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�e joint of WiFi-based and vision-based human activity recognition has attracted increasing attention in the human-computer
interaction, smart home, and security monitoring �elds. We propose HuAc, the combination of WiFi-based and Kinect-based
activity recognition system, to sense human activity in an indoor environmentwith occlusion, weak light, and di	erent perspectives.
We �rst construct a WiFi-based activity recognition dataset named WiAR to provide a benchmark for WiFi-based activity
recognition. �en, we design a mechanism of subcarrier selection according to the sensitivity of subcarriers to human activities.
Moreover, we optimize the spatial relationship of adjacent skeleton joints and draw out a corresponding relationship between CSI
and skeleton-based activity recognition. Finally, we explore the fusion information of CSI and crowdsourced skeleton joints to
achieve the robustness of human activity recognition. We implemented HuAc using commercial WiFi devices and evaluated it in
three kinds of scenarios. Our results show that HuAc achieves an average accuracy of greater than 93% using WiAR dataset.

1. Introduction

Human activity recognition is an important research problem
in the social life, pervasive computing, and security monitor-
ing �elds [1–3]. Daily activities [4] were seen as an important
means of communicating in our daily life, and we can
communicate through body language like hands and head
rather than speaking. �erefore, human activity recognition
systems have been proposed in terms of application demand,
technical support, and auxiliary devices.

Previous works related to activity recognition are roughly
divided into three categories including wearable-based,
vision-based, and WiFi-based. Wearable-based sensing be-
havior has been popular and widely used in elder healthcare,
smart sensing, sports application, and tracking [1, 5, 6].
Researchers leverage the collecting information via sensors
to recognize human behavior and analyze human health con-
dition. However, it has several limitations such as increasing
the burden of users, the inconvenience of routine life, and
sensors with limited power. Vision-based activity recognition
has been popular and achieves high accuracy. �e light,
shadowing, privacy protection, and angle factors increase the

di�culty of activity recognition and constrain the application
�elds. Microso� released Kinect technology and Kinect can
provide skeleton information using built-in sensors [7, 8].
Although Kinect-based activity recognition solves the light-
environment problem and can track the skeleton joints of an
activity with high accuracy, it cannot recognize the imperfect
activity due to the crowded room, the presence of obstacles, and
out of the monitoring range.

With the coverage ofWiFi signals and the improvement of
wireless infrastructures in public places, WiFi-based activity
recognition systems [4, 9–11] leverage the change pattern of
WiFi signals re�ected by a human body to recognize the
activity. WiFi-based activity recognition systems [12–14] not
only ease the burden of wearable-based users, but also can
sense the presence of obstacles in comparison with Kinect-
based works. For example, WiVi [14] can sense the user’s
behavior through the wall, and RF-Capture [11] tracks the
3D positions of a human body when the person is occluded
completely and captures the human �gure without wearable
devices.

We are interested in BodyScan system [15], and it is
estimated on the idea of the combination of the wearable
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sensors andWiFi signals. Moreover, it overcomes key limita-
tions of existing wearable devices by providing a contactless
and privacy-preserving approach to capture a rich variety
of human activities. Based on this work, we explore the
combination of CSI and skeleton data to sense human behav-
ior. According to the works mentioned above, we explore
three issues of activity recognition in this paper. First, we
construct a WiFi-based activity recognition dataset named
WiAR to provide a benchmark for previous works. Second,
we design the mechanism of subcarrier selection to improve
the robustness of activity recognition in the WiAR dataset.
�ird, we combine WiFi signals with crowdsourced skeleton
data to improve the accuracy and robustness of activity
recognition breaking the limitations of Kinect technology.
�e contributions of our work are summarized as follows:

(i) We propose a HuAc system to recognize human
activity and also construct a WiFi-based activity
recognition dataset named WiAR as a benchmark to
evaluate the performance of existing activity recogni-
tion systems. We use the kNN, Random Forest, and
Decision Tree algorithms to verify the e	ectiveness of
the WiAR dataset.

(ii) We detect the start and end of the activity using
the moving variance of CSI. Moreover, we leverage�-means algorithm to cluster e	ective subcarriers
according to subcarrier’s sensitivity and improve the
robustness of activity recognition.

(iii) We develop a selection method of skeleton joints
based on KARD’s work named SSJ, and it considers
the spatial relationship and the angle of adjacent
joints as auxiliary information of human activity
recognition to improve the accuracy of tracking.

(iv) We implement the fusion framework of CSI and
skeleton data to sense the activity and solve the
limitations of CSI-based and skeleton-based activity
recognition, respectively. Experimental results show
that HuAc achieves the accuracy of greater than 93%.

�e rest of this paper is organized as follows. We intro-
duce the related work in Section 2. Section 3 introduces
preliminaries of WiFi-based activity recognition, and we
describe the overview of HuAc in Section 4. Section 5
describes Kinect module, and WiFi module is shown in
Section 6. Section 7 describes the process of human activity
recognition. Section 8 evaluates the performance of HuAc
system, and we give a case study about a motion-sensing
game using WiFi signals in Section 9. Section 10 lists several
discussions, and we give the conclusion of this paper in
Section 11.

2. Related Work

In this section, related works on human activity recognition
can be divided into two categories: Kinect-based,WiFi-based.

