
Hubbard Models for Quasicrystalline Potentials

E. Gottlob and U. Schneider
Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

(Dated: April 18, 2023)

Quasicrystals are long-range ordered, yet not periodic, and thereby present a fascinating challenge
for condensed matter physics, as one cannot resort to the usual toolbox based on Bloch’s theorem.
Here, we present a numerical method for constructing the Hubbard Hamiltonian of non-periodic po-
tentials without making use of Bloch’s theorem and apply it to the case of an eightfold rotationally
symmetric 2D optical quasicrystal that was recently realized using cold atoms. We construct max-
imally localised Wannier functions and use them to extract on-site energies, tunneling amplitudes,
and interaction energies. In addition, we introduce a configuration-space representation, where sites
are ordered in terms of shape and local environment, that leads to a compact description of the
infinite-size quasicrystal in which all Hamiltonian parameters can be expressed as smooth functions.
This configuration-space picture allows one to efficiently describe the quasicrystal in the thermo-
dynamic limit, and enables new analytic arguments on the topological structure and many-body
physics of these models. For instance, we use it to conclude that this quasicrystal will host unit-filling
Mott insulators in the thermodynamic limit.

Quasicrystals represent a fascinating middle ground
between periodic and disordered materials, they are per-
fectly long-range ordered without being periodic [1].
Quasicrystalline order can naturally arise from an incom-
mensurate projection of a higher-dimensional periodic
lattice and thereby enables the investigation of physics
of higher dimensions, in particular in the context of
topology [2–6], where the resulting structures can inherit
topologically protected edge states [3, 4, 6]. Quasicrys-
tals host fractal, self-similar structures both in momen-
tum space [1] and in their energy spectrum [7]. They
also exhibit Anderson localisation [8], broadly similar to
disordered systems. However, there are crucial differ-
ences: in randomly disordered systems in 1D and 2D,
the non-interacting spectrum is always fully localised [9].
Quasiperiodic systems, on the other hand, can host mo-
bility edges and localisation transitions at finite potential
strengths [10–14]. In the interacting case, localisation
can subsist in the form of many-body localisation, whose
non-ergodic nature has been the subject of significant at-
tention over the last few years [15–19]. There is strong
interest in the differences in many-body localisation be-
tween quasiperiodic and disordered systems [20], in par-
ticular in more than one dimension, where avalanche ef-
fects are predicted to destabilize many-body localisation
in the latter case [21].

To study phase transitions and localisation phenom-
ena, it is convenient to describe the continuum lattice
potential as a tight-binding model, i.e. as a collection of
discrete lattice sites. This tremendously reduces the com-
putational complexity of diagonalising the Hamiltonian,
and therefore allows for the study of far larger system
sizes. The key step in constructing a tight-binding Hamil-
tonian is to generate a set of localised Wannier functions.
In periodic lattices, these are constructed as an appro-
priate superposition of Bloch waves [22]— which how-
ever do not exist for non-periodic potentials. For general
non-periodic lattices, existing generic methods for calcu-
lating Wannier functions are based on imaginary time

evolution of trial wave functions [23], or rely on full band
projections [24].

Constructing exact tight-binding models for general
quasicrystals is difficult because (a) one cannot use
Bloch’s theorem to construct appropriate Wannier func-
tions and (b) the lack of periodicity typically prevents one
from efficiently describing their thermodynamic limit.
Several quasiperiodic models, such as Aubry-André mod-
els [10, 13, 14, 25–27], are explicitly constructed using
quasiperiodic perturbations of an initially periodic lat-
tice and thereby inherit the original Wannier functions.
These models however represent only particular limits of
general quasicrystalline potentials.

In this paper, we present a method for generating non-
periodic Hubbard Hamiltonians without using Bloch’s
theorem, and apply it to the two-dimensional eightfold
rotationally symmetric optical quasicrystal (8QC), see
Fig. 2, which has recently been realised with ultracold
atoms [28, 29]. In addition we introduce a configuration-
space description of this quasicrystal, where sites are or-
dered according to their shape and local environment,
which allows to describe the infinite-size quasicrystal in
terms of smooth functions in a compact parameter space.
This method is similar to configuration-space descrip-
tions employed for stacked bilayer systems [30–32] and
the resulting description directly corresponds to perpen-
dicular spaces widely used in the field of discrete qua-
sicrystals [33–37].

