in πS , and thus a goal state
will be reached.

4.2.3 Systematicity

From the small example given in Figure 2 we know that the Algorithms 1 and 2 search
parts of the search space more than once. In this section, we show that this is not the case
for Algorithm 3. This property is known as systematicity (Kambhampati, Knoblock, &
Yang, 1995). In later work, this property was also discussed (and ensured) in the context of
hierarchical planning (Kambhampati, Mali, & Srivastava, 1998), but in a setting different
from typical HTN planning, because no initial task network is provided and instead the
respective algorithm is allowed to insert primitive and abstract tasks. In their formalism,
abstract tasks also possess preconditions and effects for this purpose. We first discuss some
issues with defining systematicity in HTN planning and then propose a definition.

Consider a second example domain with two abstract tasks W and X and two primitive
tasks c and d. W and X are included in the initial task network (and are not ordered with
respect to each other). There are two methods for each abstract task: one decomposing it
into c and one decomposing it into d. The preconditions and effects of the primitive tasks
c and d enforce that there must always be a c before d is executable. By decomposing
W into c and X into d, we get (due to the preconditions/effects) a single solution cd. By
decomposing W into d and X into c, we get, again, the same solution cd.

Such symmetry in a model leads to solution (multi-)sets that contain a single sequence
of actions more than once. The decomposition steps leading to duplicates may, of course, be
less obvious than in this example. Due to the solution criteria, systems are forced to process
the tasks in a task network and using only a subset of all decomposition methods may lead
to incomplete algorithms. In such cases all algorithms given here (including Algorithm 3)
will generate duplicate solutions.

However, this is not what we have seen in the first example given in Figure 2. There,
the same task was decomposed multiple times, i.e. the same search node has been explored
more than once. So how can we distinguish the two cases (symmetry in the model versus
search nodes reached multiple times)? This can be done by taking the decomposition tree
leading to the solution into account.

Figure 3 shows our initial example, but now the search nodes are not represented by
the task network and the plan prefix (like in Figure 2), but by representations of the
corresponding decomposition tree. In each depicted decomposition tree, the nodes are
labeled with tasks and the edges leading from an abstract task to another task are labeled
with the applied method. When an action is progressed, it is labeled with its index in the
generated solution.

We will denote a decomposition tree where primitive tasks may be labeled with their
position in an executable task sequence position-labeled DT. This representation includes
witnesses for our HTN solution criteria: the tree is a proof (i.e., a witness) that there is
a decomposition leading to a certain set of actions, the position labels indicate the correct
execution ordering.

Definition 9 (Valid Position-Labeled DTs). A position-labeled DT is a tuple g = (Tg, Eg,
≺g, αg, βg, γg) where (Tg, Eg,≺g, αg, βg) forms a valid Decomposition Tree and γg is a
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Figure 3: Example given in Figure 2, but now each node shows the decomposition tree
generated so far. When an action has already been progressed, it is marked with
its index in the solution prefix (e.g., a1 indicates that a is the first action in the
solution).
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surjective function that maps the set NP = {n | αg(n) ∈ A} of nodes to a number out of
{1 . . . |NP |}.

Every search node represents a certain set of position-labeled DTs – exactly those that
can be generated from it. Analog to Definition 6 of Kambhampati et al. (1995) for non-
hierarchical planning, we propose the following definition of systematicity in HTN planning:

Definition 10 (Systematicity in HTN Planning). An HTN search is systematic if and only
if for any two nodes n1 and n2 such that n1 is no ancestor of n2 and n2 is no ancestor of
n1 in the search tree, there is no pair of position-labeled DTs pdt1 and pdt2 with

• pdt1 ∼= pdt2 (pdt1 is isomorphic to pdt2),

• pdt1 is in the set of position-labeled DTs represented by n1, and

• pdt2 is in the set of position-labeled DTs represented by n2.

WLOG, we make the following assumptions about the input HTN problem:

Assumption 1 (No Isomorphic Methods). The model does not contain two distinct methods
(c, tn1) and (c, tn2) with tn1

∼= tn2.

Assumption 2 (No Equal Subtasks). There is no method (c, (T ,≺, α)) with t1, t2 ∈ T ,
t1 6= t2, and α(t1) = α(t2)5.

Given the preceding assumptions, the following theorem holds:

Theorem 3. The search defined by Algorithm 3 is systematic according to Definition 10.

Proof. Given an arbitrary search node n, we show the following two points:

1. The position-labeled DTs represented by its children are more constrained than the
position-labeled DT belonging to n.

2. The sets of position-labeled DTs belonging to search nodes with the parent node n
are disjunct.

Transitions between a search node and its children can be caused by two modifica-
tions: (a) decomposition or (b) progression. Both commit to an element in the represented
position-labeled DTs. In case (a), a method label is added to an abstract task and child
nodes are added. In case (b), some primitive task is labeled with an index. These are the
only possible modifications – there is no way to remove some element from a position-labeled
DT. This shows point 1.

The sets of position-labeled DTs belonging to search nodes with the same parent node
are disjunct. A new search node may have been generated by a decomposition or the
progression of an action. When the task network of a given search node n includes at least

5. This assumption is made to have at least one criterion to distinguish two subtrees in the overall tree.
If there is such a method (c, (T ,≺, α)) with two task ids t1 and t2 mapped to the same task name
c1, one could make them distinguishable, e.g. by compiling the planning problem into a new one by
introducing a new task name c2, changing the mapping of t1 to c2, and introducing a new method
(c2, ({t}, ∅, {(t 7→ c1)})) that decomposes the new task c2 back into c1.

854



HTN Planning as Heuristic Progression Search

one unconstrained abstract task, Algorithm 3 does not progress a task, but selects one
abstract task that is decomposed. When there is no abstract task left, it iterates over the
unconstrained actions and progresses all of them. I.e. children of a single search node are
either

1. decompositions of the same abstract task using different methods applicable to that
particular task, or

2. progressions of different actions in the current task network.

In the first case, we know that the position-labeled DTs represented by the nodes differ
due to Assumption 1.

In the second case, some action is labeled with a position in the solution. Nodes that
are siblings are labeled with the same position in the prefix. When the primitive task names
that are progressed differ, the represented position-labeled DTs can be distinguished by the
task name. However, a certain task network may include the same action more than once.
So there may be siblings that annotate tasks with the same primitive task name with the
same position in the prefix. The question is now if such siblings can result in the same
position-labeled DT. The answer is no. To have such a situation, it is necessary that the
subtrees that lead to the equal task names are isomorphic. But due to Assumption 2, we
know that they differ at least in one position: in the layer directly below the least common
ancestor. The least common ancestor is an abstract task that was decomposed into (at least)
two tasks that are the root nodes of the subtrees we want to distinguish. Assumption 2
assures that these root nodes are different, i.e. we can distinguish the two subtrees and the
position-labeled DTs represented by these siblings are disjunct.

Taking (1) and (2) together, we have shown that the position-labeled DTs represented by
the children of a search node are more constrained than the position-labeled DTs represented
by the node itself and that the sets of position-labeled DTs represented by siblings are
disjunct. From that, it follows that Theorem 3 holds.