2.1. Kinect-Based Activity Recognition. Vision-based activity
recognition has been proposed and developed in the com-
puter vision �eld. With the release of Kinect, researchers

explore the human activity recognition using depth informa-
tion and skeleton joints data provided by Kinect [7, 8, 16].
Biswas and Basu [8] leverage the histogram of depth infor-
mation to recognize eight gestures. Moreover, the di	erences
between continuous frames can obtain the motion pro�le to
describe various gestures. Other works [7, 16] leverage depth
information in combination with color image to improve the
accuracy of gestures recognition. �e limitations of Kinect-
based activity recognition contain the restriction of sensing
�eld, skeleton joints overlapping, and position-dependence
factors. HuAc system explores the spatial relationship of
skeleton joints to describe the trajectory of an activity and
combines with CSI to improve the robustness of human
activity recognition in a dynamic environment.

2.2. WiFi-Based Activity Recognition. Early works [17–19]
explore the attenuation characteristics of WiFi signals to
locate the position of someone and count the number of
people in the indoor environment. Researchers study the
signal pattern re�ected by a human body to sense human
behavior [11, 20–22]. �ese works describe human behav-
ior recognition using coarse-grained RSSI information. For
example, WiGest [18] studies the relationship between RSSI
�uctuation and gestures to controlmedia player actions with-
out training. �erefore, we explore the relationship between
RSSI �uctuation and humanmovement to detect the presence
of an activity.

With the requirement of the practical application and
the limitations of RSSI, an increasing number of researchers
begin to explore �ne-grained channel state information (CSI)
to sense human behavior. Compared with RSSI, CSI can
capture the tiny behavior [2, 9, 23–28] in terms of location,
speed, and direction.WiFall system [2] detects a fall behavior
by learning the speci�c CSI pattern. E-eyes [9] recognizes
walking activity and in-place activity by adopting moving
variance of CSI and �ngerprint technique. Walking activity
causes signi�cant pattern changes of the CSI amplitude
over time, since it involves signi�cant body movements
and location changes. In-place activity (watching TV) only
involves relative smaller body movements and will not cause
signi�cant amplitude changes with repetitive patterns. �e
relationship between an activity and the place where an
activity occurs motivates the novel idea on human activity
recognition. CARM [10] shows the correlation between CSI
value and human activity by constructingCSI-speed andCSI-
activity model. WiDance [28] explores the Doppler shi�s
re�ected by human behavior to predict the motion direc-
tion for the Exergames. We design the combination system
of Kinect-based and WiFi-based methods to recognize an
activity in di	erent environments such as gaming system,
supermarket, and elder health applications.

3. Preliminaries

3.1. RSSI and CSI. Received Signal Strength Indicator (RSSI)
[29] in the level of packet represents signal-to-interference-
plus-noise ratio (SINR) over the channel bandwidth as
follows:

RSSI = 10 lg (‖�‖2) , (1)
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Figure 1: Skeleton joints.

where � is signal voltage. RSSI is the received signal strength
in decibels (dB) and mapped into the distance according
to Log-distance path loss model to roughly locate users or
devices.

Channel State Information (CSI) depicts multipath prop-
agation at the granularity of OFDM subcarrier in the fre-
quency domain. It contains amplitude and phase measure-
ments as follows:

ℎ = |ℎ| �� sin �, (2)

where |ℎ| and 	 are the amplitude and phase, respectively.
�e variable ℎ shows CSI value of each subcarrier. We study
the characteristics of each subcarrier to sense activity in the
following work.

3.2. Kinect Technology. Kinect (RGB-D camera) refers to the
advanced RGB/depth sensing, hardware, and the so�ware-
based technology that interprets the GRB/depth information.
�e hardware contains a normal RGB camera, a depth
sensor (infrared projector and infrared camera), and a four-
microphone array, which is able to provide depth signals,
RGB images, and audio signals simultaneously. Kinect-based
activity recognition algorithm frequently fails due to occlu-
sions, overlapping joints (limbs close to the body), or clutter
(other objects in the scene) [7]. A skeleton reported by Kinect
contains 15 joints in Figure 1. We explore the corresponding
relationship between skeleton joints and CSI to analyze
the characteristics of an activity. Moreover, we explore the
fusion information to improve the accuracy of human activity
recognition. �e details of Kinect-based activity recognition
are listed in Section 5.

3.3. WiAR: Constructing WiFi-Based Activity Dataset. At
present, there is noWiFi-based public activity dataset as well
as vision-based public activity dataset. Due to the sensitivity
of WiFi signals, it is hard for peer researchers to reproduce
and evaluate previous works. �erefore, we construct the
WiAR dataset which collectsWiFi signals re�ected by sixteen
activities in three indoor environments such as empty room,
meeting room, and o�ce listed in Table 1. Each activity is
performed 50 times by 10 volunteers which consist of �ve

Kinect 

applications

Public Family Research

Crowdsourcing

Skeleton joints 
data

Collecting WiFi 
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Input of HuAc 
system

+

Figure 2: �e framework of crowdsourced dataset.

females and �ve males, and the height of human body ranges
from 150 cm to 185 cm.

�e environmental complexity according to the room
layout divides into three levels including empty environment,
normal environment, and complex environment. First, empty
environment describes no people and furniture around it.We
obtain the high-quality WiFi signals from the empty room
due to less noise and treat it as a baseline of WiAR dataset.
�en, the normal environment contains furniture and work-
ing people. Compared with the empty environment, the
multipath e	ect re�ected by the furniture enriches collecting
WiFi signals. Finally, a complex environment with furniture
and moving people increases the di�culty of human activity
recognition. �e performance of WiAR dataset is given in
Section 8.