In Section I, we present a method for the generation
of maximally localised Wannier functions that is appli-
cable to a broad class of quasicrystalline or disordered
potentials. We then apply it in Section II to construct
the lowest-band Hubbard Hamiltonian of the 8QC. In
Section III, we address the description of the quasicrys-
tal in the inifinite-size limit. We show in Section III A
how the 8QC Hubbard Hamiltonian is greatly simpli-
fied when re-expressed in configuration space. In Sec-
tion III B, we discuss how the validity of the single band
picture is impacted by inter-particle interactions. Finally,
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FIG. 1. Hubbard models are expressed in terms of on-site en-
ergies, tunnelling amplitudes, and on-site interactions, which
we compute by constructing maximally localised Wannier
functions. In non-periodic systems, all Wannier functions and
therefore parameters are site-dependent.

in Section III C, we use the insight gained from the con-
figuration space expression of the 8QC Hubbard Hamil-
tonian to conclude on the existence of unit-filling Mott
insulating phases in the thermodynamic limit.

I. TIGHT-BINDING MODEL FOR
NON-PERIODIC POTENTIALS

Let us consider a non-periodic lattice described by the
continuum single-particle Hamiltonian

Ĥcont =
p̂2

2m
+ V̂ (r) ,

where p̂ is the momentum operator, m the particle mass

and ˆV (r) the non-periodic lattice potential. To generate
the tight-binding Hamiltonian, the key step is to obtain
an appropriate set of localised single-particle basis states
{|wi〉} on each site of the lattice, as represented in Fig. 1.
We will refer to these states as Wannier functions, even
though we are dealing with non-periodic systems where
Bloch’s theorem does not apply. Our numerical method
can be summarised as follows: First, non-orthogonal
maximally localized Wannier functions (NOWF) are gen-
erated individually on each lattice sites by minimizing
the width of a linear combination of eigenstates of the
potential – see below. Second, a Löwdin transformation
is applied onto the resulting non-orthogonal set, produc-
ing a set of maximally localized and orthogonal Wannier
functions (WF). If applied onto a periodic lattice, our
method produces the same Wannier functions that would
be obtained using the typical Bloch wave formalism.

After constructing the Wannier functions, we gen-
erate the Hubbard Hamiltonian (Fig. 1) in the usual
way by the explicit evaluation of its matrix elements,
namely on-site energies εi = 〈wi| Ĥcont |wi〉, hopping am-

plitudes Jij = 〈wi| Ĥcont |wj〉, and on-site interactions

Ui = g
∫
dr|wi(r)|4, where g = 4π~2

m a and a is the scat-
tering length of the considered atomic species. Off-site in-
teractions can also be obtained through the evaluation of
integrals involving neighbouring Wannier functions (see
Appendix E)[38].

A. Maximally localized Wannier Functions in
real-space formulation

Given the non-periodicity of the lattice potential, we
cannot rely on Bloch waves for the generation of WFs.
Instead, we start by numerically calculating the single-
particle eigenstates |Ek〉 of the continuum Hamiltonian
in a domain of radius R centered around the lattice
site at position ri. We can then express the localized
NOWF

∣∣wNO〉 as a linear combination of the single-
particle eigenstates within the energy band of interest
(Emin ≤ Ek ≤ Emax):∣∣wNO〉 =

∑
k

ck |Ek〉 . (1)

We note that, contrary to periodic crystals, the ex-
istence of band gaps separating individual bands is
not guaranteed for non-periodic potentials and must be
checked individually for each specific lattice potential.