4.3 Discussion

We have seen that the three algorithms differ in their behavior when there is more than one
unconstrained task, i.e. more than one option for which task is processed next.

• Algorithm 1 branches over all unconstrained primitive and abstract tasks, and – for
the latter – over applicable decomposition methods.

• Algorithm 2 branches over all unconstrained primitive tasks and a single (uncon-
strained) abstract task to decompose. For the latter it branches over the applicable
decomposition methods.

• Algorithm 3 first decomposes a single (unconstrained) abstract task, branching over
applicable decomposition methods. Only if no unconstrained abstract task is left, it
branches over all (unconstrained) primitive tasks.

Consider the case of totally ordered HTN planning. Here, there is a single unconstrained
task in each search node, and the behavior of all three algorithms will be the same. In an
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empirical evaluation, the performance of all algorithms should therefore be similar (though
there might be differences due to effects of randomness). When comparing the three al-
gorithms on partially ordered problems, Algorithm 2 should always perform better than
Algorithm 1. When comparing Algorithm 2 and Algorithm 3, the systematicity comes with
a potential drawback that might lead to worse performance in certain domains/problems.
Our main argument to use a progression-based search instead of a plan space-based search
was to have the current state at hand to calculate heuristics, but when we postpone pro-
gression as in Algorithm 3, the state update is also postponed. There might be planning
problems with a certain structure where the advantage of having an up-to-date state that
comes with Algorithm 2 compensates for the non-systematic search. In such cases, Al-
gorithm 2 might perform better. Therefore only an empirical evaluation can show which
algorithm should be used in practice.

In general, systematicity is especially interesting in HTN planning since testing if two
search nodes are isomorphic is as hard as the graph isomorphism problem, while testing
whether the ordering constraints of a node are a subset of the ordering constraints of a
second node is NP-complete (Behnke et al., 2015). So it is preferable to avoid equivalent
search nodes in the first place.

The SHOP2 algorithm (Nau et al., 2003, Fig. 5) differs from the algorithms given here6.
The closest resemblance is given to Algorithm 1, because it branches over all tasks (i.e.
primitive and abstract ones) when an action has been progressed, but when a method has
been applied, it only branches over the subtasks of that specific method (this differs from
Algorithm 1). As a result, the choice of an abstract task is a commitment to the generated
solution, because the next action that is progressed must be a subtask of that specific
task. The decomposition trees will therefore always differ (at least) in the position labels.
Therefore, the SHOP2 algorithm fulfills our definition of systematicity except from the
following special case: For models that contain methods with empty subtask networks, the
selection of the abstract task is no commitment to the solution and the algorithm generates
duplicate search nodes.

5. Guiding Search in HTN Planning with Classical Heuristics

In classical planning there are many domain-independent heuristics available that might be
interesting for HTN planning, too. When adapting classical heuristics to the HTN setting,
one has to handle two main problems:

• The hierarchy may have large impact on the set of valid solutions, i.e. heuristics must
be informed on both – the hierarchy and the state.

• Naturally, classical planning heuristics depend on a description of a state-based goal
to reach. In HTN planning, there is (usually) no such goal definition.

A common way to create planning heuristics is to relax the problem to a simpler one that
can be solved efficiently. The goal distance for the original problem is then approximated
based on the solution to the simpler problem. In (grounded) classical planning, the plan

6. This means that our system configurations given by Höller et al. (2018a) did not simulate the SHOP2
algorithm, but instead the canonical algorithm.
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search
loop

classical
heuristic

HTN progression
search
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HTN model solution

relaxation to
classical model

Figure 4: Schema of our overall approach to guide the HTN search with classical heuristics
as given by Höller et al. (2019).

existence problem is PSPACE-complete (Bylander, 1994) and the commonly used heuristics
are computed in polynomial time. There are several relaxations used in classical planning,
but a direct adaptation to HTN planning is difficult. Maybe the best known relaxation
is delete-relaxation, i.e. ignoring the delete effects of actions, but in HTN planning, the
resulting problem is still NP-complete (Alford, Shivashankar, Kuter, & Nau, 2014). Since
a direct adaptation of classical heuristics to HTN planning is difficult, we decided to have
a two-stage process:

We introduce a transformation that relaxes the HTN planning problem to a classical
planning problem. Since this classical model is used to calculate heuristics, we will call it
the heuristic model. It is based on the actions and state description of the original HTN
problem, but additionally incorporates reachability information from the hierarchy. This
already relaxed problem is then passed on to an arbitrary classical heuristic to generate
goal distance estimations. The resulting goal distance is then used in the HTN planning
system. The schema of the overall approach is depicted in Figure 4.

We first introduce the transformation into the heuristic model, then we give its theoretic
properties, and then we discuss how it is implemented efficiently.

5.1 Heuristic Model

We explain our transformation based on the running example given in Figure 5. It is a
simple transport domain that divides the overall task of delivering a package into four
steps:

1. Get a transporter to the package.

2. Pick-up the package.

3. Get the transporter to the goal destination.

4. Drop the package there.

There are three methods to decompose the get-to task. One results in a no-op action.
It is e.g. helpful when there is more than one package at the same location because the
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deliver(p, l2)

get-to(v, l1) pick -up(v, l1, p) get-to(v, l2) drop(v, l2, p)

m-deliver(p, l1, l2, v)

get-to(v, l2)

drive(v, l1, l2)

m-direct(v, l1, l2)

get-to(v, l2)

get-to(v, l1) drive(v, l1, l2)

m-via(v, l1, l2)

get-to(v, l)

no-op()

m-noop(v, l)

Figure 5: Example domain modeling a transport problem. Abstract tasks are non-boxed.
Boxed tasks are primitive. Arrows indicate decomposition by methods. Names
as well as parameters of each method are given below the definitions. The pa-
rameter p represents packages, v vehicles, and l, l1, l2 locations. The method
m-via(v, l1, l2) decomposes e.g. the (abstract) task get-to(v, l2) into the abstract
task get-to(v, l1) followed by the primitive task (i.e. action) drive(v, l1, l2).

deliver(P,D)

m-deliver(P,C,D, T1)

. . .

m-deliver(P,C,D, T3)
m-deliver(P,C,D, T2)

t1 t2 . . . tm

. . .

. . . . . . . . .

m-direct(T2, A,B) . . . mn . . . mo

drive(T2, A,B) . . . ap . . . aq

goal state
including

udeliver(P,D)

am-deliver(P,C,D,T2)

. . .

am-direct(T2,A,B)

state including
udrive(T2, A,B)

drive(T2, A,B)

s0

RC Model HTN Model

Figure 6: Schema of HTN decomposition as given by Höller et al. (2019).

transporter is already at the location, it needs to pick up the second package after picking
up the first one. The second method results in a direct drive action. It can be used
when there is a direct connection between the current position of the transporter and its
destination. The last one is recursive and decomposes the overall task into a new get-to
task and a drive action that is ordered afterwards. The objective of the overall task, i.e.
that the package is at its destination, is enforced by the hierarchy, there is no state-based
goal definition.
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The right part of Figure 6 shows a schema of the HTN decomposition process: In the
given example, it starts with a single deliver task at the top. There might be more than
one possibility to decompose this task. In the figure, there is e.g. more than one transporter
(T1, T2, . . . ) to deliver the package and the planner has to choose one (in the example, T2

is chosen). The corresponding method has several subtasks that all need to be processed. If
one of the subtasks is abstract, the planner needs, again, to choose a method. This is done
until all tasks are primitive. Then, a sequence of the resulting actions needs to be found
that is executable in the initial state.

