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ABSTRACT With the advances in high-throughput genotyping technology, the study of quantitative trait

loci (QTL) has emerged as a promising tool to understand the genetic basis of complex traits. Methodology

development for the study of QTL recently has attracted significant research attention. Local phylogeny-

based methods have been demonstrated to be powerful tools for uncovering significant associations

between phenotypes and single-nucleotide polymorphism markers. However, most existing methods are

designed for homozygous genotypes, and a separate haplotype reconstruction step is often needed to

resolve heterozygous genotypes. This approach has limited power to detect nonadditive genetic effects

and imposes an extensive computational burden. In this article, we propose a new method, HTreeQA, that

uses a tristate semi-perfect phylogeny tree to approximate the perfect phylogeny used in existing methods.

The semi-perfect phylogeny trees are used as high-level markers for association study. HTreeQA uses the

genotype data as direct input without phasing. HTreeQA can handle complex local population structures. It

is suitable for QTL mapping on any mouse populations, including the incipient Collaborative Cross lines.

Applied HTreeQA, significant QTLs are found for two phenotypes of the PreCC lines, white head spot and

running distance at day 5/6. These findings are consistent with known genes and QTL discovered in

independent studies. Simulation studies under three different genetic models show that HTreeQA can

detect a wider range of genetic effects and is more efficient than existing phylogeny-based approaches. We

also provide rigorous theoretical analysis to show that HTreeQA has a lower error rate than alternative

methods.
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The goal of quantitative trait locus (QTL) mapping is to find strong

associations representing (genomically proximal) causal genetic effects

between observed quantitative traits and genetic variations. There are

several mouse resources such as the Collaborative Cross (CC) (The

Complex Trait Consortium 2004; Collaborative Cross Consortium

2012), Heterogeneous Stock (Valdar et al. 2006), and Diversity Out-

bred (Collaborative Cross Consortium 2012; Svenson et al. 2012) for

large-scale association study of complex traits, among which the CC

captures the most genetic and phenotypic diversity (Roberts et al.

2007; Aylor et al. 2011).

Many previous QTL mapping methods consider each genetic

marker independently (Akey et al. 2001; Thomas 2004; Pe’er et al.

2006). Standard statistical tests (such as the F-test) are used to mea-

sure the significance of association between a phenotype and every

single nucleotide polymorphism (SNP) in the genome. These single

marker2based methods usually do not consider the effects of (both

genotyped and ungenotyped) neighboring markers and hence may fail

to discover QTL for complex traits. To address this limitation, cluster-

based methods, such as HAM (Mcclurg et al. 2006), QHPM (Onkamo

et al. 2002), and HapMiner (Li and Jiang 2005), have been developed.

Typically the genome is partitioned into a series of intervals. For each

interval, these methods first cluster samples based on the genotypes

within it and then assess the statistical correlation between the clusters

and the phenotype of interest. The result is sensitive to the granularity

of the partition, the definition of genotype similarity, and the choice of

clustering algorithms. More importantly, these methods tend to em-

phasize mutations as the major events that cause the differences in the
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DNA sequences of the samples. This may not fully represent the

genetic background underlying the differences.

Phylogeny trees have been widely used to model evolutionary

history among different species, subspecies, or strains (Yang et al.

2011). Their application in association study requires inferring an

accurate global phylogeny tree from the DNA sequences (Larribe

et al. 2002; Morris et al. 2002; Minichiello and Durbin 2006). This

may not be feasible for the high-density markers in current QTL

analysis. Some recent methods, such as Genomic Control (Devlin

and Roeder 1999), EIGENSTRAT (Price et al. 2006), and EMMA

(Kang et al. 2008), build global models to account for genetic effects.

EMMA computes a kinship matrix to correct the effect of the pop-

ulation structure. Genomic Control estimates an inflation factor of the

test statistics to account for the inflation problem caused by unbal-

anced population structure. EIGENSTRAT performs an orthogonal

transformation on the genotypes using principal component analysis

and then conducts the association study in this transformed space.

However, the genetic background of the samples may not always be

adequately captured by a global model. This is particularly true for the

incipient Collaborative Cross population (PreCC). There is no signif-

icant global population stratification among the PreCC lines because

each of the eight founders contributes roughly one-eighth of their

entire genome (Aylor et al. 2011). This unique design removes the

need for global population structure correction in QTL mapping.

However, local population structures may still exist. Because of the

limited number of recombinations occurred since the founder genera-

tion, the genome of each CC line is a coarse mosaic of composed

segments from the eight founders. In a genomic region, a CC line

may be determined by the contribution from a single founder and none

from the rest. Because the eight founders are from three subspecies,

local population structure may exist in these CC lines. We have ob-

served uneven genetic background at the chromosome level in the 184

genotyped PreCC lines, and such pattern becomes stronger when we

examine at finer resolutions. (Please see Results and Discussion for

further discussion of the local population structure in the PreCC lines.)

Local phylogeny becomes a natural choice for capturing this type

of effect. Several recent methods [e.g., TreeLD (Zöllner and Pritchard

2005), TreeDT (Sevon et al. 2006), BLOSSOC (Mailund et al. 2006;

Besenbacher et al. 2009), and TreeQA (Pan et al. 2008, 2009)] have

adopted local perfect phylogeny trees to model the genetic distance

between samples. These methods examine possible groupings induced

by each local phylogeny and report the ones showing strong statistical

associations with the phenotype. Because these methods require a large

number of statistical tests and their results are often corrected by large

permutation tests, they are prone to multiple testing errors and incur

significant computational burden. TreeLD and TreeDT can handle

only a very small number of SNP markers and thus they are not

suitable for large-scale QTL mapping. BLOSSOC is more efficient

and can process the entire genome but still needs days to perform

a large number of permutation tests. The recently proposed TreeQA

algorithm uses several effective pruning techniques to reduce compu-

tational burden and is able to finish large permutation tests in a few

hours.