The coefficients ck are determined by minimizing the
localization criterion [22]

Ωi ≡
〈
wNO

∣∣ (r− ri)
2
∣∣wNO〉

subject to the normalisation constraint
∑
k |ck|2 = 1. We

can recast this expression as a double sum over all eigen-
states |Ek〉:

Ωi =
∑
k,l

c∗kcl 〈Ek| (r− ri)
2 |El〉

=
∑
k,l

c∗kcl(R
2
i )kl

= c†R2
i c , (2)

where we combine the coefficients ck into the vector c
and define the hermitian and positive-definite matrix R2

i

with matrix elements (R2
i )kl = 〈Ek| (r− ri)

2 |El〉.∣∣wNOi 〉
, i.e. the most localized state that can be gen-

erated on the lattice site ri, is then directly obtained as
the eigenvector of (R2

i ) with the lowest eigenvalue (which
is real-valued thanks to hermiticity). While being max-
imally localised, the resulting states

∣∣wNOi 〉
on different

sites will not yet be orthogonal.
To obtain an orthogonal set of localised basis states
|wi〉, the non-orthogonal basis must now be transformed
in a way that maintains its localised properties. This is
achieved through a Löwdin transformation [39]

|wi〉 =
∑
j

S
−1/2
ij

∣∣wNOj 〉
, (3)
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FIG. 2. Two-dimensional eight-fold optical quasicrystal. (a)
The optical quasicrystal is formed by superimposing two
square optical lattice in a single plane with a 45◦ angle be-
tween them. (b) The resulting optical potential is quasiperi-
odic.

where Sij ≡
〈
wNOi

∣∣wNOj 〉
is the overlap matrix between

NOWFs. The Löwdin transformation ensures a minimal
distance between the orthogonalized and non-orthogonal
sets [40], i.e.:

∑
i

〈
wi − wNOi

∣∣wi − wNOi 〉
= min (4)

Therefore, applying a Löwdin transform onto the non-
orthogonal maximally localised basis provides us with
a maximally localised orthogonal and real-valued basis
set. We note that the Löwdin transform fails in case of
over-completeness of the non-orthogonal basis, where the
overlap matrix does not have maximal rank and therefore
cannot be inverted. The success of the Löwdin transform
is therefore a good check for over-completeness of the ini-
tial non-orthogonal basis set.

In practice, the single-particle eigenstates |Ek〉 are ex-
tracted from a finite-difference formulation of the contin-
uum Schrödinger equation using Lanczos’ algorithm [41],
see Appendix A for details. The presented method for
constructing WFs becomes exact in the limit of R →∞
and vanishing step size for the discretization, but fine
grids limit the calculation in practice to relatively modest
cut-off radii (typically on the order of 10 lattice sites, i.e.
including around 250 to 300 neighbouring lattice sites in
the 2D case). The resulting approximate WFs converge
towards the exact WFs when the cut-off radius R be-
comes much larger than the characteristic size of the WF
and we found empirically that implementing the bound-
ary conditions as a hard wall of finite height (cf. Fig. 13
in Appendix B) significantly speeds up the convergence,
see Appendix C. We note that the NOWFs on all lattice
sites are generated independently of each other; this step
can therefore trivially be parallelised.

II. TWO-DIMENSIONAL EIGHTFOLD
OPTICAL QUASICRYSTAL

We now apply the above method to the two-
dimensional eightfold quasicrystal (8QC) shown in Fig. 2,
which has recently been realised using ultracold atoms
[28, 29]. This continuum quasiperiodic lattice is closely
related to the discrete eightfold Ammaan-Beenker lattice
[42, 43]. It is formed by superimposing two square opti-
cal lattices that are rotated by 45◦ with respect to each
other and its optical potential (Fig. 2) is given by:

V (r) = V0

∑
i=x,y,+,−

sin2(ki · r + φi)

ki ∈
2π

λ

{(
1
0

)
,

(
0
1

)
,

1√
2

(
1
1

)
,

1√
2

(
1
−1

)}
(5)

Here, V0 denotes the lattice depths and the ki and φi
are the wave vectors and offset phases of the individual
lattices created by superimposing laser beams of wave-
length λ. This potential is clearly long-range ordered,
as it is fully deterministic and contains no randomness.
At the same time, it cannot be periodic, as 8-fold rota-
tional symmetries are forbidden in periodic lattices [28].
In the thermodynamic limit, the physics of the 8QC is
independent of the phases φi, see Section III.

For the remainder of the paper, we will express all
energies and lattice depths in units of the recoil energy

Erec = ~2k2

2m , and all distances in terms of λ. For the cal-
culation of U , we assume a 20Erec deep retro-reflected
lattice generated using the same wavelength λ along the
transverse direction. While we focus on the Bose Hub-
bard model, we note that other types of Hubbard mod-
els (e.g. including longer-range interactions, or describing
fermions with spin) can be similarly derived.