The resulting tree can be regarded an AND/OR tree (Ghallab et al., 2004, Chapter 11),
where the method nodes are AND nodes (all subtasks need to be done) and tasks are OR
nodes (a single method needs to be applied). We encode the process of building that tree
in a bottom-up manner into a classical planning problem. The new problem contains two
kinds of actions, one represents the actions from the original HTN model (with slightly
changed preconditions and effects) and one simulates method application.

We first add a new part to the state that stores which tasks are part of the tree. The
actions from the HTN domain get a new effect that marks the action to be part of the
tree. For each method, a new action is introduced. It is applicable when all its subtasks
are already part of the tree and it adds the abstract task that it decomposes to the tree.
The goal of the problem is to make the tasks contained in the current task network part of
the tree.

Our approach builds the AND/OR tree in a bottom-up manner, we therefore denote the
new state features with the letter u (bottom-up reachability), when the action drive(T,A,B)
is e.g. part of the tree, udrive(T,A,B) holds.

Consider the deliver method given at the top of Figure 5. In the new model, it results
in an action am-deliver(?p,?l1,?l2,?v) with four preconditions and a single add effect:

prec(am-deliver(?p,?l1,?l2,?v)) = {uget-to(?v,?l1), upick -up(?v,?l1,?p), uget-to(?v,?l2), udrop(?v,?l2,?p)}
add(am-deliver(?p,?l1,?l2,?v)) = {udeliver(?p,?l2)}
del(am-deliver(?p,?l1,?l2,?v)) = ∅

The transformation of all methods and all actions is given in Figure 7 and Figure 8,
respectively. In the latter, the bold preconditions and effects are those from the original
domain, the non-bold have been added during the transformation. Please ignore the newly
added preconditions in Figure 8 for a moment, they result from an optimization that is
introduced later on.

When a classical planning system is applied to the heuristic model, the actions in the
solution belong to the choice points in the AND/OR tree. This is depicted at the left part
of Figure 6. Starting in the initial state of the HTN planning problem (at the left bottom),
the classical plan marks certain tasks to be part of the tree, until the deliver task at the
top is reached.

Be aware that the classical planner would have to find an applicable sequence of all the
original actions from the HTN domain that are marked as part of the tree. This makes our
heuristics informed about the state transition in the original problem. It needs to compose
(apply the decomposition methods in a reverse manner) the tree to reach the top, so our
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am-deliver(p,l1,l2,v)

uget-to(v,l1)
upick -up(v,l1,p)
uget-to(v,l2)
udrop(v,l2,p)

udeliver(p,l2)

am-direct(v,l1,l2)udrive(v,l1,l2) uget-to(v,l2)

am-via(v,l1,l2)
uget-to(v,l1)
udrive(v,l1,l2)

uget-to(v,l2)

am-noop(v,l)uno-op() uget-to(v,l)

Figure 7: Actions derived from the methods given in Figure 5. Each action has as many
preconditions as the respective method has subtasks that enforce the respective
tasks to be in the tree. The application of the actions causes the task that the
method decomposes to be part of the tree.

drive(v, l1, l2)
at(v, l1)

road(l1, l2)
ddrive(v,l1,l2)

at(v, l2)
¬at(v, l1)
udrive(v,l1,l2)

no-op()dno-op() uno-op()

pick -up(v, l, p)
at(v, l)
at(p, l)

dpick -up(v,l,p)

in(p, v)
¬at(p, l)
upick -up(v,l,p)

drop(v, l, p)
at(v, l)
in(p, v)
ddrop(v,l,p)

at(p, l)
¬in(p, v)
udrop(v,l,p)

Figure 8: Basic actions from the domain. The preconditions and effects that are depicted
bold are those from the original HTN planning problem. The non-bold precon-
ditions and effects are introduced by the transformation.
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heuristics are also informed about the hierarchy. However, the transformation makes three
relaxations:

1. Tasks may be inserted apart from the decomposition hierarchy – even those that are
not reachable anymore from the tasks in the current task network. This can be seen
as a kind of HTN planning with task insertion (Geier & Bercher, 2011; Alford et al.,
2015a). It may have two reasons: First, it can be done to fulfill preconditions of tasks
that have to be inserted due to the hierarchy. Second, when having an additional
state-based goal, it might be done to fulfill this state-based goal.

2. Ordering constraints introduced by the used decomposition methods are entirely ig-
nored.

3. Since there is a single state feature for each task, every task needs to be processed
only once, regardless of how often it is introduced by the hierarchy. This can be seen
as a kind of HTN planning with task sharing (Alford et al., 2016).

In our actual system, we do not apply a classical planner to the heuristic model, but
a classical heuristic. Since actions in the classical model represent nodes in the tree, the
heuristic estimates the number of nodes in the tree. We will see in Section 5.2.2 that this
number is exactly the goal distance in our search space.

As a next step, we want to reduce the set of tasks that the system is free to insert to
those that are actually still reachable from the current task network. From a given task
network tn, a task n is reachable via the hierarchy if and only if there is a task network
tn ′ = (T ′,≺′, α′) with tn →∗ tn ′ and ∃t ∈ T ′ with α′(t) = n. Since tasks are inserted
to fulfill preconditions or state-based goals, it is sufficient to determine this reachability
information for primitive tasks (and not for abstract tasks). To make the information
available for any applied heuristic, we decided to add it to the state of the transformed
problem and to the preconditions of every action. We denote the state feature indicating
that a task n is reachable as dn (the task is top-down reachable). Figure 8 shows the added
(non-bold) preconditions. The same optimization could also be made by changing the set
of actions that is available for the heuristic function. By encoding it into the problem, we
just have to adapt the initial state (that is updated anyway), but neither the rest of the
model nor the heuristic function.

Now we have motivated all parts of our heuristic model and we give the formal definition.
Since it mimes a relaxed composition of tasks, we denote it Relaxed Composition Model (rc).

Definition 11 (Relaxed Composition Model). Given an HTN planning problem P = (L,
C, A, M, s0, tnI , g, (prec, add , del)) with tnI = (TI ,≺I , αI), we define our RC model as
the following classical planning problem P ′ that we will denote rc(P):

P ′ =
(
L′, A′, s′0, g

′, (prec′, add ′, del ′)
)

L′ = L ∪ Ld ∪ Lu

Lu = {un | n ∈ A ∪ C}, with L ∩ Lu = ∅
Ld = {dn | n ∈ A}, with (L ∪ Lu) ∩ Ld = ∅

A′ = A ∪AM , AM = {am | m ∈M}, with A ∩AM = ∅
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Höller, Bercher, Behnke & Biundo
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Figure 9: Schema of our example problem.

s′0 = s0 ∪ {dn | ∃tn ′ : tnI →∗ tn ′ = (T ′,≺′, α′), t ∈ T ′, α′(t) = n}
g′ = g ∪ {un | t ∈ TI , αI(t) = n}

The actions a ∈ A′ of the new problem have the following preconditions and effects:

prec′(a) =

{
prec(a) ∪ {da}, iff a ∈ A

{un | t ∈ T , α(t) = n}, iff a ∈ AM , a = am with m = (c, (T ,≺, α))

add ′(a) =

{
add(a) ∪ {ua}, iff a ∈ A

{uc}, iff a ∈ AM with a = am and m = (c, tn)

del ′(a) =

{
del(a), iff a ∈ A

∅, else

In principle, we can use the resulting heuristic model with any classical heuristic to
create new HTN heuristics.