A common limitation shared by all of these local phylogeny-based

methods is that the perfect phylogeny trees can be only constructed

from haplotypes. These methods either assume that samples are

purebred (i.e., no heterozygosity), which is not true for many large

mammalian resources, including the PreCC lines, or that a preprocess-

ing step phases each genotype into a pair of haplotypes. However,

haplotype reconstruction itself is a nontrivial process that is both

time-consuming (Scheet and Stephens 2006) and error-prone (Ding

et al. 2008). Even if haplotypes are phased accurately, the two hap-

lotypes of the same sample may be located at different branches of

a phylogeny tree and will be treated as if they were independent

samples in subsequent statistical tests. This may create a bias favoring

additive effects and lead to spurious results. For example, consider

a recessive phenotype, we use A/a to represent the majority and mi-

nority alleles at the causative locus. The local phylogeny tree built

from the surrounding region has an edge corresponding to the caus-

ative SNP that separates the samples into two groups carrying A and

a alleles, respectively. Each heterozygous A/a sample is phased into

two haplotypes, each belonging to a different group. The group having

allele a would have mixed phenotypes. This may weaken the power of

any statistical tests and fail to detect the causative edge (Wang and

Sheffield 2005, Lettre et al. 2007). The scenario may become even

worse for phenotypes having overdominant effects on heterozygous

samples.

Therefore, a natural question to ask is whether we can design a

phylogeny-based QTL mapping that can be applied to unphased

genotypes directly. In this article, we introduce the model of tristate

semi-perfect phylogeny tree directly built from unphased genotype

data and explore its utility in QTL study. Our method, HTreeQA, has

the advantages of phylogeny-based methods but does not require

a separate phasing step. We demonstrate via simulation studies that

HTreeQA can detect a wider range of genetic effects than other

alternative methods.

MATERIALS
Collaborative Cross

We use the genotypes of 184 partially inbred mice from the CC lines

(Aylor et al. 2011). On average, these mice have undergone 6.7 gen-

erations of inbreeding and have 16% heterozygosity. The genotypes at

approximately 180K SNPs are collected using the mouse diversity

array (Yang et al. 2009). The data can be accessed through the CC

status website (http://csbio.unc.edu/CCstatus/index.py). We study two

phenotypes. One is the white head spot, which was originally observed

on one of the CC founders, WSB/EiJ. Because there are no white

head-spotted mice found in F1 crosses of the CC founders, the phe-

notype is believed to be a recessive trait. Among the 184 mice, there

are four with white head spot. Another phenotype we study is the

average daily running distance for mice of 5 to 6 days old. This is

a typical measurement for mouse activity. The phentotypes are sup-

plied as supporting information, File S1.

Synthetic data sets

The phenotype was simulated using three different models of genetic

effects: additive, recessive, and overdominant (a special case of epistasis

effect) models. We include the overdominant model because we observe

that heterozygous individuals sometimes exhibit extreme phenotypes.

This phenomenon cannot be captured by an additive or recessive model.

To simulate phenotypes, we adopt the method used in Long and

Langley 1999. To simulate an additive phenotype for a given SNP, we

use the following formula:

yi 5
ffiffiffiffiffiffiffiffiffiffiffiffi

12p
p

Nð0; 1Þ1Qi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

2pð12 pÞ

r

;

where p is the percentage of the variation attributable to the quan-

titative trait nucleotide, N(0, 1) is the standard normal distribution,

and p is the minor allele frequency. In the additive model, Qi takes

values21, 0, and 1 for homozygous wild-type, heterozygous type, or
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homozygous type, respectively. For recessive and overdominant

models, we use

yi 5
ffiffiffiffiffiffiffiffiffiffiffiffi

12p
p

Nð0; 1Þ1Qi9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

2p9ð12 p9Þ

r

;

where p9 is the fraction of individuals that are homozygous mutants.

In a recessive model, Q9

i is 1 for homozygous mutant and 0 otherwise.

In an overdominant model, Qi takes 1 for heterozygous mutant and

0 otherwise. All causative SNPs are removed from the genotypes

before analysis. We represent results of a wide range of realistic

contributions of genetic variations by testing five genetic variation

settings of p: 0.05, 0.1, 0.15, 0.2, and 0.25.

We simulated genotypes of 170 independent individuals. Under

each genetic effect model, we generated 100 independent test cases

under each setting. In each case, there are 10,000 SNPs and one

causative SNP is randomly picked among the SNPs with minor allele

frequency greater than 0.15.