A. Extracting Wannier functions

The generation of WFs for the 8QC presents several
challenges. In contrast to e.g. the Aubry-Andre model
[10], the present model cannot be expressed as a pertur-
bation of a periodic model. Therefore, it is a priori not
clear whether the lowest part of its single-particle energy
spectrum can be described in terms of a single isolated
band. Moreover, even provided such a lowest band ex-
ists, it is a priori not clear whether it would correspond
to one Wannier function per local minimum.

To investigate whether an isolated lowest band exists,
we compute the non-interacting energy spectrum of the
bulk of the 8QC by direct numerical diagonalisation of
the continuum Hamiltonian, see Fig. 3. To obtain the
bulk energy spectrum, we exclude eigenstates localised
on the outer edge of the simulated finite-size patches.
We find that for lattice depths V0 ≈ 1–10Erec, the low-
est part of the bulk spectrum indeed forms an isolated
band that is separated from the rest of the spectrum by a
robust gap, independent of the chosen patch. Strikingly,
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FIG. 3. Low-energy single-particle energy spectrum of the
8QC continuum Hamiltonian Hcont. Different colours repre-
sent the ≈ 750 lowest bulk eigenstates of 30 different patches
of diameter 9λ that contain around 250 local minima each.
Between V0 ≈ 1–10Erec, a clear energy gap separates the
lowest bulk band from higher states. To minimize finite-size
effects, boundary conditions are set similarly to Fig. 13 (b).
The inset shows the width of the gap for 30 different patches.

we find that the lowest energy subspace always contains
essentially as many states as there are local minima in the
finite patch (up to well-understood exceptions, treated
in Appendix G). This implies that, for V0 between 1 to
10Erec, we can construct a Wannier basis for the lowest
band by using one localised Wannier function per local
minimum of the potential – analogous to conventional
periodic lattices. We note that that the 8QC contains
less sites per area than a corresponding 2D square lat-
tice, the ratio is equal to the inverse of the silver mean

2
1+
√

2
≈ 0.8284, see Appendix F for details.

We construct the corresponding NOWFs by following
the method presented in Section I starting from the eigen-
states in the lowest band. In order to facilitate the con-
vergence of the NOWF already for small cut-off radii R,
we apply specifically tailored boundary conditions that
follow the shape the of the outermost minima; see Ap-
pendix B for detailed discussion and Appendix C for
numerical convergence checks. Afterwards, we apply a
Löwdin transform on the NOWFs to obtain an orthogo-
nal set of maximally localised WFs (Eq. (3)). Examples
of the resulting Wannier functions are shown in Fig. 4
and, similarly to periodic lattices, exhibit exponentially
decaying oscillating sidelobes that ensure orthogonality.

FIG. 4. (a): 8QC potential highlighting two different local
minima for V0 = 2.5Erec. (b,c): Corresponding orthogo-
nalized Wannier functions plotted on linear and logarithmic
scales. As in periodic systems, WFs exhibit oscillating side-
lobes with exponential decaying amplitudes that are clearly
visible when plotted on a log scale.

FIG. 5. Hubbard parameters for the 8QC for V0 = 2.5Erec

corresponding to the potential shown in Fig. 2. Tunneling
amplitudes Jij (both negative and positive) are shown up to
2nd-order neighbours. On-site interactions assume a scatter-
ing length of a = 100 a0 and a 20Erec transverse lattice.