Definition 12 (RC-based HTN heuristic (rch)). Let P be an HTN planning problem and
h a classical heuristic. We define an RC-based HTN heuristic rch as h(rc(P)).

Before we come to theoretical properties of the heuristic model, we want to give a full
example that shows how the solution to it could look like. We do this based on a simple
transport problem including the methods given in Figure 5 and the actions given in Figure 8.
A schema of the initial state of the problem is given in Figure 9. The package P is initially
located at position C and a transporter T at position A. P has to be delivered at position
D. This is guaranteed by the hierarchy, the state-based goal definition is empty. More
formally, initial state, initial task network, and state-based goal are defined as follows:

s0 = {at(T,A), at(P,C),

road(A,B), road(B,A), road(B,C), road(B,D), road(C,B), road(D,B)}
tnI = ({t}, ∅, {t 7→ deliver(P,D)})
g = ∅

The transformed problem is given by the actions shown in Figure 7 and 8. Initial state
and goal definition of the transformed problem are defined as follows:

s0 = {road(A,B), road(B,A), road(B,C), road(B,D), road(C,B), road(D,B),

at(T,A), at(P,C), ddrive(T,A,B), ddrive(T,B,A), . . . , ddrive(T,D,B), dno-op(),

dpick -up(T,A,P ), . . . , dpick -up(T,D,P ), ddrop(T,A,P ), . . . , ddrop(T,D,P )}
g = {udeliver(P,D)}
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{at(T,A),
at(P,C)} drive(T,A,B)

{at(T,B),
at(P,C),

udrive(T,A,B)}
am-direct(T,A,B)

{at(T,B),
at(P,C),

udrive(T,A,B),
uget-to(T,B)}

drive(T,B,C)

{at(T,C),
at(P,C),

udrive(T,A,B),
uget-to(T,B),
udrive(T,B,C)}

pick -up(T,C, P )

{at(T,C),
in(P, T ),

udrive(T,A,B),
uget-to(T,B),
udrive(T,B,C),
upick -up(T,C,P )}

am-via(T,B,C)

{at(T,C),
in(P, T ),

udrive(T,A,B),
uget-to(T,B),
udrive(T,B,C),
upick -up(T,C,P ),
uget-to(T,C)}

drive(T,C,B)

{at(T,B),
in(P, T ),

udrive(T,A,B),
uget-to(T,B),
udrive(T,B,C),
upick -up(T,C,P ),
uget-to(T,C),
udrive(T,C,B)}

drive(T,B,D)

{at(T,D),
in(P, T ),

udrive(T,A,B),
uget-to(T,B),
udrive(T,B,C),
upick -up(T,C,P ),
uget-to(T,C),
udrive(T,C,B),
udrive(T,B,D)}

drop(T,D, P )

{at(T,D),
at(P,D),

udrive(T,A,B),
uget-to(T,B),
udrive(T,B,C),
upick -up(T,C,P ),
uget-to(T,C),
udrive(T,C,B),
udrive(T,B,D),
udrop(T,D,P )}

am-via(T,B,D)

{at(T,D),
at(P,D),

udrive(T,A,B),
uget-to(T,B),
udrive(T,B,C),
upick -up(T,C,P ),
uget-to(T,C),
udrive(T,C,B),
udrive(T,B,D),
udrop(T,D,P ),
uget-to(T,D)}

am-deliver(P,C,D,T )

{at(T,D),
at(P,D),

udrive(T,A,B),
uget-to(T,B),
udrive(T,B,C),
upick -up(T,C,P ),
uget-to(T,C),
udrive(T,C,B),
udrive(T,B,D),
udrop(T,D,P ),
uget-to(T,D),
udeliver(P,D)}

Figure 10: Solution to the transformed problem as it might be generated by a classical
planning system and all intermediate states (top left to bottom right). Facts
defining top-down reachability and the road network are omitted.

Figure 10 gives a solution to the transformed problem as it might be generated by a
classical planning system.

5.2 Formal Properties

In this section we show that our heuristic model is linear in the size of the input HTN model
and that it can be used to create safe, goal-aware, and admissible HTN heuristics.

5.2.1 Properties of the Heuristic Model

The transformation is based on the actions and state features of the original HTN planning
problem. It adds one state feature for each abstract task and two state features for each
action. One precondition and one effect is added to the actions of the original problem.
There is a single new action per method that simulates its application. Such an action has
as many preconditions as the method has subtasks and a single effect.

The number of state features is increased (compared to the size of the one of the input
HTN planning problem) by a linear factor (two times the number of actions plus the number
of abstract tasks), the sets of preconditions and effects of the original actions as well (two
times the number of actions). The method encoding is as large as the set of methods in the
input. Thus, for the entire heuristic model, the following theorem holds:

Theorem 4 (Size of the Heuristic Model). The size of rc(P) is linear in the size of the
input problem P .
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The model can be created in polynomial time. For most parts this is straightforward,
the only part where it is less obvious is the top-down reachability. We will explain how
to calculate it in Section 5.3. Since it only calculates the hierarchical reachability ignoring
state transition, it can be computed in lower polynomial time. Therefore the following
theorem holds:

Theorem 5 (Computational Complexity of Creating the Heuristic Model). The heuristic
model can be created in polynomial time.

Further, we will see later on in Section 5.3 that the model does not need to be recreated
in every search node, but that it can be updated.

This means that the calculation of the HTN heuristic will usually7 be as hard as cal-
culating the underlying classical heuristic. However, there is an issue that needs to be
considered when selecting the classical heuristic. In classical planning, there is only one
part of the model that changes from search node to search node: the current state. In
our model, there are two parts that change: the current state and the goal definition. For
some classical heuristics this is no problem, but others (like abstraction heuristics) use a
computation-intensive preprocessing that depends on the goal definition and needs to be
redone. This means that, though the combination with our encoding is possible, it might
lead to poor results.

5.2.2 Properties of the Resulting HTN Heuristics

We have pointed out the relationship of progression-based search to forward search in a
state space in classical planning. However, there is a difference that we want to emphasize:
In state space search in classical planning, the estimation of the remaining costs to complete
a plan corresponds to the distance in the state transition system to find a search node that
is a goal node. This does, e.g., not hold in a plan space search in classical planning, because
there are modifications that need to be done (inserting ordering constraints, causal links,
etc.) that increase the distance in the search space, but are not reflected in the solution
costs. When defining new heuristic functions, this leads to the question whether it should
estimate the distance to a goal node or the costs of the resulting solution.