METHODS
Notations

We follow the convention of using primed notation for unphased

genotype data. Suppose that there are m individuals and n SNPs. We

use fS91; S92; . . . ; S9ng to represent the unphased SNPs and {S1, S2, . . ., Sn}
to represent the phased SNPs. The unphased genotypes can be repre-

sented as an m · n matrixM9, where the k-th row corresponds to the

genotype of the k-th individual and the l-th column corresponds to the

l-th SNP marker S9l . Similarly, the 2m haplotypes can be represented as

a 2m · n matrixM, where the 2k-th and (2k1 1)-th rows correspond

to the haplotypes of the k-th individual. In the haplotype matrixM, we

use 0 and 1 to represent the major allele and the minor allele of a SNP

respectively. In the genotype matrixM9, we use 0, 1, and H to represent

the homozygous major allele, the homozygous minor allele, and the

Figure 1 (A) is the perfect phylogeny tree generated on the phased
haplotypes in Table 1B. Each node is labeled by its haplotype ID,
followed by the corresponding phenotype value. (B) is a tristate
semi-perfect phylogeny tree generated on the unphased genotypes
in Table 1A. Each node is labeled by its sample ID followed by the
corresponding phenotype value. (C) is the corresponding perfect phy-
logeny tree by deleting S19 and S29 in Table 1A, and (D) is the correspond-
ing perfect phylogeny tree by deleting samples C and D in Table 1A.

n Table 1 An example of unphased data (A), its phased data (B), and its transformed result (C)

A. The unphased haplotype matrix

Sample ID S91 S29 S39 S49 S59 Phenotype

A 0 0 1 1 0 10
B 0 0 1 0 1 10
C H 1 0 0 0 2
D H H 0 0 0 10
E 1 1 0 0 0 2

B. The phased haplotype matrix

Haplotype ID S1 S2 S3 S4 S5 Phenotype

A1 0 0 1 1 0 10
A2 0 0 1 1 0 10
B1 0 0 1 0 1 10
B2 0 0 1 0 1 10
C1 0 1 0 0 0 2
C2 1 1 0 0 0 2
D1 0 0 0 0 0 10
D2 1 1 0 0 0 10
E1 1 1 0 0 0 2
E2 1 1 0 0 0 2

C. The transformed genotype matrix

ID S19ð0Þ S19ð1Þ S19ðHÞ S29ð0Þ S29ð1Þ S29ðHÞ S39ð0Þ S39ð1Þ S9

3ðHÞ S49ð0Þ S49ð1Þ S49ðHÞ S59ð0Þ S59ð1Þ S59ðHÞ

A 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0
B 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0
C 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
D 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
E 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0

Bold columns are selected for building the tristate semi-perfect phylogeny tree.
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heterozygous allele of a SNP, respectively. Table 1A shows an unphased

genotype matrix, and Table 1B shows a phased haplotype matrix.

Perfect phylogeny tree

An interval along the genome consists of a set of consecutive SNPs. It

corresponds to a submatrix Cu,vðMÞ ofM that contains all columns

between the u-th column and the v-th column. A perfect phylogeny

tree is the tree representation of the evolution genealogy for an interval

in the genome (Gusfield 1991).

Definition 1: Given an interval Cu,vðMÞ of 2m haplotypes and n

SNPs, a perfect phylogeny tree is a tree, in which the haplotype sequen-

ces are the leaves and SNPs are the edges. Given an allele of any SNP,

the subgraph induced by all the nodes that carry the same allele is still

a connected subtree.

The perfect phylogeny can be treated as an evolutionary history for

the interval. Each edge represents the mutation event that derives two

alleles of the corresponding SNP. All the haplotypes can be explained

by the the evolutionary history without any recombination event. For

example, Figure 1A shows the perfect phylogeny tree built from the

haplotypes in Table 1B.

Compatible interval

An interval Cu,vðMÞ is a compatible interval if every pair of SNP

markers in the interval pass the four-gamete test (Hudson and

Kaplan 1985). That is, at most three of the four possible allele pairs

{00, 01, 10, 11} appear in each pair of SNPs in the interval. This

implies the existence of an evolution genealogy that can explain the

evolutionary history of these two markers without recombination

events, given the assumption of an infinite site model (i.e., no

homoplasy). For a given interval, a perfect phylogeny exists if

and only if the interval is a compatible interval. If a compatible

interval is not a subinterval of another compatible interval, it is

called a maximal compatible interval.

Tristate semi-perfect phylogeny tree

The multistate perfect phylogeny tree (Gusfield 2010) is a natural

extension of the perfect phylogeny tree discussed previously. It was

originally proposed to model the rare events having multiple muta-

tions at a single locus. Because the perfect phylogeny cannot handle

heterozygous site properly, we propose a novel utility of the multistate

phylogeny in modeling heterozygosity in QTL mapping. By treating

the heterozygous allele as the third status, a tristate phylogeny tree can

be generated from a set of unphased genotypes. Because this third

state is not a result of a single mutation, the tristate phylogeny tree is

a relaxation of a perfect phylogeny tree.

Definition 2: Given an interval Cu;vðM9Þ of m genotypes and n SNPs,

a tristate semi-perfect phylogeny tree is a tree in which the genotype

sequences are the leaves and SNPs are the edges. A SNP corresponds to

an edge if only two of the three possible alleles are observed and cor-

responds to two edges if all three alleles are observed. Given an allele of

any SNP, the subgraph induced by all the nodes that carry the same

allele is still a connected subtree.

Compatibility test on genotype data

Given an interval Cu;vðMÞ in the genotype matrix, we construct a bi-

nary matrix
�������
Cu;vðM9Þ. Each column S9i in Cu;vðMÞ corresponds to

three binary columns S9ið0Þ, S9ið1Þ, and S9iðHÞ in
�������
Cu;vðM9Þ. S9ið0Þ is

generated from S9i by replacing every ‘H’ in S9i by ‘1’. S9ið1Þ is generated
from S9i by replacing every ‘H’ in S9i by ‘0’. S9iðHÞ is generated from S9i
by replacing every ‘H’ in S9i by ‘1’ and ‘0’ and ‘1’ in S9i by ‘0.’ This is

equivalent to representing the ‘0,’‘1,’and ‘H’ alleles in the heterozygous

S9i by triplets (0,0,0), (1,1,0), and (1,0,1), respectively. For example,

Table 1C shows the generated binary matrix
�������
Cu;vðMÞ for the geno-

type matrix Cu,vðMÞ in Table 1A. Note that all states in
�������
Cu;vðMÞ are

identical to that in Cu,vðM9Þ except the ‘H’ alleles and S9(H) columns.