B. Bose-Hubbard model

We next obtain the 8QC Bose-Hubbard Hamiltonian
by explicitly computing its matrix elements in the basis
of WFs, see Fig. 5, and observe that contrary to simpler
models such as Aubry-André models, it is quasiperiodic
in all three parameters. Furthermore, on-site energies
εi and interaction energies Ui are anti-correlated: sites
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with high εi correspond to shallow minima and hence
also have a low Ui, and vice versa - the same tendency
was also noticed in optical lattices with weak quasiperi-
odic modulation [44]. While the most significant tunnel-
ing amplitudes have negative sign, the Hamiltonian also
exhibits some small but non-negligible longer range tun-
neling amplitudes with positive sign. Finally, we show in
Appendix E that off-site interactions between neighbour-
ing sites can be safely neglected.

a. Non-interacting energy spectrum As an initial
benchmark of the resulting Bose-Hubbard model, we use
exact diagonalisation in the non-interacting (a = 0) case
to compute the energy spectrum and eigenstates of a
finite-sized lattice containing around 2800 sites, i.e. ten
times more than in the continuum calculation in Fig. 3.
The resulting spectra (Fig. 6) contain a series of minigaps
at intermediate lattice depths typical for quasiperiodic
models.

The non-interacting physics of the 8QC is governed by
the interplay between the tunnelling elements Jij and the
energy differences (detunings) ∆ij = εi − εj between lat-
tice sites. Resonances, i.e. high ratios Jij/∆ij between
sites favour hybridisation of the corresponding Wannier
functions and will lead to delocalisation of the eigen-
states. While all eigenstates are extended for weak lat-
tices, increasing lattice depths V0 lead to decreasing tun-
neling amplitudes and increasing detunings (cf. Fig. 7).
Combined, these two mechanisms strongly decrease the
number of resonances and eventually localise all eigen-
states.

To quantify the localisation properties of the non-
interacting eigenstates |Ei〉 =

∑
k c

i
k |wk〉, we compute

their Inverse Participation Ratio (IPR):

IPRi =
∑
|cik|4 . (6)

An IPR of 1 means that the state is localised on a sin-
gle lattice site, while the IPR of a fully delocalised state
vanishes in an infinitely large system. The color code in
Fig. 6 represents the IPR of all energy eigenstates as a
function of the lattice depth V0. The inset focuses on the
IPR of some of the lowest-lying states. It shows that the
ground-state undergoes a localisation transition at a crit-
ical lattice depth in excellent agreement with the value
Vc = 1.77Erec reported in [29, 45, 46]. Moreover, Fig. 6
demonstrates that the excited states exhibit a mobility
edge separating localised and delocalised states. This is
consistent with what is seen in generalised Aubre-Andry
Models [13, 14, 27].

b. Hubbard parameters While numerical simulations
based on the interacting BH Hamiltonian will be left to
future work, we can already gain physical insight by in-
specting the distributions of on-site energies p(ε), inter-
actions p(U) and tunneling amplitudes p(Jij), see Fig. 7.
The shape of these distributions is very different from
what is observed in truly disordered lattice, such as lat-
tices with speckle potentials [47].

For instance, the distribution of on-site energies con-
tains a sharp maximum reminiscent of a van-Hove sin-

FIG. 6. 8QC: Non-interacting energy spectrum of the BH
Hamiltonian. Color encodes the IPR of the eigenstates. In-
set: IPR of the lowest (0) and the 13th, 36th and 136th eigen-
states, highlighting the localization transition.

gularity (Fig. 7 a) and increasing the lattice depth V0

causes the width of p(ε) to increase in an almost linear
fashion (Fig. 8 a). In addition, the on-site energies form
a continuous distribution without any sizeable gaps.

Increasing lattice depths also leads to increasing inter-
actions strengths, with their mean scaling approximately
as U ∝

√
V0, see Fig. 7 b and Fig. 8 b, as expected from

the decreasing width of the Wannier functions. The up-
per limit of p(U) closely resembles the value of U ex-
pected for a 2D square lattice of depth 2V0. Indeed, the
lattice sites sitting at the top of p(U) distribution (Fig. 7
d) are locally similar to the well of a square lattice of
depth 2V0 - both are surrounded by potential barriers of
heights close to 4V0. In addition, Fig. 7 illustrates that
irrespective of the lattice depth, the sites located in the
deepest potential wells (Fig. 7 d) are characterised by
the lowest on-site energies and highest on-site interac-
tion. Conversely, the highest on-site energies and lowest
interaction occur in the shallowest potential wells (Fig. 7
f).