3.4. Crowdsourced WiFi Signals and Skeleton Joints. Crowd-
sourced-based applications [30–37] have been increasingly
developed by collecting data and reducing the cost in the
Internet �eld. For the macrolevel network, the work [30]
proposed a crowdsensing-oriented mobile cyber-physical
system to provide the practical usage of the vita. For the
microlevel wireless network, related works [38–41] leverage
crowdsensing WiFi signals to detect the user’s location.

In our work, we attempt to collect WiFi signals and
crowdsourced skeleton joints to reduce the training burden
for collecting activity dataset. We obtain the activity label
by leveraging the help from Kinect’s user. �e framework of
crowdsourced WiFi signals and skeleton joints are shown in
Figure 2.

4. Overview of HuAc

4.1. Observations. �e following observations come from the
combination of our results and previous works [20, 42–44].

�e Impact of Indoor Environment on WiFi Signals Has a
Di�erence with Time. RSSI and CSI keep stability in the
static indoor environment, and RSSI �uctuation ranges from
0 dB to 5 dB (empty environment: 0–3 dB; home environ-
ment: 0–7 dB; o�ce: 0–5 dB; dynamic environment: 5–10 dB).
Although RSSI sharply changes with environmental change,
it cannot describe the �ne-grained change of indoor environ-
ment due to themultipath e	ect.However, CSI is able to sense
the change of �ne-grained environment and detects what
happened in an indoor environment. Speci�cally, RSSI only
can �nd the environmental change and cannot sense how
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Table 1: WiFi-based activity recognition dataset (WiAR).

Granularity Activities Environments Devices

Activity
Forward kick, side kick, bend, walk, phone, sit down, squat, drink

water
Empty room, meeting

room, o�ce
Router, laptop with

5300 card

Gestures
Horizontal arm wave, two-hand wave, high throw, toss paper, draw

tick, draw x, hand clap, high arm wave
Empty room, meeting

room, o�ce
Router, laptop with

5300 card

Subcarrier selection
-K-means-

Distribution of CSI

Features extraction

Outlier detection
-�reshold-

Smooth data 
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Figure 3: �e framework of HuAc system.

the environment changes. CSI can �nd what causes environ-
mental change and also can recognize how the environment
changes such as tracking, sensing environment, and activity
recognition.

It Is Hard to Distinguish Similar Activities. Existing works [2,
15, 45] explore the similar activity recognition. For example,
WiFall [2] extracts seven features to describe fall behavior
because similar activity causes the similar patterns of CSI,
and it is di�cult to distinguish them only using anomaly
detection.�e following RT-Fall system adopts the CSI phase
di	erence to segment fall and fall-like activities because the
phase di	erence of CSI is a more sensitive signature than CSI
amplitude for activity recognition. �e phase of CSI depends
on the variation of LOS (Line-of-Sight) length.�erefore, the
breakthrough point of the similar activity recognition rests
on the physical di	erence between similar activities.

�e Same Activity Operated by Di�erent People Has Various
Signal Patterns. According to our observations, the amplitude
of CSI re�ected by the same activity changes continuously in
the di	erent time and environments. �erefore, we cannot
recognize activity with high accuracy according to the ampli-
tude of CSI. �e changing pattern of signals re�ected by an
activity can describe the characteristic of activity as veri�ed
by Smokey [25]. �erefore, we explore the changing pattern
of signals to recognize an activity.

�e Impact of Activity with Di�erent Directions on Activity
Recognition. In order to explore the impact of direction on
activity recognition, we design a simple and clear experiment

on the playground because the playground does not have
rich multipath e	ect and other wireless devices. We explore
the impact of four directions including east, west, north, and
south on the change pattern of signals, and the di	erence
between face and back to the AP is biggest. Moreover, CSI
data we collect in the playground contains less noise than that
in an indoor environment.

4.2. Framework of HuAc. �e HuAc framework consists of
theKinect-basedmodule andWiFi-basedmodule in Figure 3.
We describe details of each module, respectively.

Kinect module consists of the preprocessing and posture
analysis. We detect the overlap of skeleton joints using the
statisticalmethod and complete the normalization of skeleton
joints. In order to obtain e	ective features of skeleton joints,
we analyze postures of an activity according to the sequence
of skeleton joints. Moreover, we design a selection method
of skeleton joints named SSJ according to the result of
posture analysis. Finally, we extract features of skeleton joints
according to e	ective skeleton joints and also consider the
spatial relationship of adjacent joints as auxiliary information
to sense human activity.

WiFi module consists of the preprocessing and features
extraction. In the preprocessing stage, we detect and remove
the outlier data of an activity sequence according to the
variance of RSSI re�ected by an activity. A�er removing
outlier data, we leverage the weighted moving average to
smooth the activity data. For features extraction, we �rst
analyze the amplitude distribution of CSI re�ected by an
activity to evaluate the sensitivity of the subcarrier on an
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(a) (b)

Figure 4: Skeleton structure [7]. (a) A skeleton structure contains 15
skeleton joints. (b) �e white circle represents skeleton joints with-
out direction such as shoulder and hip. �e gray circle represents
the neck and the torso which has a weak e	ect on the upper-body
activity and the lower-body activity except the squat.�e black circle
represents normal skeleton joints.

activity. �en, we use �-means algorithm to cluster e	ec-
tive subcarriers. Finally, we extract important features from
e	ective subcarriers to improve the stability of human activity
recognition.