Given an interval, the following theorem states the necessary and

Figure 2 The workflow of
HTreeQA. The inputs are the
genotype and phenotype data.
The output is a list of phyloge-
nies and their P-values for mea-
suring the association with the
phenotype, and a threshold of
P-value representing the 5%
FWER.
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sufficient condition for the existence of a tri-state semi-perfect phy-

logeny (Dress and Steel 1992).

Theorem 1: Given an interval Cu;vðM9Þ in the genotype matrix,

there exists a tristate semi-perfect phylogeny, if and only if there

exists a submatrix S formed by selecting two of the three columns in

Cu;v

�

ðM9Þ for each SNP marker, and any pair of columns in S pass

the four-gamete test.

An integer linear programming approach (Gusfield 2010) can be

used to determine whether an interval is compatible and to compute

the submatrix S. For example, in the matrix
�������
Cu;vðM9Þ shown in Table

1C, the columns selected for S are boldface. Once S is computed,

a tristate semi-perfect phylogeny tree can be constructed by applying

any standard perfect phylogeny tree algorithm on S. For example,

Figure 1B shows the tristate semi-perfect phylogeny tree constructed

from the matrix S in Table 1C.

Figure 3 Four phylogenies of 43 randomly selected (from a total of 184) PreCCmice. The sumof the edge depth between a leaf and the origin represents the
genetic distance of the corresponding mouse from the common ancestry of the 43 mice. The mice with white head spot are highlighted in red. Their nearest
common ancestor is indicated by a circled “A” in each figure. In (A), the global phylogeny is balanced, and all mice are almost equally distant from each other.
The phylogenies in (B) and (C) are no longer balanced, with several deep branches. The local population structure is a confounding factor that complexes the
QTL analysis. The tristate semi-perfect phylogeny in (D) has the simplest structure, with an informative branch that contains all four white spot mice.

Volume 2 February 2012 | Semi-Perfect Phylogeny Trees | 179



If there is no heterozygous allele, each genotype will be composed

of two identical haplotypes; the tristate semi-perfect phylogeny tree is

identical to the perfect phylogeny tree constructed on the haplotypes. If

there are some heterozygous genotypes, removing the rows or columns

in the matrix containing the heterozygous alleles does not affect the

remaining part of the phylogeny tree. The tree in Figure 1C shows

the perfect phylogeny tree constructed on S39; S49; S59 in Table 1A,

which can also be derived by collapsing the three edges labeled by

S19 or S29 in Figure 1B. If we remove nodes C and D (that have

heterozygous genotypes) in Figure 1B, the resulting tree is also iden-

tical to the perfect phylogeny tree constructed on A, B, E (Figure

1D). We observe that any heterozygosity only introduces local var-

iations in a phylogeny tree.

Another important observation can be made by comparing the

perfect phylogeny tree constructed on the haplotypes to the genotype

matrix. When the genotype matrix contains a small percentage of

heterozygosity, the tristate semi-perfect phylogeny tree shares a sub-

stantial common structure with the perfect phylogeny tree on the

haplotypes. Figure 1A shows the perfect phylogeny tree constructed

on the haplotypes in Table 1B. Note that the two haplotypes (e.g., D1,

D2) of the same genotype (e.g. D) may be associated with different

nodes in the tree. We will show later that this decoupling will weaken

the power of detecting nonadditive genetic effects. However, this tree

shares common induced subtrees with the tristate semi-perfect phy-

logeny tree. Removing the nodes associated with the decoupled hap-

lotypes will result in Figure 1D, whereas collapsing edges connecting

these nodes will result in Figure 1C.

Phylogeny tree2based test

An edge in a phylogeny tree connects two disjoint subtrees. Removing

x edges partitions the tree into x1 1 subtrees. For example, removing

the two edges labeled with S19 and S29 in Figure 1B partitions genotypes

into three groups {A, B, D}, {C}, and {E}.

The statistical correlation between a partition and the phenotype can

be examined by the F-statistics. Assuming that for a total of t individuals,

we have p groups, and the ith group contains ti individuals. We use Xij to

represent the ith element in the jth group, �Xj to represent the mean of

the jth group, and �X to represent the overall mean value. Given such

a grouping of phenotype values, G, the F-statistics is defined as

FðGÞ5
P p

j5 1tj
�

�Xj 2 �X
�2

P p
j5 1

P tj
i5 1

�

Xij 2
�Xj

�2 : (1)

The corresponding P-value of F(G) can be calculated in the follow-

ing way. If the phenotype values from each group follow a normal

distribution, an F-test is applied to obtain the corresponding P-value.

Otherwise, a permutation test is needed. The P-value is defined as
n

nPerm where nPerm is the number of permutations and n is the num-

ber of times when the F-statistics of the permuted phenotype is larger

than F(G).

We examine all possible partitions generated by removing edges in

the tree. The partition that generates the most significant P-value is

reported. The corresponding P-value is used as the nominal (uncor-

rected) P-value of the association between the compatible interval and

the phenotype.