The first aim of our approach is to guide the search to find a solution. Therefore we do
not want to estimate the costs of the actions in a solution, but the number of transitions
between search nodes. In progression search, there are two kinds of modifications that
cause such a transition between search nodes: progression of actions and decomposition of
abstract tasks. Every abstract task on the way from the initial node in the search space
causes exactly one transition; every action that is progressed also causes a single transition.
Therefore the following lemma holds:

Lemma 1 (Goal Distance in Progression Search Space). The goal distance in HTN pro-
gression search equals the sum of decompositions and applied actions.

For some HTN planning problem P , let h∗m be the perfect goal distance estimation.
When a solution to an HTN planning problem is represented as decomposition tree,

there is exactly one node for every abstract task that has been decomposed and exactly one
node for every primitive task in the primitive plan. Therefore the following lemmas hold:

7. I.e. when the calculation of the classical heuristic takes at least polynomial time.
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Lemma 2 (Number of Nodes in a DT). The number of nodes in a decomposition tree equals
the sum of decompositions and applied actions to find the solution.

Taking Lemma 1 and Lemma 2 together, we get:

Lemma 3 (The Number of Nodes in a DT Equals the Goal Distance). The number of
nodes in a decomposition tree equals the goal distance in progression search.

For some classical planning problem Pc, let h∗(Pc) be the perfect goal distance estima-
tion, i.e., the number of actions that need to be inserted to find a goal.

Theorem 6 (rch∗ ≤ h∗m(P )). The perfect (classical) heuristic value computed on the RC
heuristic model is smaller or equal to the actual goal distance in progression search.

Proof. For this proof we treat the current search node as new planning problem. WLOG, we
assume that there is at least one solution. Let g∗ = (Tg, Eg,≺g, αg, βg) be a decomposition
tree belonging to the solution with the minimal distance from the current search node.
According to Lemma 3, |Tg| is equal to the goal distance. We show that h∗(rc(P)) ≤ |Tg|
by showing that there is always a solution to rc(P) with exactly |Tg| actions. We will
denote the corresponding plan π∗.

Since g∗ represents a solution, we know that all tasks are reachable via decomposition,
i.e., the preconditions related to the top-down reachability are fulfilled. We know that there
is a linearization of the primitive tasks in g∗ that is applicable and fulfills the state-based
goal. By construction, this sequence is also applicable in the transformation; the original
preconditions and effects are unchanged, i.e., the application results in a goal state. Let
π∗ start with this sequence. Since g∗ contains no loops, we can go up the tree and will
find some node n such that all its subtasks are already contained in π∗. Let m = βg(n)
be the method that has been applied to n. When all subtasks are executed, they will have
fulfilled the preconditions belonging to am, the action representing m. We add this action
to π∗. The action fulfills αg(n). We repeat the procedure until all tasks are processed.
The top-most tasks belonging to tnI fulfill the newly introduced state-based goal of the
transformation.

From Theorem 6, the following corollaries follow directly:

Corollary 1 (rc Preserves Safety). For any safe classical heuristic h, i.e., if (h(Pc) =
∞)⇒ (h∗(Pc) =∞), holds that (h(rc(P)) =∞)⇒ (h∗m(P ) =∞).

Corollary 2 (rc Preserves Goal-Awareness). For any goal-aware classical heuristic h, i.e.,
if h(Pc) = 0 when the goal is fulfilled, holds that h(rc(P)) = 0 when the goal in P is fulfilled.

The properties shown so far are interesting to control the search towards a goal node
effectively. However, by setting the costs of all actions in AM to 0, we can also create
admissible heuristics to find optimal solutions. Let h∗ac(P ) be the optimal HTN heuristic
accumulating action costs.

Corollary 3 (rc Preserves Admissibility). For any admissible classical heuristic h it holds
that h(rc(P)) ≤ h∗ac(P ).

For a more detailed description on how to make our system find cost-optimal solutions
as well as benchmark results, we refer to Behnke et al. (2019b, Section 4).
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5.3 Efficient Implementation of RC Heuristics

Most parts of the heuristic model can be precomputed. The only parts that need to be
updated are the initial state and the goal description. The initial state includes information
on the state in the HTN search and top-down reachability information. The goal state
represents the tasks in the current task network.

The reachability analysis is fully based on the hierarchy and does not analyze the inter-
play with state transition. It checks whether a certain task is reachable by decomposing the
tasks in the current task network. This information can be precomputed in the following
way: Given an HTN planning problem P = (L,C,A,M, s0, tnI , g, δ), it is determined based
on a directed graphG = (N,E) that includes as nodes the problem’s task names: N = C∪A.
The set of edges is defined as E = {(c, c′) | (c, (T ,≺, α)) ∈ M with ∃ t ∈ T s.t. α(t) = c′},
i.e. two nodes are connected when there is a method decomposing the first node into a net-
work including the second node. We compute the strongly connected components (SCCs)
of this graph and contract nodes in the same SCC. The reachability of all tasks in the same
SCC is equal. Now we have a directed acyclic graph and can compute reachability in a single
bottom-up pass of the graph. We define the set of reachable tasks of nodes representing a
primitive task a as {a}. For every other node, we define it as the union of the reachability
sets of the children.

Reachability is stored for each task before search and needs to be accumulated over the
tasks in a task network during search. For a certain search node, the reachability information
as well as the goal definition can be calculated incrementally based on its parent nodes.

5.4 Discussion

In Section 2 we have already given a short introduction to Alford et al.’s work (2009,
2016) that – like our approach – encodes an HTN planning problem as a classical planning
problem. However, instead of using heuristic values calculated on the classical model in the
HTN search, the actual search is also done in the classical planning system.

The first encoding (Alford et al., 2009) is restricted to totally ordered problems, but the
more recent one (Alford et al., 2016) could also be used as heuristic model in our overall
approach. It simulates an HTN progression search in the state of a classical planning
problem. Therefore the task network of a search node is stored in the state of that problem.
To be able to represent the undecidable HTN problem in a decidable formalism the encoding
needs a bound – that is denoted the progression bound – as input that determines the
maximum number of tasks that can be stored in a task network. That way, tasks and
ordering relations of a task network can be stored in the finite state of a classical problem.
Newly introduced actions simulate method application and change the part of the state
that represents the current task network according to the rules of task decomposition. The
actions from the original domain are only applicable when they are contained in the current
task network and are unconstrained. When an action is applied, it is deleted from the task
network and the position it was stored before is not occupied anymore. The goal in the
classical planning problem is to find an empty task network, i.e., to make all positions free.