We use the combination information of CSI features set
and the skeleton features set as an input of SVM to recognize
human activity. Compared with the result of predict label, we
give a feedback to the previous process of HuAc framework
by using a train label, respectively.

5. Kinect Module

We mainly describe the details of Kinect module on the
human activity recognition. Kinect module contains the
preprocessing and posture analysis.

5.1. Preprocessing. �e collected skeleton data contain empty
values due to the overlap of skeleton joints or the occlusion
in the motion-sensing game. �erefore, we need to detect
the overlapping joints and replace the invalid values by
recovering the true value of the overlapping joints. We
leverage the relationship between the coordinates of adjacent
joints to detect the overlapping joints. Certainly, we discard
the sample of an activity when the percent of invalid joints
exceeds the threshold.

A�er recovering the invalid data, we normalize the
coordinates of skeleton joints due to the di	erences of people’s
height and the distance between the user and the sensor.
�e work [7] extracts 11 joints (except right shoulder, le�
shoulder, right hip, and le� hip) from 15 joints in Figure 4,
and we explore 30 subcarriers with the similar pattern
re�ected by a human body. �erefore, we select 15 joints
to match the 15 subcarriers. Let 
� be one of the 15 joints
detected by the Kinect, and the coordinates vector � is given
by

� = {1, 2, . . . , �, . . . , 14, 15} , (3)
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Figure 5: High arm wave tracking using skeleton data. �e activity
has two active joints (right hand, right elbow), and the direction
changes with every clockwise movement. However, adjacent joints
have the slight change in a certain range.

where � is the vector containing the 3D normalized coordi-
nates of the �th joint 
� detected by Kinect. �us,

� = 
�� + ��, 1 ≤ � ≤ 15, (4)

where � is the scale factor which normalizes the skeleton
according to the distance ℎ, between the neck and the torso
joints of a reference skeleton, and

� = ����
9 − 
2����ℎ . (5)

�e translation matrix, �, needs to set the origin of the
coordinate system to the torso. A�er preprocessing phase, we
obtain high-quality skeleton data.

5.2. Postures Analysis. An activity consists of subactivity
sequence over time. According to the skeleton structure, a
human body is divided into two parts including upper body
and lower body. Upper body contains �ve joints (right elbow,
le� elbow, right hand, le� hand, and head) and two baseline
joints (neck, torso) as in Figure 4. Lower body contains four
joints (right foot, le� foot, right knee, and le� knee). We
reproduce the tracking of skeleton joints using QT tool and
plot the trajectory chart of each activity. We observe that the
adjacent joints keep the similar track in Figure 5, and some
joints have slight movement in�uenced by human activity.
For example, when the right elbow and right hand move in
the clockwise direction to complete the horizontal arm wave,
we observe that right hip and le� hip have slight movement.

According to the change of joints sequence, we can
segment an activity into several subactivities in terms of
direction and pause factor. Horizontal arm wave behavior
consists of four postures (subactivities) as in Figure 6. Each
subactivity roughly contains 14 frames and � � represents
the �th frame (packet) of the activity reported by Kinect. We
can evaluate the rough activity according to the sequence of
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Figure 6: Postures of horizontal arm wave.

subactivity. Except for related joints of each subactivity, torso
and hip joints have a weak swing. We neglect the impact
of weak swing on the activity recognition. We pay more
attention to the selection of skeleton joints in the following
section.

5.3. SSJ: Selecting Skeleton Joints. We design a selection
method of skeleton joints named SSJ to describe a �ne-
grained subactivity. A�er postures analysis, we know the
relationship between a subactivity and key skeleton joints.
We expend the coordinated system of human skeleton to
miniature coordinated system of subactivity skeleton by the
above-mentioned relationship. �e miniature coordinated
system needs to determine a �xed skeleton joint and di	erent
subactivities have di	erent �xed skeleton joints. For example,
we observe that shoulder joint is a �xed joint from the process
of high arm wave behavior. �erefore, we determine the
starting point coordinate of theminiature coordinated system
corresponding to the subactivity.

6. WiFi Module

We introduce the design details of WiFi module on the
human activity recognition. WiFi module consists of the
preprocessing and features extraction.

6.1. Preprocessing. �e collected data with noises increases
the di�culty of activity recognition due to the tiny di	erences
between noises and WiFi signals re�ected by a �ne-grained
activity. Outlier data also weaken the quality of collecting
data. �erefore, we detect outlier using the variance-based
method and remove high-frequency signals using the low-
pass �lter. Moreover, we reduce the sawtooth wave of the
�ltered signal by using the weighted moving average.

6.1.1. Outlier Detection and Removing High Frequency. Out-
lier has an important impact on the quality of collecting
data because outlier increases or decreases the �uctuation
strength of WiFi signals. We analyze the RSSI distribution
of an activity to evaluate the possible experience-threshold.
�en, we combine the variance of RSSI and the experience-
threshold to detect outlier. A�er removing outlier data, the
activity corresponds to the low-frequency change of CSI
according to the waveform of CSI re�ected by an activity.
�erefore, we adopt the low-pass �lter to remove the high-
frequency data in Figure 7.