Permutation test for family-wise error rate
(FWER) controlling

Appropriate multiple testing correction is crucial for QTL studies. In

HTreeQA, we apply the widely used permutation test to control

family-wise error rate (Westfall and Young 1993; Churchill and Doerge

1994). In each permutation, the phenotype values are randomly shuf-

fled and reassigned to individuals. For each permuted phenotype,

we repeat the previously described procedure and find the smallest

P-value. The corrected P-value is the proportion of the permuted data

whose P-values are more significant than that of the original data. We

refer to such a corrected P-value as the permutation P-value. The basic

routine of HTreeQA is summarized in Figure 2.

Comparison between TreeQA and HTreeQA

We outline two alternative approaches for local phylogeny-based QTL

mapping methods and discuss their pros and cons.

• HTreeQA: We compute compatible intervals by using integer lin-

ear programming and construct a tristate semi-perfect phylogeny

tree for each compatible interval. Then we follow the procedure

described above to find significant associations.

• Running TreeQA on phased data: We first phase the genotypes

using any standard phasing algorithm and then apply TreeQA on

the resulting haplotypes. Each haplotype is assumed to have the

same phenotype value as the original genotype.

The second approach has an inherent drawback. It decouples the

two haplotypes of the same genotype. As a result, the two haplotypes

may reside in remote branches of the tree, which limits the ability to

Figure 4 Three kinship matrices represent the genetic relatedness over the entire genome between any pair of the 184 CC mice based on the
whole genome (A), the chromosome 10 (B), and the 20-Mbps interval in Chromosome 10 (C) respectively. The mice are arranged in the same
order in both x and y axes. In (A), all off-diagonal entries have almost identical values, suggesting that there is no global population structure. In (B)
and (C), the mice are arranged in the order of their genetic relatedness, genetically similar mice are near each other.

n Table 2 Selected methods for comparison

Methods

Nonphylogeny-based methods SMA, HAM, EMMA
Phylogeny-based methods BLOSSOC, TreeQA, HTreeQA
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test certain genetic effects in QTL mapping. For example, the

phenotype in Table 1A follows a recessive model defined on S29 :

the phenotype is 2 for samples (C, E) having minor allele (‘1’) and

is 10 for the remaining samples A, B, D (with alleles ‘0’ or ‘H’). There

does not exist a set of edges in Figure 1A that can perfectly separate

these two groups. (The haplotype D2 will always be in the same group

as C1, E1, E2.) In contrast, the tristate semi-perfect phylogeny tree has

an edge S29 that perfectly separates A, B, and D from C, E. Therefore,

the tristate semi-perfect phylogeny tree is more suitable for handling

heterozygosity in association studies. We provide a theoretical com-

parison of these two approaches in Appendix 1.

RESULTS AND DISCUSSION
Population structure in the PreCC lines

Population stratification is an important issue in QTL analysis.

Spurious associations may be induced by the stratification if it is

not addressed properly (Kang et al. 2008). The combinatorial breeding

design of the CC yields genetically independent incipient CC lines,

which ensures balanced contributions of all eight founder strains

without noticeable global population stratification (Aylor et al.

2011). Figure 3A shows a global phylogeny tree of 43 randomly se-

lected PreCC lines. The balanced tree structure illustrates that these

mice are genetically diverse and equally distant from each other. This

observation is further confirmed by the kinship matrix in Figure 4A

used by EMMA for modeling genetic background (Kang et al. 2008).

In Figure 4A, each row (column) of the kinship matrix corresponds to

a CC strain. Each entry in the matrix is the kinship coefficient that

represents the genetic relatedness between the two mice. We can

observe that all off-diagonal entries in Figure 4A have almost identical

values (around 0.8), which suggests that no significant global popula-

tion stratification exists in these PreCC mice. (In Appendix 2, we

provide a statistical analysis that EMMA degenerates to a standard

linear model when applied to the CC lines.)

Although the genome of each CC line receives a balanced con-

tribution from each founder strain, the founder contribution is not

uniformly distributed along the genome because of the small number of

recombination events undergone by each CC line. The genome of a CC

line is essentially a mosaic of a small number of founder haplotype

segments. On average, Pre-CC autosomal genomes had 142.3 segments

on average (SD ¼ 21.8) with a median segment length of 10.46 Mb

(Aylor et al. 2011). As a result, some local subpopulation structure may

be observed because the eight founder strains are not equally distant

from each other (i.e., three of founders are wild strains). The subpopu-

lation structure is visible at the chromosome level. For example, there are

several deep branches in the phylogeny tree of the selected PreCC mice

built on Chromosome 10 (Figure 3B). The corresponding kinship matrix

in Figure 4B shows that there are at least three subpopulations. The

subpopulation structure is more evident if we narrow down to a 20 Mbps

interval from 85 Mbps to 105 Mbps on Chromosome 10. The phylogeny

tree in Figure 3C becomes more skewed, and the corresponding kinship

matrix in Figure 4C also exhibits more pronounced structural patterns.

Selected methods for comparison

We compare our algorithm HTreeQA with existing methods: TreeQA

(Pan et al. 2008, 2009), BLOSSOC (Mailund et al. 2006; Besenbacher

et al. 2009), EMMA (Kang et al. 2008), and HAM (Mcclurg et al.