Finally, the average tunneling amplitude (Fig. 7 c and
Fig. 8 c) decreases broadly exponentially with increas-
ing lattice depth, which is expected from the increasing
potential barriers separating lattice sites and the nar-
rower Wannier functions. We also note that a significant
share of weak tunneling amplitudes is positive, which we
attribute to tunneling between higher-order neighbours,
see Appendix H for details.
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FIG. 7. (a,b,c): Histograms of 8QC Hubbard parameters
(≈ 1600 sites) for various lattice depths V0. Tunneling am-
plitudes are included up to 2nd-order neighbours (see Ap-
pendix H for definition), and for |Jij | > 10−3Erec. On-site
interactions computed for a scattering length a = 100 a0 and
a 20Erec transverse lattice. (d,e,f): Examples of lattice sites
possessing different on-site and interaction energies.

FIG. 8. (a,b,c): distribution of 8QC Hubbard parameters
(≈ 1600 sites) as a function of lattice depth V0. Black dots
and bars denote mean values and standard deviations of the
distribution. On-site energies are plotted relative to the low-
est on-site energy. On-site interactions computed for a scat-
tering length a = 100 a0 and a 20Erec transverse lattice.

III. CONFIGURATION SPACE: DESCRIBING
THE QUASICRYSTAL IN THE INFINITE SIZE

LIMIT

There are two main motivations to try to find an al-
ternative description of the quasicrystalline lattice: the
absence of periodicity means that there is no simple re-
ciprocal space description, and it would be ideal to have a
suitable replacement, i.e. a convenient representation on
a compact space that is suitable for studying e.g. ther-
modynamic or topological properties of the system. In
addition, the sites of the 8QC all differ in shape and lo-
cal surrounding and any finite patch will only contain a
subset of all possible sites. A priori, one can therefore
never be sure whether increasing the simulated system
size might introduce additional rare types of lattice sites,
changing the results of the simulation.

To overcome this limitation and arrive at a powerful,
compact representation, we sort the lattices sites based
on their shapes and local environments and arrive at a
bounded configuration space that enables us to describe
the infinite quasicrystal. This procedure is similar to
configuration-space descriptions of stacked bilayer sys-
tems [30–32] and we demonstrate in Appendix I that it
directly corresponds to the perpendicular space of dis-
crete octagonal quasicrystals [33–37].

We start by recalling that the 8QC is formed by su-
perimposing two square lattices rotated by 45◦ (Fig. 2),
which is reminiscent of a stacked bilayer system. We re-
fer to the lattice oriented along the x and y axes as the
XY lattice. The other square lattice is referred to as the
diagonal (D) lattice. Fig. 9 shows a finite patch of the
8QC potential, where the minima of the XY and D lat-
tices are indicated by red and blue dots. Deep wells in the
quasicrystal correspond to closely spaced minima in the
XY and D lattices. Conversely, more separated minima
of the XY and D lattices result in a shallower minimum
in the quasicrystal. Therefore, our mapping procedure
characterises each 8QC lattice site in terms of the local
displacement Φ between the XY and D square lattices.

For every minimum in the potential ri = (xi, yi), we
compute its coordinates (ΦXY (ri) and ΦD(ri)) within
the unit cells of both the XY and D lattices:

ΦXY (r) =

[(
x+

φ1

k

)
mod d

]
ex

+

[(
y +

φ2

k

)
mod d

]
ey (7)

ΦD(r) =

[(
x+ y√

2
+
φ3

k

)
mod d

]
e+

+

[(
x− y√

2
+
φ4

k

)
mod d

]
e− (8)

Here, d = λ/2 denotes the lattice constant of the square
lattices, ex, ey are the unit-vectors along the x and y di-

rections, e± =
ex±ey√

2
, and the φi are the four phases
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FIG. 9. The 8QC potential (background) is formed by super-
imposing two square lattices (red and blue grids). Insets: For
every minimum ri of the 8QC, the vector Φ(ri) denotes the
displacement between the closest minima of the two square
lattices and thereby uniquely defines the local potential. Deep
sites correspond to small local displacements Φ, while large Φ
indicate shallow sites.