6.1.2. Weighted Moving Average. For �ltered signal, signal
data still contain sawtooth wave. Because CSI is sensitive to
indoor layout or human movement, and the received CSI
�uctuation caused by the environment is hard to distinguish
from the �uctuation caused by a �ne-grained activity. �ere-
fore, we smooth the CSI data using the weighted moving
average as proposed in WiFall [2]. We randomly select15 subcarriers from 30 subcarriers which correspond to15 skeleton joints of Kinect technology. Each CSI stream
contains 15 subcarriers as {CSI1,CSI2, . . . ,CSI15}. CSI�,1 is the
�rst subcarrier of CSI at time �. {CSI1,1, . . . ,CSI�,1} indicates
the CSI sequence of �rst subcarrier in the time period �. �e
latest CSI has weight �, the second latest � − 1, and so on.
�e expression of CSI series is shown as follows:

CSI�,1 = 1� + (� − 1) + ⋅ ⋅ ⋅ + 1 × (� × CSI�,1

+ (� − 1) × CSI�−1,1 + ⋅ ⋅ ⋅ + 1 × CSI�−�−1,1) ,
(6)

where CSI�,1 is the averaged new CSI. �e value of� decides
in what degree the current value is related to historical
records. In our study, we select� according to the experience
and trial method. We �rst set � as 5 which means the
length of 5 packets. A weighted moving average algorithm
and median �lter have the similar e	ect on the original
signals recorded by the receiver in Figure 7.�ey can remove
the galling of signals and alleviate the sharp change of
signals. With the� increasing, the weighted moving average
algorithm becomes more smooth than the low-pass �lter and
the median �lter. Finally, we set� to 10 because each activity
produces a sharp change in 10 packet periods.
6.2. Feature Extraction. Plenty of related works summarize
the importance of features extraction for human activity
recognition in a dynamic indoor environment. We segment
activity a�er smoothing CSI and extract features of each
activity according to activity characteristics. Kinect-based
features extraction quotes the work [3].

6.2.1. Activity Segmentation. Activity segmentation mainly
detects the start and end of an activity and removes the
nonactivity packets from a sample which corresponds to
the whole activity. We propose two methods to detect the
start and end of an activity and improve the robustness of
segmentation algorithm. First, we remove the �rst second
and the last-second data sequence of an activity to reduce
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Figure 7: Methods of signal �ltering.

the error of true activity sequence in our experimental
environment. But this method is invalid in the practical
environment due to the unknown time which each activity
starts.�erefore, we leveragemoving variance ofCSI to detect
the start and end of each activity. Moving variance of CSI
describes the di	erence of the local packets re�ected by the
activity. Packet sequences on the corresponding activity are
de�ned as� = {�1, �2, . . . , ��}.� represents data sequence (a
sample) of an activity, and �� represents the �th packet in the
data sequence.We o�en use the standard deviation instead of
the variance of CSI as follows:

�� = √∑�1 (��+�−1 − �)2� , (� = 1, 2, . . . , � − �) , (7)

where � represents step-size and � is the mean value of
samples.

We construct a window per 10 packets from the packet
sequence of each sample and compute the variance of the
window. �en, we construct the moving variance histogram
and compare with other strength windows. Finally, we can
detect the sharp points of each activity and roughly recognize

Subplot 1: two-hand wave

Subplot 2: hand clap
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Figure 8: Segmentation point of similar activity.

the start and end of each activity from the data sequence.�e
start and end of the activity period are shown in Figure 8.�e
red circle describes a sharp change of CSI at the start point of
collecting data, but it is not the true start of an activity.�e red
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Figure 9: �e �uctuation of di	erent subcarriers re�ected by the
horizontal arm wave behavior.

rectangle represents the duration of activity. Moreover, the
black dotted line roughly represents the true start and end of
the activity. According to our experimental results, detecting
the start and end of the activity still causes a small error due
to the sensitivity of signals.

6.2.2. Subcarrier Selection and Feature Detection. According
to our observation, subcarriers have the similar tendency for
the same activity in Figure 9, but they have di	erent sensitiv-
ity. �erefore, we select the obvious subcarriers re�ected by
an activity using�-means to achieve the robustness of human
activity recognition. �irty subcarriers are divided into 3
clusters using �-means algorithm in Figure 10. According
to the output of �-means algorithm on subcarriers, CSI
features we extract include variance, the envelope of CSI,
signal entropy, the velocity of signal change, median absolute
deviation, the period of motion, and normalized standard
deviation. Finally, we construct the features set of CSI.

7. HuAc: Activity Recognition

We explore the relationship between CSI-based and skeleton-
based methods on human activity recognition in Figure 11.
�e CSI-based method leverages the signal pattern to rec-
ognize an activity. �e skeleton-based method uses the
coordinate change of skeleton joints to recognize the same
activity. From the opinion of experiment results, an activity
with back to the AP has more complex CSI pattern and has
the smaller amplitude than that with face to AP.

We mainly introduce several classi�cation algorithms
used by the human activity recognition �eld including
kNN, Random Forest, Decision Tree, and SVM. In the
following sections, we verify that the performance of SVM
outperforms others. We select SVM classi�cation algorithm
to recognize sixteen activities in the WiAR dataset. CSI
features set and skeleton features set as the inputs of SVM
train the optimal model to achieve the stable accuracy
of activity recognition. �e outputs of SVM contain the
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Figure 10: Clustering subcarriers.