Figure 5 QTL mapping of the white head spot phenotype. Only the SNPs that have top 0.5% -log(p-value) or BLOSSOC score are plotted. One
QTL is detected by HTreeQA, which is near the location of gene kit ligand. The remaining methods except HAM have similar results to that of
HTreeQA. The dashed line is the significance level with FWER ¼ 0.05. (A) Result from HTreeQA. (B) Result from TreeQA. (C) Result from EMMA.
(D) Result from BLOSSOC. (E) Result from HAM. (F) Result from SMA.
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2006) using both real and simulated data sets. Some other methods,

such as HapMiner (Li and Jiang 2005) and TreeLD (Zöllner and

Pritchard 2005), are too slow to process large data sets. For compar-

ison purposes, we also implemented two other methods: SMA (single

marker association mapping) and HAM (haplotype association map-

ping). In SMA, each SNP marker partitions samples into groups on

the basis of the alleles. Analysis of variance is used to evaluate the

significance of the partition. In HAM, a sliding window of three

consecutive SNP is used to group samples on the basis of their sequen-

ces, and an analysis of variance is conducted to test the association

between the phenotypes and the grouping. FastPhase (Scheet and

Stephens 2006) is used to reconstruct haplotypes from the geno-

types for the methods that require haplotype data (TreeQA and

BLOSSOC).

Note that BLOSSOC, TreeQA, and HTreeQA are phylogeny-based

methods. SMA, HAM, and EMMA are nonphylogeny-based methods.

Although EMMA offers an option to use global phylogeny to estimate

the kinship matrix, it does not test the associations between the

phenotype and the phylogenetic trees. Table 2 shows the selected

methods for comparison.

Performance comparison on the white head
spot phenotype

The white head spot is known as a recessive trait carried by WSB/EiJ

(Aylor et al. 2011). We apply the selected methods to the white

head spot phenotype. A permutation test is applied to control the

FWER (Westfall and Young 1993, Churchill and Doerge 1994). With

FWER ¼ 0.05, all the selected methods except HAM identify a QTL,

which is approximately 100M bps in Chromosome 10 (Figure 5). This

QTL is close to a gene named kit ligand known to be controlling white

spotting (Aylor et al. 2011). HAM fails to detect the QTL because it

does not consider the compatibility between consecutive SNPs. The

incompatibility between two consecutive SNPs suggests a high possi-

bility of having a historical recombination event between them. Treat-

ing an interval containing incompatible SNPs as a single locus may

lead to spurious results. The phylogeny-based methods, including

HTreeQA, can avoid this problem by only examining phylogeny trees

constructed from compatible intervals.

In each panel of Figure 3, A2D, the nearest common ancestor of

the four white head spot mice (highlighted in red) is marked by a cir-

cled “A.” We observe from Figure 3, A2C that the distance between

the common ancestor and the four mice becomes smaller when the

interval on which the tree is built becomes shorter. It is evident that the

four white spot mice are clustered in the phylogeny tree built over the

20 Mb region in Figure 3C, despite the local population structure. This

becomes clearer in Figure 3D, where the four white head spot mice

having white head spot located on the same branch of the tristate semi-

perfect phylogeny tree built on the compatible interval at the QTL. This

demonstrates the effectiveness of the proposed model.

Performance comparison on the mouse running
distance phenotype

We apply the selected methods on the phenotype “Mouse Running

Distance at day 5/6.”With FWER¼ 0.05, all the methods except SMA

identified a QTL at 169 to 169.2 Mbp (89 cM) on Chromosome 1 as

shown in Figure 6. The QTL falls into the previously reported cplaq3

region (Mayeda and Hofstetter 1999). A later study also confirmed

this QTL (Hofstetter et al. 2003).

Figure 6 QTL for mice daily average running distance. Only the SNPs that have top 0.5% -log(p-value) or BLOSSOC score are plotted in the
figure. The dashed line is the significance level with FWER ¼ 0.05. (A) Result from HTreeQA. (B) Result from TreeQA. (C) Result from EMMA. (D)
Result from BLOSSOC. (E) Result from HAM. (F) Result from SMA.
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Among the selected methods, only HTreeQA identified another

QTL with FWER¼ 0.05, in the region of 16 M to 25 Mbps (8-12.5 cM)

on Chromosome 12. The QTL falls into an unnamed QTL region at 11

cM on Chromosome 12 reported in (Hofstetter et al. 2003). The reason

that many methods fail to report this QTL is that these methods have

limited power in detecting non-additive effects. This result demon-

strates that HTreeQA can detect more types of effects than the other

methods.

Simulation study

To examine the performance of HTreeQA in a controlled environ-

ment, we simulated three different types of effects: additive, recessive,

and overdominant. For each selected method, only the SNPs with

significance level FWER ¼ 0.05 are reported as QTL. Because we

remove the causative SNPs in the simulated data before we run QTL

analysis, to measure the accuracy of the result, we considered a reported

QTL a true positive when it was located within 50 SNPs from the

causative SNP. We used three measurements to estimate the perfor-

mance of each method: precision, recall, and F1 score. Precision is

defined as the ratio between the number of true QTL that are detected

and the total number of detected QTL. Recall is defined as the ratio

between the number of true QTL that are detected and the total

number of true QTL that are simulated. The F1 score is the harmonic

mean of precision rate and recall rate, and is defined as follows:

Figure 7 Comparison of HTreeQA, TreeQA, SSA, BLOSSOC, EMMA, and HAM under different genetic models. (A), (D), and (G) are under
additive models; (B), (E), and (H) are under recessive models; (C), (F), and (I) are under overdominant models.
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F15
2 · Precision ·Recall

Precision1Recall
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Figure 7 compares selected methods. HTreeQA shows comparable

performance to that of other methods in the additive model. In the

recessive model and the overdominant model, HTreeQA demon-

strates significant advantage over other methods. Because HTreeQA

does not have any assumption of the type of genetic effect, it offers

consistent power for detecting any effect. Other methods except HAM

implicitly assume the additive model.