While our encoding relaxes the problem (increasing the set of solutions), the encoding of
Alford et al. (2016) does not. The set of solutions to the classical problem contains exactly
these solutions to the HTN problem that can be generated with progression search with
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the given bound in task network size. When it is used in a system like ours to calculate
heuristics and the bound is chosen too low, the resulting heuristic is not safe, i.e. it might
come up with infinite heuristic values even when the problem is still solvable. When the
bound is increased, the model gets too large to extract heuristic values efficiently, because
the size of the model is bounded by bst , where b is the progression bound and st is the
number of subtasks of the largest method. Besides the size of the resulting problem, the
combination with delete-relaxed heuristics causes problems. The bound determines the
maximum number of tasks that can be stored in a task network. When the bound is n,
there are n positions where a task can be stored. When using a delete-relaxed heuristic,
positions are not becoming occupied (because the state variable representing that it is free
is not deleted). Together with the fact that most positions are initially free, this would lead
to rather uninformed HTN heuristics when combining this encoding with delete-relaxed
classical heuristics.

Another approach that is similar from a more abstract point of view is the work
by Bercher, Geier, and Biundo (2013) (though the actual encoding it uses is quite different
from ours). It is concerned with solving classical planning problems using POCL planning.
During search, the POCL search nodes are translated into classical planning problems to
calculate heuristic values on that translation by using standard heuristics from classical
planning. Since the setting is classical planning, they can do this without relaxation.

The FAPE system (Bit-Monnot et al., 2016) uses a reachability analysis to prune search
nodes that is based on a transformation of the hierarchical model into a temporal model.
The used formalism defines abstract actions that are associated with a certain task and
include the definition of subtasks as well as ordering constraints between them (like methods
in HTN planning). FAPE’s abstract actions are applied to tasks in a current plan and
replace them with their subtasks. For the reachability analysis, each abstract action is
translated into a temporal (non-hierarchical) action with an at-start condition that the
corresponding task is required, i.e. necessary due to some other abstract action or the goal
tasks (that correspond to the initial task network in HTN planning) and effects causing
that the task it is associated with has been started (at the beginning of the action) and
ended (at its end). The required condition ensures that actions can only be executed if
they are part of the decomposition hierarchy, i.e. it prevents task insertion. Additional
timed conditions enforce that the subtasks are started and ended at the positions they are
ordered while timed effects cause them to be required. With this encoding, FAPE relaxes the
condition that a task may be decomposed only once, i.e. any occurring abstract task can be
decomposed multiple times with different methods. As such it is e.g. possible to execute two
tasks that are mutex to each other due to restrictions introduced via the hierarchy. Notably,
the two decompositions of the same task can be used to make each other executable, which
is ordinarily not possible, hence it is a relaxation. FAPE’s encoding contains the domain’s
ordering constraints, but the started and ended conditions can be fulfilled with different
decompositions. This allows to ignore the ordering for a decomposition used to satisfy
the ended condition and to arrange the subtasks before preceding tasks as the ordering
constraint restricts only the time at which ended is made true. The same holds for the
started conditions.

Based on the resulting temporal model, a reachability analysis is done by first optimisti-
cally applying the actions, i.e. without knowing if at-end conditions are fulfilled at the time
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they have to be; and then recursively removing those actions that do not become reachable
until a fix point is reached. The reachability analysis is performed in each search node.
Based on its results, search nodes are pruned and the set of modifications is restricted.

The TDG-based work on heuristics by Bercher et al. (2017) is the most related approach
to the one given here. Heuristic calculation starts with the primitive tasks and assigns each
of them its own costs as heuristic value. It then proceeds with methods where the heuristic
value of the subtasks has already been assigned. The heuristic value of methods is defined
as the sum of the heuristic values of their subtasks. The heuristic value of abstract tasks
is set to the minimum of the one of the methods that can be used to decompose it. When
there are cycles, this procedure has to be done until it has converged (though this can be
done efficiently, as described in the paper).

When we switch from a bottom-up to a top-down view, the calculation of the heuristic
for a certain task can be seen as a tree with min nodes and sum nodes. To improve the
heuristic, a reachability analysis (based on planning graph techniques) has been added, such
that only primitive tasks are included that are still reachable and abstract tasks and methods
of the HTN are deleted when they necessarily include unreachable actions. The resulting
heuristic value is the sum of the effort8 of tasks that are enforced by the hierarchy to be in
the solution where all preconditions can be fulfilled using all primitive tasks still reachable
via the hierarchy (similar to our top-down reachability). However, these additional actions
that might be necessary to make other actions executable have no (direct) impact on the
heuristic value.

Our heuristic model makes the classical heuristic build a similar tree (more precisely,
it needs to estimate the size of the tree) implicitly by applying the actions that simulate
method application. But by using an encoding in a classical model, we can combine it with
arbitrary classical heuristics. A second advantage – that is maybe even more important –
is that the actions added to ensure the applicability of other actions are incorporated in
our heuristic value. Another interesting difference concerns task sharing: in our heuristic,
every task name needs to be processed only once. The TDG-based heuristics can deal with
multiple instances of the same task and increase the overall heuristic value according to the
number of instances included in the solution. Therefore it can – in principle – even come
up with heuristic values that are exponential in the size of the input model (which we can
not when using common and unchanged classical heuristics).

6. Evaluation

Our search is based on a fully grounded model. Like the implementation used in previous
work (Höller et al., 2018a), we realized it based on the preprocessing, i.e. grounding and
reachability analysis, of the PANDA planning system (see Behnke et al., 2020). However,
we reimplemented the search engine for this article that is now based on C++ instead of
Java9.

8. This might e.g. be action costs to plan cost-sensitive or the number of modifications to estimate the goal
distance in the search space.

9. We call our new system PANDApro (indicating the progression search). The source code of the PANDA
planners and all domains and problems are available online at www.uni-ulm.de/in/ki/panda.
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Since we are interested in a satisficing planner, we make an early goal test (as discussed
on page 843), i.e. placed it before inserting a search node into the fringe. We included
the hadd , the hFF , and the hLM -Cut as classical heuristics (see Bonet and Geffner (2001),
Hoffmann and Nebel (2001), and Helmert and Domshlak (2009), respectively).

6.1 Experiment Setup

All experiments ran on Xeon E5-2660 v3 CPUs with a base frequency of 2.60 GHz, a memory
limit of 4 GB and time limit of 10 minutes.

6.1.1 Planning Systems

We included the following HTN planners into our evaluation. In the following, we will use
the abbreviations G, A∗, and WA∗ for Greedy Best-First search, A∗ search and Weighted
A∗ search (with a weight of 2), respectively.

• We included 27 heuristic search configurations of our system: {Alg. 1, Alg. 2, Alg. 3}
× {rcadd, rcFF, rcLM-Cut} × {G, A∗, WA∗}. We further included DFS with the three
algorithms, and a special filter “heuristic” that will be explained below.

• tdgm-r and tdgc-r – The plan space-based PANDA system with its most recent
heuristics (Bercher et al., 2017) and G, A∗, WA∗ search. We have included the
variants of the heuristic recomputing the TDG. Since our implementation uses the
preprocessing of PANDA, the two systems are started with the same grounding of the
model as search input.

• 2adl – The approach introduced by Alford et al. (2016). It translates the HTN
planning problem into a series of classical problems until a solution has been found.
The given time is the accumulated time over the runs. We tested the ADL trans-
lation with the best-performing planning system of the original paper (Jasper) and
with the following other planning systems from the agile and satisficing tracks of the
International Planning Competition 2018:

– 2adl Jasper – combination with the Jasper planning system (Xie, Müller, &
Holte, 2014) as used in the original paper.