 !!"# !$, %#�&�!� ' *�', and %#-* ����� ���. We evaluate
the performance of classi�cation algorithm according to the
accuracy and achieve the accuracy of activity recognition
using the%#�&�!� ' *�'. According to thematch level between�# �� ' *�' and%#�&�!� ' *�', we obtain the false positive rate
and the false negative rate. We analyze the result and give a
feedback on the previous step. According to the feedback, we
pay more attention to the activity with low accuracy.

8. Implementation and Evaluation

8.1. Implementation

8.1.1. Experimental Setup. We use a commercial TP-Link
wireless router as the transmitter operating in IEEE 802.11n
APmode at 2.4GHz.A�inkpad 400 laptop runningUbuntu
10.04 is used as a receiver, which is equipped with o	-the-
shelf Intel 5300 card and a modi�ed �rmware. During the
process of receivingWiFi signals, the receiver pings 30 pkts/s
from the router and records the RSSI and CSI from each
packet. �ree experimental environments including empty
room, meeting room, and o�ce are shown in Figure 12.

8.1.2. Experimental Data. We deal with data from three
cases: ForWiFi-based activity data, we collect activity data in
di	erent indoor environment. For skeleton data, we directly
leverage the KARD dataset [3] to get the skeleton data. For
environmental data, we mainly collect data from the empty
room, meeting room, and o�ce with the human. Our goal
is to explore the impact of the environmental factor on the
WiFi signals and analyze the di	erences between an activity
and environmental change on WiFi signals according to the
above-mentioned three kinds of data.

We collectWiFi signals to construct a new dataset named
WiAR which contains 16 activities with 50 times performed
by ten volunteers. �e details of WiAR have been introduced
in Section 3. �e KARD contains RGB video (.avi), depth
video (.avi), and 15 skeleton points (.txt). Each volunteer
performs 18 activities 3 times each with ages ranging from
20–30 years and height from 150–180 cm. In this paper, we
only select 16 activities as target activity listed in Table 1.
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Figure 11: Skeleton joints sequence and CSI change of squat behavior. (a)–(c) represent the skeleton sequence of squat behavior. (d) is the
CSI change re�ected by squat behavior in terms of face to AP and back to AP.
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Figure 12: Experimental scenarios.

We design three experimental schemes to analyze the
accuracy of activity recognition. First, we collect RSSI and
CSI to recognize an activity as the reference point. Second, we
leverage the skeleton data of KARD to recognize an activity
by using our method and previous method [3] in the similar
indoor environment. �ird, we propose a fusion scheme

which CSI combines with skeleton data to recognize an
activity. Moreover, we design another experimental scheme
in which volunteer performs an activity with repeating 10
times. �e goal of the experimental scheme is to investigate
the periodic regularity of CSI change in�uenced by the same
activity.
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Table 2: Performance comparison by four classi�cation algorithms.

Method
10 subcarriers 30 subcarriers

A B C A B C

kNN 0.875 0.916 0.947 0.916 0.895 0.947

Random Forest 0.885 0.906 0.958 0.906 0.895 0.948

Decision Tree 0.8542 0.822 0.916 0.865 0.834 0.917

SVM 0.9625 0.9688 0.975 0.94375 0.90625 0.9375

8.2. Evaluation of WiAR Dataset. We analyze activity data of
all volunteers to evaluate the performance of WiAR dataset
using kNN with voting, Random Forest, and Decision Tree
algorithms.

We study the impact of subcarriers and antennae on the
performance of activity recognition by using four classi�ca-
tion algorithms shown in Table 2. It shows that the accuracy
using SVM outperforms other classi�cation algorithms and10 subcarriers obtained by subcarrier selection mechanism
increase 4.26% when compared with activity recognition
using 30 subcarriers. �ree antennae such as A, B, and C
increase the diversity of CSI data and keep more than 80%
of activity recognition accuracy. �e four algorithms verify
the e	ectiveness of WiAR dataset.

8.3. Evaluation of Activity Recognition

8.3.1. Performance of Activity Recognition Using RSSI. �e
section evaluates the performance of RSSI on the human
activity recognition. �e di�culty we encounter in the
process of activity recognition using RSSI is how to deal
with the multipath e	ect caused by indoor environment and
re�ection e	ect caused by human behavior. We select an
indoor environment as a reference environment which keeps
static and only contains a volunteer and an operator. We
leverage RSSI variance as an input of SVM to obtain the 89%
of average recognition accuracy in the static environment.
When other people move and are close to the control area of
WiFi signals, the accuracy of activity recognition decreases
to 77% with the high stability. Several activities face the low
accuracy such as two-hand wave, forward kick, side kick,
and high throw. �e average false positive rate is 8.9% and
increases to 15.3% in a dynamic environment. �erefore,
human activity recognition using RSSI needs the help of CSI-
based method to improve the accuracy and the robustness of
human activity recognition.

8.3.2. Performance of Activity Recognition Using CSI. �is
section elaborates the impact of interference factors on
human activity recognition using CSI in the following four
aspects: human diversity, similar activities, di	erent indoor
environments, and the size of a training set. Moreover,
we keep the �xed position of volunteers and the distance
between receiver device and transmitter device in the whole
experiment.

