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IntroductionIntroductionIntroduction

• Need to develop environment friendly transportation 
systems

• Electrical energy is very attractive
• Need to develop new design methods for electrical 

vehicle

Revolutionize 
Aviation

Increase      Safety Reduce 
Noise

Increase     
Mobility

Reduce 
Emissions

Increase Capacity

Objective : Objective : 
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Aircraft DesignAircraft Design

Historically, aircraft have been designed using extrapolations of regressed data:

This methodology works well if new designs are similar to prior designs. For example, the evolution 
of most commercial airliners build upon small improvements over the previous generation of 
airliners.  

Revolutionary designs, however, have no historical database to draw upon, making design by 
extrapolation impossible.

Modern design methods address the design of revolutionary vehicles through increased reliance on 
physics-based modeling, made possible through rapid increases in computational capabilities

Physics-Based Modeling and
Simulation
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Impact of Propulsion TechnologyImpact of Propulsion TechnologyImpact of Propulsion Technology

Propulsion 
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Source: AirbusSource: Centinnial of Flight.orgSource: Eric Upton Source: Eric Upton

Electric propulsion technology is one such revolutionary advance, and could 
herald dramatic changes in the way aircraft are designed.

Traditionally, revolutionary advances in propulsion technology have lead to 
revolutionary leaps in aircraft design
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Electric Propulsion for AircraftElectric Propulsion for AircraftElectric Propulsion for Aircraft

To date, electric propulsion has not been considered feasible for incorporation 
into aircraft:

Primary advantages of electric propulsion for aircraft include:

Current Energy Densities for Existing Power 
Sources (kWh/kg)

Past research has focused heavily on 
ground-based applications of electric 
power, with little emphasis placed on 
reducing weight and volume.  More 
current research, especially in the 
automotive industry, is paying more 
attention to these issues, making electric 
propulsion for aviation a consideration. 

- Too heavy
- Too volumetrically inefficient
- Low energy density

Lower emissions
Lower noise
Possible military applications (lower observables)
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Physics-Based Electric Propulsion ModelingPhysicsPhysics--Based Electric Propulsion ModelingBased Electric Propulsion Modeling

Main Bus

Payload

Avionics

Other
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Propeller
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Notional Electric Propulsion System 

The electric motor used to translate the power generated by the fuel cells to propulsive 
power is a key element.  Accurate estimates of weight, volume, and power are crucial.

High temperature superconducting motors have the potential to offer significant 
performance advantages over conventional electric motors.
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• To be included in an system optimization software
• To be linkable to other model modules

SUPERCONDUCTING
PROPULSION MOTOR

Ppropulsion

RPM Size
Weight
Optimum shape factor

Losses/efficiency

Maximum
Bulk

S/c material
• J(B)
• Mechanical 
behavior Critical 

Speed

Critical 
Torque

Electric propulsion motor sizing modelElectric propulsion motor sizing modelElectric propulsion motor sizing model
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• Simplified model implemented in FEA software

Electric propulsion motor sizing modelElectric propulsion motor sizing modelElectric propulsion motor sizing model
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• Preliminary sizing
• Idea of the size
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Determine HTS wire operating pointDetermine HTS wire operating pointDetermine HTS wire operating point

• Characteristic Jc(B) of the wire
• Load curve of the coils
• Operating point of the material at 

0.6 0.8j
jc
= →

Jc(B) of the wire and magnet load curve

Ironless field coil, magnetic housing
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Electric propulsion motor sizing modelElectric propulsion motor sizing modelElectric propulsion motor sizing model
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Cooling System sizing modelCooling System sizing modelCooling System sizing model

• Sizing model

Size
Weight

Efficiency
COOLING SYSTEM

SUPERCONDUCTING
PROPULSION MOTOR

Ppropulsion

RPM Size
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Cryocooler Scaling ModelCryocooler Scaling ModelCryocooler Scaling Model
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• non weight optimized
• use standard compressor
• expected to improve

Model constructed from actual specifications of commercially 
available cryocoolers
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Test Case: Cessna 172Test Case: Cessna 172Test Case: Cessna 172

Overall Height: 8’11” 2.72m
Overall Length: 27’2” 8.28m
Wing Span: 36’1” 11.0m
Engine Output: 160hp 120kW
Cruise (80% Power):    122kts 226kph
Range (80% power) :580nm 1074km
Takeoff Gross Weight: 2450lbs 1111kg
Max. Useful Load: 837lbs 380kg

• Mechanically very simple, easy to model 
• Perfect target for technology “upgrades”
• Represents a likely size for advances in 

power generation using fuel cells
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System ApproachSystem ApproachSystem Approach
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• 200 HP
• 3000 RPM
• Bi2223/Ag

• Minimum of 
weight for 
operation at 55K

Need to optimized the system [HTS motor-cooling apparatus].

Model predict a total active weight of 100kg for the HTS propulsion 
motor to be compared to 160kg of the conventional engine.
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ConclusionConclusionConclusion

• advances in aircraft technology are often the result of 
major advances in propulsion technology

• The use of electric motor technology on aircraft could be 
one such major advance

• The HTS motor is a promising candidate for electric 
motor application in aircraft
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