– 2adl FDSS – combination with the Fast Downward Stone Soup planning sys-
tem (Seipp & Röger, 2018).

– 2adl SaarPlan – combination with the SaarPlan planning system (Fickert,
Gnad, Speicher, & Hoffmann, 2018).

– 2adl LAPKT – combination with the LAPKT-BFWS-Preference planning sys-
tem (Francès, Geffner, Lipovetzky, & Ramı́rez, 2018).

• JShop2 – The JSHOP2 HTN planning system. The system is the only one in this
evaluation that plans in a lifted manner. So we tested it with the original lifted input
models. However, we found that starting it with the grounding generated by our
grounder leads to a better performance, so we included these results in the evaluation
instead. The better performance is not surprising. The domains are intended to
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UM-Translog 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22
Satellite 25 23 24 25 24 23 24 21 21 24 23 24 24 21 24 24 16 22 21 23 24 24 23 24 23 23 21 22

Woodworking 11 10 10 10 10 9 10 8 9 9 8 10 10 8 9 9 6 7 8 9 9 9 8 9 10 8 10 10
SmartPhone 7 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5

PCP 17 13 14 13 9 12 11 5 11 6 13 13 13 5 11 5 3 9 3 2 2 2 2 2 2 2 2 2
entertainment 12 11 11 11 11 11 11 11 11 11 8 11 8 8 11 11 8 11 11 12 12 12 12 12 12 12 12 12

rover 20 4 7 5 4 4 4 2 4 3 0 4 2 0 4 0 0 4 0 4 4 4 4 5 5 5 4 4
transport 30 13 4 11 11 5 10 3 8 13 3 7 1 3 8 3 1 4 1 1 1 2 2 2 2 1 2 1

total 144 101 97 102 96 91 97 77 91 93 82 96 84 72 94 79 61 84 71 78 78 80 78 81 81 78 78 78

Figure 11: Coverage of our new system in different configurations.

be solved with domain-independent planning systems and are not optimized towards
the planner. The grounding process includes a reachability analysis that combines
hierarchical and state-based techniques that simplifies the search.

6.1.2 Domains

We included the following domains into our evaluation:

• The UM-Translog, Satellite, and Woodworking domains are HTN versions of
the corresponding domains known from classical planning. They are further described
by Bercher et al. (2014).

• Smartphone – A domain describing the task of operating a smartphone. A descrip-
tion is also given by Bercher et al. (2014).

• Rover – A version of the SHOP2 domain that makes no use of the SHOP2-specific
features but only the standard HTN features.

• Transport – An HTN version of the transport domain. In this version of the model,
the hierarchy restricts the set of solutions to improve the solutions (it is, e.g., impos-
sible to pick-up or drop a single package more than once), but the main physics are
fully given by the actions.

• Entertainment – It describes the problem of assembling a home entertainment
system (see Bercher, Biundo, Geier, Hoernle, Nothdurft, Richter, and Schattenberg
(2014) for details on the real-world problem). This is a hierarchical model of the
domain where signal flow between devices, e.g. a DVD player and a TV, is not repre-
sented in state, but via the hierarchy.

• PCP – A domain that models Post’s Correspondence Problem. Since this is an
undecidable problem, it can (in general) not be represented in classical planning, but
in HTN planning. However, we know for all instances that there is a solution.

6.2 Results

First we want to compare the three algorithms. Especially the comparison between Algo-
rithm 2 and 3 is interesting. As discussed in Section 4.3, the systematicity of the search
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Figure 12: Totally ordered instances. Each point stands for the search nodes needed by
two of the three algorithms on a single combination of problem instance, search
strategy, and heuristic. The left plot compares Algorithm 1 and 2, the plot in
the middle Algorithm 1 and 3, and the right plot Algorithm 2 and 3.

comes with the drawback of postponing the state update, which might result in less in-
formed heuristic values. Figure 11 shows the coverage of the heuristic search configurations
of our system. When we compare the three algorithms, we can see that the results are
similar for all algorithms in Greedy Best-First search. Here it seems that the systematicity
has no effect on the performance. In Weighted A∗ search, the search strategy with the high-
est coverage, it can be seen that all configurations benefit from the improved algorithms.
The greatest effect can be seen in the rcLM-Cut configuration, this might be due to the high
computational effort to calculate the heuristic. The rcadd configuration shows the smallest
effect. An even greater relative improvement between the algorithms can be seen in A∗

search and especially in the rcLM-Cut and rcFF configurations.

When we compare the overall performance of all configurations, it seems that the search
contains too many dead ends that are not detected by our system to use a Greedy Best-First
search. All algorithms and heuristics benefit from including the costs of already applied
modifications into the overall evaluation of a search node. For rcFF and rcLM-Cut, a higher
influence of the heuristic value as given by the Weighted A∗ search (compared to A∗) has a
positive effect on the performance.

So far we have only seen the coverage of the three algorithms. Next we want to compare
the number of search nodes necessary to find a solution. To see whether the postponed state
update has a negative effect, we do this also by using the heuristic search algorithms, i.e.
G, A∗, and WA∗ search. As discussed in Section 4.3, on instances that are totally ordered,
the performance of all algorithms should be the same except for random effects. Figure 12
shows the performance on these instances. Each point represents the search nodes needed
by two of the three algorithms on a single combination of problem instance, search strategy
(G, A∗, and WA∗ search), and heuristic (rcadd, rcFF, and rcLM-Cut). In the left plot, the
x-axis shows the number of search nodes of Algorithm 1 and the y-axis the number of search
nodes of Algorithm 2. Points on the diagonal result from instances where the compared
algorithms need a similar number of nodes. The plot in the middle compares Algorithm 1
and 3, and the right plot Algorithm 2 and 3. The instances at the top margin indicate
instances where one of the algorithms did not find a solution while the other one has. It can
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Figure 13: Search nodes needed to find a solution in partially ordered problem instances.
Each row contains a comparison between Algorithm 1 and 2 (left), Algorithm 1
and 3 (middle) and Algorithm 2 and 3 (right). The rows show the different
search strategies: from top row to bottom row, these are G, A∗, and WA∗ search.
The different heuristics are indicated by the different symbols. The p-values of
the Wilcoxon signed rank test are (from top to bottom and from left to right):
1.4× 10−4, 5.0× 10−7, 0.033, 1.7× 10−15, 1.3× 10−14, 7.0× 10−6, 2.7× 10−11,
1.4× 10−7, 0.423.

be seen that the performance on totally ordered problem instances is similar for all three
algorithms.

Next we want to have a look at partially ordered planning instances. These are given in
Figure 13. Each row contains a comparison between Algorithm 1 and 2 (left), Algorithm 1
and 3 (middle) and Algorithm 2 and 3 (right). The rows contain the different search
strategies: the top-most row shows the results for Greedy Best-First search, the row in the
middle those for A∗ search, and the row at the bottom the results for Weighted A∗ search.
The different heuristics are indicated by the different symbols: cycles stand for rcLM-Cut,
triangles for rcFF, and crosses for rcadd.
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Figure 14: Accumulated number of solved planning problems (on the y-axis) for a given
number of generated search nodes (on the x-axis). Please be aware of the log-
scale of the x-axis.