�e Impact of Human Diversity on the Accuracy. Human
diversity not only increases the diversity information of CSI
but also raises the di�culty of activity recognition because

di	erent people have di	erent motion styles such as speed,
height, and strength. We achieve 93.42% of average recogni-
tion accuracy for all volunteers in Figure 13(a). We select two
volunteers including volunteer A and volunteer B to verify
the impact of human diversity on the accuracy. Volunteer
A which o�en regularly exercises obtains 97.1% of average
recognition accuracy. Volunteer B which rarely exercises
in the routine lives achieves 92.3% of average recognition
accuracy. �erefore, the exercise experience increases the
di	erences between activities due to standard activity and
improves the recognition accuracy.

�e Impact of Similar Activity on theAccuracy.We explore two
group similar activities including high arm wave, horizontal
armwave, high throw, and toss paper in Figure 13(b).�e �rst
group activity achieves 92.5%of average recognition accuracy
and 94.6% for the second group.�e false positive for similar
activity is higher than independent activity. For example,
forward kick and side kick also belong to the similar activity,
and the di	erence between them is the moving direction.
In order to obtain the better accuracy, we will consider the
impact of moving direction on the signal change in the future
work.

�e Impact of Indoor Environment on the Accuracy. As shown
in Figure 12, there are three experimental environments
including empty room, meeting room, and o�ce in terms
of the complexity. �e accuracy about three environments is
shown in Figure 13(c).�e accuracy of themeeting roomwith94.7% outperforms the other two environments, and then
accuracy was 93% for empty room and 87% for o�ce due to
multipath e	ect.�emeeting room generates 2.6%of average
error, and 9.8% of average error in the o�ce due to paths
excessively re�ected by the body. We will deeply explore the
multipath e	ect using the amplitude and phase of CSI in the
future work.

�e Impact of Training Size on the Accuracy. We design three
proof schemes to analyze the accuracy of human activity
recognition by using di	erent training sizes in Figure 13(d).
We �rst introduce three activity sets and three training sets.
Activity set 1 consists of horizontal arm wave, high arm
wave, high throw, and toss paper. Activity set 2 contains
two-hand wave and handclap activity. Activity set 3 consists
of phone, draw tick, draw x, and drink water. Moreover,
these activity sets come from the same people. With the
training size increasing, the accuracy of activity recognition
is improved by about 10% for the activity set 1. Activity set1 has a low accuracy because activity set 1 contains more



Wireless Communications and Mobile Computing 11

Volunteer A

Volunteer B

Fusion of volunteers

0

0.2

0.4

0.6

0.8

1
A

cc
u

ra
cy

 o
f 

ac
ti

vi
ty

 (
\%

)

5 10 150

Activity types

(a)

Volunteer B Volunteer CVolunteer A

Similar activities

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy
 o

f 
ac

ti
vi

ty
 (

\%
)

Horizontal arm wave

High arm wave

High throw

Toss paper

(b)

Average accuracy of activity

Average error of activity

Meeting room O�ceEmpty room

Experimental environments

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy
 o

f 
ac

ti
vi

ty
 (

\%
)

(c)

30% training samples

50% training samples

70% training samples

Set 2 Set 3Set 1

Activity sets

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy
 o

f 
ac

ti
vi

ty
 (

\%
)

(d)

Figure 13: Performance analysis of activities using CSI. (a) Sixteen activities include horizontal arm wave, high arm wave, two-hand wave,
high throw, draw x, draw tick, toss paper, forward kick, side kick, bend, handclap, walk, phone, drink water, sit down, and squat. (b) Four
activities contain horizontal arm wave, high armwave, high throw, and toss paper. (c)�e impact of experimental environments on accuracy.
(d) �e impact of training samples on accuracy of three activity sets.

similar activities. Although activity set 3 also contains similar
activities, the accuracy is better than activity set 1 due to the
strength of activity.

8.3.3. Performance between Kinect-Based and WiFi-Based
Activity Recognition. It is hard for the waveform of RSSI with
noise to keep the stability when controlling area changes
during collecting data. �erefore, we use waveform shape of
RSSI to recognize an activity that is not a better choice for
the current level of technology. Waveform pattern of CSI can
describe an activity with credibility and �ne-grainedway.�e
mapping relationship between CSI-based and Kinect-based
activity recognition for various activities is represented by
using several parameters shown in Table 3. �e environmen-
tal factor is evaluated by using the number of multipaths
and the complexity of the indoor environment. In order to
extend the application �eld of activity sensing, we construct
the mapping relationship between CSI-based and Kinect-
based activity recognition. �e mapping relationship can
avoid information loss. For example, once one of the two

datasets is lost, activity recognition system still works by using
another dataset information.

We evaluate the performance of human activity recog-
nition from KARD dataset [3]. �e highest recognition rate
is 100% (side kick, handclap), while the worst is 80% (high
throw). We propose a selection method of skeleton joints
named SSJ to improve the accuracy of activity recognition
and reduce the computing cost. SSJ achieves 93.15% of the
average recognition accuracy. Existing three activities, such
as high arm wave, draw kick, and sit down, achieve the
low accuracy of 80%, 75%, and 70%, respectively. Table 4
shows the performance of fourmethods includingCSI-based,
KARD-based (skeleton joints), SSJ-based, and HuAc. Table
row of the bold font shows that skeleton-based method
outperforms CSI-based method on the accuracy of activity
recognition. Table row of the italic font shows that several
activities are sensitive to CSI. HuAc improves the accuracy
of activity recognition and increases the stability of activity
recognition in a dynamic indoor environment. We focus
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Table 3: Mapping relation between WiFi and Kinect.