The phasing step required by the phylogeny-based methods

BLOSSOC and TreeQA (for handling heterozygosity) will impair

their ability in detecting associations between the phylogeny and

the phenotype. The extent of its effect varies for different genetic

models, especially with regard to heterozygous samples. It affects

the additive model the least and overdominant model the most. For

a homozygous sample, the nodes corresponding to the two haplotypes

carry the same allele, and thus their phenotypes always belong to the

same allele group. This may cause minor inflation of the QTL signals

because the two haplotypes are treated as independent samples by

these methods. For a heterozygous sample the two haplotypes carry

different alleles and therefore their corresponding nodes and pheno-

type are in two allele groups. Under the additive model assumption,

one allele group contains all homozygous samples with high phenotype

values, and the other contains all homozygous samples with low

phenotype values. The heterozygous samples have medium phenotype

values, which are added to both allele groups. This may cause minor

deflation of the QTL signals. This is why all selected methods have

comparable performance. TreeQA slightly outperforms others because

its local phylogeny trees can well model the local population structure

and separate QTL signals from genetic background.

However, under the assumption of overdominant model, het-

erozygous samples may have extreme phenotype values (beyond

the range of phenotype values of the homozygous samples). These

extreme phenotype values will always be in both allele groups;

therefore, the phylogeny representation for phased data cannot

explain the overdominant effects at all. This is why the traditional

phylogeny-based methods like BLOSSOC and TreeQA fail under

such a model. Note that HTreeQA does not require phasing. The

tristate semi-perfect phylogeny tree has a partition that separates

the heterozygous samples from the homozygous samples and thus

it is able to detect an overdominant effect. Under the recessive

model assumption, the heterozygous allele carries the same effect

as one of the two homozygous alleles. Thus, the impact of assigning

haplotypes of the heterozygous samples to the two allele groups is

greater than that under the additive model and is not as great as

that under the overdominant model. Again, this does not affect

HTreeQA. Overall, HTreeQA has the best performance in recessive

models and overdominant models.

Running time comparison

We present the running time for each selected method on a machine

with Intel i7 2.67-GHz CPU and 8-G memory. We tested all methods

using a dataset containing 180K SNPs and 184 individuals. Table 3

shows the running time of these methods. If phasing is required, this

step usually takes more than 40 hr and dominates the running time.

HTreeQA demonstrates a great advantage by completely avoiding

haplotype reconstruction. It is more than 600 times faster than the

other methods that require haplotype data. HTreeQA is 15 times faster

than EMMA because it does not need to explicitly incorporate the

effect of global population structure as EMMA does. The running time

of HTreeQA is comparable with that of SMA and HAM, the simplest

models for QTL studies. They are not as effective as HTreeQA, as

demonstrated in the real phenotype and simulation studies.

The choice between HTreeQA, TreeQA, and EMMA

HTreeQA is proven to have an overall lower error rate than TreeQA

and other similar approaches (in Appendix 1). It can handle hetero-

zygous genotype properly. It is suitable for genome-wide association

studies on any populations, including the incipient CC lines, Hetero-

geneous Stock, Diversity Outbred, and Recombinant Inbred Crosses

of CC lines. TreeQA is the best choice if one focuses on the additive

effects. EMMA can correct for global population structure but is not

able to address any local population structure. It degenerates to a sim-

ple linear model when applied to CC population with an evenly

distributed global population structure as shown in Appendix 2. This

represents a limitation of EMMA because local population structures

exist in every mammalian resource, even though we only show the

results on the CC population in this article.

CONCLUSIONS
We propose a novel approach for local phylogeny-based QTL

mapping on genotype data without haplotype reconstruction. We

analyze the incipient CC and show that there is no significant global

population structure but visible local population structure. Such local

population structure may bias the QTL mapping if it is not addressed

properly. The notion of a tristate semi-perfect phylogeny tree is

introduced to represent accurate genetic relationships between

samples in short genomic regions. As a generalization of the perfect

phylogeny tree (defined on haplotypes), a tristate semi-perfect

phylogeny tree treats the heterozygous allele as the third state. It

provides the power of modeling a wide range of genetic effects and

delivers unbiased and consistent performance. It also guarantees

a lower theoretical error rate of statistical tests than the perfect

phylogeny based approach. This is a significant advantage over any

previous methods that have strong bias toward an additive model. It is

also worth noting that HTreeQA is much more computationally

efficient than any alternative approach.
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APPENDIX 1

THEORETICAL ANALYSIS ON HTREEQA AND TREEQA
In this section, we present the theoretical analysis of HTreeQA and TreeQA under different genetic models. It can be shown that HTreeQA has

a theoretical advantage over the general phylogeny-based approach using phased haplotypes. We first prove that testing single SNPs on genotypes

data has lower error rate than on phased haplotype data. We then analyze its potential effect on these two different phylogeny approaches.