Points below the diagonal indicate that a change of the algorithm has a positive effect
on the performance, points above indicate a negative effect. For Greedy Best-First search
the difference between the original algorithm and the two others is limited (as seen in the
coverage table) and Algorithm 2 and 3 have a similar performance. In Weighted A∗ search
(in the bottom row), it can be seen that both new algorithms have a positive effect on the
performance, though the comparison of Algorithm 2 and 3 shows that there are several
outliers (first of all from the rcFF and rcadd heuristics), where the former algorithm needs
less search nodes. But especially the instances at the right side of the diagram (where
Algorithm 3 found a solution while Algorithm 2 did not) show the improvement. Like
in coverage, the effect of the improvements can be seen best in A∗ search. Here, both
improvements have a positive effect on the performance. However, it can be seen that
especially the rcadd heuristic leads to several outliers.

We tested whether there is an statistical significant improvement between two algorithms
using the Wilcoxon signed rank test on those instances that are solved by the respective
algorithms (for the top-left diagram, this would e.g. be Algorithm 1 and 2, for the bottom-
right diagram Algorithm 2 and 3), the p-values are given in the caption of the figure. Only
the comparison of Greedy Best-First search using Algorithm 2 and 3 does not result in
a significant improvement. However, this is the configuration where the heuristic has the
highest impact.

Next we want to have a closer look at our heuristics. Figure 14 shows the accumulated
number of solved planning problems (on the y-axis) for a given number of generated search
nodes (on the x-axis). When comparing equal search strategies, a more informed heuristic
will lead to a steep rising curve, a perfect result would be one leading from the left bottom
to the left top corner of the diagram. Please be aware of the log-scale of the x-axis.

All heuristic search systems are close together, though the rcFF shows the best perfor-
mance in this evaluation. In DFS we can see the benefit of both algorithm changes. We
tested whether this improvement is statistical significant using the Wilcoxon signed rank
test on those instances that are solved by the respective algorithms. The p-value of the
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Figure 15: Coverage of several search-based HTN planning systems (including some config-
urations of our system already given in Figure 11).

comparison of Algorithm 1 and 2 is 0.0044, of Algorithm 1 and 3 it is 0.0005, and that of
Algorithm 2 and 3 is 0.0003. I.e. all improvements are significant10.

An interesting question is whether it is actually possible to estimate the goal distance
based on our heuristic model, or if the classical heuristics only do a reachability analysis
and prune search nodes that can not lead to solutions anymore. Therefore we have included
a fourth “heuristic” into our evaluation that checks whether the goal of the heuristic model
is reachable in the planning graph and returns a heuristic value of 0 if it is, or ∞, if it
is not (denoted rcfilter11). By comparing the configurations based on rcfilter to the other
heuristics, it can be seen that our RC heuristics do not only prune the search space, but are
able to guide the search based on the heuristic model. When we compare the performance
of the three algorithms using the rcfilter heuristic we can, again, see the positive effect of
the reduction of the search space. Since the search equals a BFS with dead end pruning,
the effect is even greater than in DFS.

Figure 15 shows the coverage table including the results of several systems from related
work as well as the three WA∗ configurations of our new algorithm (Algorithm 3). The
configurations of our system have the highest coverage. The second best is reached by the
approach of Alford et al. (2016), but the (plan space-based) PANDA system shows similar
performance when using WA∗ search.

Figure 16 shows the number of planning problems solved within a given time. It can be
seen that our overall system does not only reach the highest coverage, but does also need
less time than the other systems. However, the preprocessing of the Jasper planner (that is
based on the Fast Downward system) seems to be much faster than the one of the PANDA
system. When we compare the figure with these given in previous work (Höller et al., 2018a,
Figure 4), it can be seen that the preprocessing did take more time. This is caused by a
reengineering of the parser to support more languages features. Another difference is that

10. Please be aware that the test included instances where both algorithms included in the particular test
returned a solution, i.e., the set of pairs included in the test of Algorithm 1 and 3 is a different one than
included in the test of Algorithm 2 and 3.

11. Please be aware that we want to increase the impact of the heuristic on the search and therefore show
WA∗ configurations. For the rcfilter heuristic, however, this search strategy is equal to an A∗ search
because the heuristic values are either 0 or ∞.
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Figure 16: Accumulated number of solved planning problems (on the y-axis) for a time (on
the x-axis, given in seconds). Please be aware of the log-scale of the x-axis.

the TDG-based heuristics solve the simplest problems more quickly than our system. This is
caused by the transmission of the grounded model between the (Java-based) preprocessing
and the (C++-based) reimplementation of our progression search engine.

When we sum up the results we see that both new progression algorithms improve
the performance of the overall system – though there are configurations where all three
algorithms perform equally well. Though the algorithm newly introduced in this article
postpones the state update, it shows the best performance in the evaluation. The evaluation
showed that the three classical heuristics are able to guide the search based on the heuristic
model. The overall system outperforms the state of the art in search-based HTN planning.

7. Conclusion

In this article we propose progression-based heuristic search to solve HTN planning prob-
lems. We contribute two novel search algorithms and a family of heuristics.

We show that the canonical progression algorithm searches parts of the search space
more than once. This is especially a problem in HTN planning, since checking whether
a search node has been visited before is infeasible. We introduce two novel algorithms
to avoid this, one that has been presented before in a conference paper, and one that is
presented here for the first time. We show that both are sound and complete. We discuss
systematicity in HTN planning, propose a definition, and show that our new algorithm
introduced in this article is systematic according to this definition.

We further introduce a generic method to use arbitrary classical heuristics to guide the
search. This is done by relaxing the HTN planning problem into a classical problem that
is only used to calculate the heuristics. Heuristics calculated on that model are informed
about hierarchical reachability and the state transition caused by actions. We show how
the model can be updated efficiently during search and that it can be used to create safe,
goal-aware, and admissible heuristic functions for HTN planning.

Our empirical evaluation shows that both algorithms have a positive effect on the per-
formance of the overall system. It can be seen that classical heuristics calculated on the
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heuristic model do not only prune dead ends from the search space, but that they provide
goal distance estimations capable of guiding the search. The evaluation shows that our
overall system outperforms the state of the art in search-based HTN planning.
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Waisbrot, N., Kuter, U., & Könik, T. (2008). Combining heuristic search with hierarchical
task-network planning: A preliminary report. In Proceedings of the 21st International
Florida Artificial Intelligence Research Society Conference (FLAIRS), pp. 577–578.
AAAI Press.

Weld, D. S. (1994). An introduction to least commitment planning. AI Magazine, 15 (4),
27–61.

Williamson, M., & Hanks, S. (1996). Flaw selection strategies for value-directed planning.
In Proceedings of the 3rd International Conference on Artificial Intelligence Planning
Systems (AIPS), pp. 237–244. AAAI Press.

Xie, F., Müller, M., & Holte, R. (2014). Jasper: The art of exploration in greedy best first
search. In Proceedings of the 8th International Planning Competition, pp. 39–42.

880