WiFi Kinect

Techniques CSI Skeleton joints

Granularity Subcarriers (15) Joints (15)

Parameters
Similarity coe�cient, median absolute deviation, variance,

environment factor
Distance between joints, angle between adjacent joints,

variance, sequence of key joints

Table 4: Accuracy of activity for CSI-based and Kinect-based.

Activities WiFi KARD [3] SSJ HuAc

Horizontal arm wave 90% 92% 100% 100%

High arm wave 100% 96% 80% 95%

Two-hand wave 93.1% 96% 100% 100%

High throw 90% 80% 100% 100%

Draw x 100% 96% 100% 93%

Draw tick 100% 90% 75% 93%

Toss paper 100% 90% 100% 100%

Forward kick 87% 96% 100% 100%

Side kick 100% 100% 90% 100%

Bend 95.7% 96% 100% 100%

Hand clap 92% 100% 100% 100%

Walk 100% 100% 100% 100%

Phone 100% 96% 100% 100%

Drink water 100% 86% 100% 100%

Sit down 90% 100% 70% 91%

Squat 96.7% 100% 90% 90%

attention on the stability of activity recognition algorithm or
system in the future work.

9. Case Study: Motion-Sensing Game
Using WiFi Signals

We introduce the application based on our work in the
motion-sensing game. At present, Kinect provides the angle
with limitations in which the horizontal viewing angle is
57.5∘ and 43.5∘ for vertical viewing angle, and distance with
limitation ranges from 0.5m to 4.5m. Moreover, Kinect loses
the sensing ability when barrier occurs and occludes game
user in the control area. An interesting point of our work
is that we pay more attention to the activity itself, and we
do not care about the user location. However, Kinect needs
to adjust the location of a user before activity recognition to
achieve well sensing.�erefore, we will propose a framework
instead of Kinect in the future when the accuracy of human
activity recognition usingWiFi can satisfy the requirement in
an indoor environment.

We list a motion-sensing game using WiFi signals in
Figure 14. One or two people are located in the middle of the
transmission and receiving terminal and prolong the distance
between the TV and user.�e area below the blue dashed line
represents the control area, and our work can sense human
behavior within 10m and achieve a better performance

in the range of black circle. �e user operates the same
activity as well as the TV set, and receiving terminal collects
corresponding data. By the phase of signals processing, we
achieve an activity with the probability and match it with
the game of TV set. Once the matching result satis�es the
threshold value, activity recognition matches success in the
motion-sensing game using WiFi signals.

10. Discussion and Future Work

10.1. Extending to Shadow Recognition. In our research, we
consider the relationship between the WiFi signals and
skeleton data on the human activity recognition. Moreover,
we describe the interesting topic of the shadow activity
recognition. Shadow is an important issue to vision-based
activity recognition or monitoring; however, WiFi-based
activity recognition can sense human behavior through wall
or shadow. First, we explore the characteristics of CSI to
enhance the sensing ability by using the high-precision
device. Second, WiFi signals can help vision-based activity
recognition to improve the ability of sensing environment. In
this study, we also need to consider the material attenuation.
According to our observations, there is a little di	erence
between the impact of wall re�ection and body re�ection on
theWiFi signals. WiVi [14] leverages the nulling technique to
explore the through-wall sensing behavior by using CSI and
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Figure 14: Motion-sensing game using WiFi signals.

analyzing the o	set of signals from re�ection and attenuation
of the wall.We recommend researchers to read this paper and
their following work [11].

10.2. Extending to Multiple People Activity Recognition. Mul-
tiple people activity recognition needs multiple APs to obtain
more signals information re�ected by a human body. At
present, existing works can locate target location [46] and
detect the number [19] of multiple people using CSI in
the indoor environment. Kinect-based activity recognition
system recognizes two skeletons (six skeletons for Kinect 2.0)
and locates skeletons of six people. �erefore, the combina-
tion of WiFi signals and Kinect facilitates the development
of multiple people activity recognition. In the future, our
team wants to deeply research the character of WiFi signals
and propose a novel framework to facilitate the practical
application of human activity recognition in the social lives.

10.3. Data Fusion. Skeleton data detect the position of each
joint for each activity and track the trajectory of human
behavior. CSI can sense a �ne-grained activity without
attaching device in the complex indoor environment. �e
balance point between CSI and skeleton joints and the selec-
tion method of e	ective features are important factors for
improving the quality of fusion information. Moreover, time
synchronization of fusion information is also an important
challenge in the human activity recognition �eld.

11. Conclusion

In ourwork,we construct aWiFi-based public activity dataset
namedWiAR and designHuAc, a novel framework of human
activity recognition using CSI and crowdsourced skeleton

joints, to improve the robustness and accuracy of activity
recognition. First, we leverage the moving variance of CSI
to detect the rough start and end of an activity and adopt
the distribution of CSI to describe the detail of each activity.
Moreover, we also select several e	ective subcarriers by
using �-means algorithm to improve the stability of activity
recognition. �en, we design SSJ method on the basis of
KARD to recognize similar activities by leveraging spatial
relationship and the angle of adjacent joints. Finally, we
solve the limitations of CSI-based and skeleton-based activity
recognition using fusion information. Our results show that
HuAc achieves 93% of average recognition accuracy in the
WiAR dataset.
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