FIG. 10. In the infinite-size limit, the configuration-space po-
sitions Φ of the 8QC lattice sites densely and uniformly pop-
ulate an octagon, whose periodic boundaries are given by the
mod operations in Eq. (7). (a,b,c,d,e,f) show the 8QC poten-
tial for various positions on the octagon. Dots in the octagon
denote the configuration-space positions of 2800 lattice sites.

introduced in Eq. (5). For every site ri, the vector
Φ(ri) ≡ ΦXY (ri) − ΦD(ri) then encodes the local dis-
placement between the XY and D lattices and thereby
fully describes the shape of the minimum and its local
surroundings. As shown in Fig. 10, the vectors Φ(ri) de-
scribing the sites of the 8QC form an octagon of inscribed
radius d/2, where the size stems from the periodicity of
the two square lattices.

This configuration-space representation has the follow-
ing properties: (1) In the infinite-size limit, the octagon
is densely and uniformly populated with lattice sites (see
Appendix H) and can therefore be used to derive sta-
tistical estimates about the lattice. We notice that this
is identical to the perpendicular spaces of octagonal dis-
crete quasiperiodic lattices [37]. (2) Due to the aperiod-
icity of the lattice, every point Φ within the octagon cor-
responds to one unique lattice site. (3) Analogous to the
Brillouin zone in periodic crystals, the mod d operation
implies periodic boundary conditions for this configura-
tion space, i.e. every edge of the octagon can be identified
with the opposing edge. These periodic boundary con-
ditions imply that the octagon possesses the topology of
a two-hole torus – it is an orientable surface with genus
2 [48]. In particular, the 8 corners of the octagon are
one unique point. (4) Symmetry points or lines of the
octagon directly correspond to symmetry points or lines
of the quasicrystal. For example, the center and corners
of the octagon corresponds to the two possible global 8-
fold rotational symmetry centers of the lattice (Fig. 10 f
and a). By construction, these two can never be found
together in the same realisation of the 8QC, and most
choices of φi will lead to none of them.

This configuration-space construction allows one to
draw several conclusions regarding the infinite-size 8QC
and will enable novel studies on topology in quasicrys-
tals, as it provides a compact manifold on which e.g.
Berry curvature and related quantities can be defined.

A. Hubbard model in configuration space

We can now re-express the BH Hamiltonian of the 8QC
entirely in the compact and densely populated configu-
ration space. This is achieved by mapping the real-space
coordinates ri of all sites of the 8QC to the corresponding
Φ(ri):

HBH =
∑
Φ

ε(Φ)â†ΦâΦ

+
∑

Φ6=Φ′

J(Φ,Φ′)â†ΦâΦ′

+
∑
Φ

U(Φ)

2
n̂Φ(n̂Φ − 1) (9)

Here, âΦ is the annihilation operator for the WF at the
site with coordinate Φ in configuration space. This ex-
pression emphasises that in configuration space – which
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FIG. 11. 8QC: The Hubbard Hamiltonian can be re-expressed
in configuration space, i.e. in the space of local displace-
ments Φ. In this representation, the Hubbard parameters
form smooth and 8-fold symmetric surfaces ε(Φ), U(Φ) and
J(Φ,Φ′). The α, β and γ points are shown in (a). Figures
show 2800 sites. On-site interactions are computed for a
scattering length a = 100 a0 and 20Erec transverse lattice.
For clarity, (b) shows the total tunneling amplitude per site
Jtotal(Φi) =

∑
i 6=j |Jij |. The individual tunneling amplitudes

J(Φ,Φ′) in configuration space are discussed in Appendix H.

is a compact and uniformly dense space with periodic
boundaries – the 8QC is entirely described by the func-
tions ε(Φ), J(Φ,Φ′), U(Φ). These are shown in Fig. 11
and reveal a striking property: contrary to the fractal
structure in real space, the Hubbard parameters form
smooth functions in configuration space. This directly
follows from the construction of configuration space,
where an infinitesimal move in Φ implies an infinitesi-
mal relative displacement between the XY and D square
lattices and hence a smooth change of the resulting po-
tential. In turn, the Wannier function hosted on the cor-
responding lattice site will also undergo an infinitesimal
change, resulting in the observed smooth changes of all
local properties. As a consequence, on-site energy, inter-
action, tunneling amplitudes, or any other local property
must be smooth in configuration space.