We assume that the causative SNP contains n1 homozygous subjects, nh heterozygous subjects, and n0 homozygous wild subjects. We also

assume that the phenotypes can be approximated by a normal distribution, which is a reasonable assumption in most cases. We use Xi1, Xih, and

Xi0 to model each subject in these three groups:

Xi1 � Nð1;f1Þ

Xi0 � Nð0;f0Þ

Xih � Nðmh;fhÞ

Without loss of generality, we assume the samples are independent and follow three normal distributions with different means and variances

for each group. If mh equals 0 or 1, it is a recessive model. If mh is between 0 and 1, it is an additive model. Otherwise it is an overdominance

model. If we use a phylogeny-based approach on phased haplotypes, each homozygous subject has a duplicate homozygous subject, and each

heterozygous subject is treated as two different homozygous subjects. Thus we could use two groups to represent the partition of this SNP, {X11,

. . ., Xn11, X11, . . ., Xn11, X1h, . . ., Xnhh} and {X10, . . ., Xnhh, X10, . . ., Xn00, X1h, . . ., Xnhh}. If we use HTreeQA, which is directly applied on genotype

data, there are three groups based on the allele of each subject, {X11, . . ., Xn11}, {X1h, . . ., Xnhh}, and {X10, . . ., Xn00}.
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Following Equation 1 in the Methods and A1 to A10, we define FHaplotype and FGenotype to represent the F-statistics of these two different

groupings respectively.

FHaplotype 5
SHaplotype

THaplotype

FGenotype 5
SGenotype

TGenotype

For the following analysis we assume that n1, nh, and n0 are large numbers, and we use ‘a � b’ to denote a and b are asymptotically equal

when the sample size approaches infinity. Here b is a number instead of a distribution. Similarly, we use ‘≲’ and ‘≳’ to represent asymptotically

less than and greater than relationship respectively. Next, we prove that directly testing associations between a phenotype and the genotypes has

a lower error rate than testing the association between the phenotypes and phased haplotypes when the sample size is large.

First, for large sample sizes, we have the following lemmas as an immediate consequence of the Weak Law of Large Number Theorem,

LEMMA 1
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LEMMA 2 SHAPLOTYPE ≲ 2SGENOTYPE

Proof
Sketch: The asymptotic values for variables in Equations A7 and A9 are determined by Lemma 1. And the expanded form of SHaplotype 2

2SGenotype is a quadratic function of mh, and its discriminant is smaller than 0.

LEMMA 3
N random variables Yi are independent and identically distributed, with mean value m and finite variance u. For any real number g 6¼ m, when

N/ N, we have
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LEMMA 4 THAPLOTYPE ≲ 2TGENOTYPE

Proof
�X1, �X0 and �Xh converge to the mean of Xi1, Xi0 and Xih by Lemma 1, but �X9

1 and �X9
0 converge to two different values as shown in Lemma

1. Lemma 4 follows directly from Lemma 3.

THEOREM 2 FHAPLOTYPE ≲ FGENOTYPE

Proof
This can be directly proved from Lemmas 2 and 4.

We use FNull to represent the statistics of testing non-causative partitions from either a semi-perfect phylogeny tree or a perfect phylogeny

tree. Because phenotype values can be approximated by a normal distribution, the distributions of FNull using these two approaches converge to

the same distribution. Although it is unlike that the causative SNP is genotyped in real situation, by linkage disequilibrium, there exists a partition

in the semi-perfect phylogeny tree or the perfect phylogeny tree based on neighboring SNPs that is very similar to the partition of the causative

SNP. Therefore, we have the following theorem.

THEOREM 3 P(FNULL . FHAPLOTYPE) ≳ P(FNULL . FGENOTYPE)
The probabilities in the Theorem 3 are the error rates of TreeQA on phased haplotypes and HTreeQA on genotypes.

APPENDIX 2

EMMA WILL DEGENERATE TO STANDARD LINEAR MODEL IN COLLABORATIVE CROSS
First, we define a new class of matrix named Kuniform(D, S),

KuniformðD; SÞ5
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(A12)

where D represents the diagonal entries and S represents the off-diagonal entries in the matrix.

Assume that y is a vector of phenotypes, X is a vector of fixed effects from a SNP, and e is a vector of residual effects for each individual. We

omit the indicator matrix Z used in original EMMAmodel, because in the CC data, Z is an identity matrix. The EMMAmodel is presented in the

following form:

y5m11Xb1 u1 e (A13)

u � MVN
�

0;s2
KKemma

�

(A14)

m � Norm
�

0;s2
m

�

(A15)

e � MVN
�

0;s2
eKuniformð1; 0Þ

�

(A16)

where MVN represents a multivariate normal distribution. Kemma is the kinship matrix inferred by the EMMA package.

Similarly, a standard linear model is in the following form:

y5m11Xb1 e (A17)

m � Norm
�

0;s2
m

�

(A18)

e � MVN
�

0;s2
eKuniformð1; 0Þ

�

(A19)

Assuming the samples of a population have exactly the same relatedness S:

Kuniformð1; SÞ5KuniformðS; SÞ1Kuniformð12 S; 0Þ (A20)

m1 � MVN
�

0;smKuniformð1; 1Þ
�

(A21)

e � MVN
�

0;smKuniformð1; 0Þ
�

(A22)
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Thus, if Kemma ¼ Kuniform(1, S), by re-factorization of the random effects in the EMMA model, we have

y5m11Xb1 e (A23)

m1 � MVN
�

0;Kuniformðs2
m 1s2

KS;s
2
m 1s2

KSÞ
�

(A24)

e � MVN
�

0;s2
eKuniformðð12s2

KÞS1 1; 0Þ
�

(A25)

This has the same form of a standard linear regression model. In CC, the kinship matrix can be represented by a Kuniform matrix with tolerable

numerical error. This suggests that there is no significant difference between EMMA and the standard linear regression model when these two

methods are applied to Collaborative Cross data.
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