Two important consequences follow from the smooth-

ness of Hubbard parameters in configuration space.
First, arbitrary large Hubbard Hamiltonians can now be
obtained at negligible computational cost, for example
by computing Wannier functions for a finite number of
points in configuration space and interpolating between
them, or by direct interpolation of the Hubbard parame-
ters. Second, the physics of the quasicrystal is, for suffi-
ciently large system sizes, unaffected by the specific val-
ues of the phases φi. While they amount to global trans-
lations in configuration space, the dense sampling ensures
that Eq. (9) remains effectively unaffected.

Turning to the shape of these surfaces, we observe that
the sites close to the centre of the octagon (Fig. 10 f)
correspond to almost perfectly overlapping minima of
both square latices and are hence located within the
deepest potential wells in real-space. Therefore, they
possess low on-site energy ε(Φ), high on-site interac-
tion energy U(Φ), and low total tunneling amplitudes
Jtotal(Φi) =

∑
i 6=j |Jij |. Conversely, sites corresponding

to the corners of the octagon (Fig. 10 a,f) are located
on shallow and high-lying potential wells. They possess
the highest on-site energies, the lowest on-site interaction
and highest tunneling amplitudes.

As a sidenote, we notice that the on-site energies
(Fig. 11 a) can be approximated by a simple analytical
expression:

ε(Φ) ≈ ∆0 + ∆

4∑
i=1

sin2

(
ki
|ki|
·Φ
)
. (10)

for V0 between 1.5 to 10Erec. This approximation, whose
form is surprisingly reminiscent of the lattice potential
in Eq. (5), has an average relative root-mean-square er-
ror smaller than 1%. The individual tunneling ampli-
tudes J(Φ,Φ′) are more intricate and are discussed in
Appendix H, where we also show how the configuration
space picture allows us to unambiguously define a hier-
archy of first-, second-, and higher order neighbours in a
matter reminiscent of the fractal structure found in mo-
mentum space [28]. First-order neighbours and the lines
connecting them form the well-known Ammaan-Beenker
tiling. We emphasize, however, that there can be signifi-
cant tunneling elements also connecting 2nd-order neigh-
bours. In contrast to the Ammaan-Beenker tiling, the
8QC is hence not bipartite. In future studies, it will be
of interest to determine whether exact closed-form solu-
tions can be obtained for the functions ε(Φ), U(Φ) and
J(Φ,Φ′).

B. Validity of single-band picture

The BH Hamiltonian presented in this work only con-
siders the lowest band, i.e., one WF per lattice site. This
is sufficient as long as temperature, chemical potential,
and on-site interaction energies are smaller than the en-
ergy difference to the first excited WFs. The extension
to more WFs per lattice site is left to future research,
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FIG. 12. 8QC: Estimation of maximal interaction energy
achievable without exciting atoms into the higher bands using
configuration space. The blue spectrum indicates the on-site
energies ε(Φ), while the red dots correspond to the energy
needed for a second particle on the same site, i.e., ε(Φ)+U(Φ).
We consider 20Erec transverse confining lattice and a scat-
tering length a = 400 a0.

but we can extract the approximate onset of the second
band already from the spectra of the continuum Hamil-
tonian for small systems, see Fig. 3. These are indicated
by the black dashed line in Fig. 12, where the blue dots
indicate the on-site energies ε(Φ), and the red dots indi-
cate the energy needed for a second particle on the same
site, i.e., ε(Φ) + U(Φ). We consider a transverse confin-
ing lattice of depth Vz = 20Erec and find that for lattice
depths V0 between 1 and 9Erec, we can reach a scatter-
ing length amax ≈ 400 a0 before doubly occupied sites
begin to overlap with higher bands (Fig. 12). This indi-
cates the validity of the singe-band model in the relevant
regimes.

C. Mott-insulating phases

The precise ground state phase diagram of the inter-
acting 8QC will require large scale numerical simula-
tions (e.g. Quantum Monte-Carlo [49]) that will be fa-
cilitated by the Hubbard model developed in this work.
One might, in analogy to other disordered or quasiperi-
odic lattices, expect it to contain superfluid and Mott-
insulating phases that are separated by the compressible
Bose-glass phase [44, 46, 50–60]. While the existence
of Mott-insulating phases is a priori not clear, we can
already draw some conclusions from the developed Hub-
bard model:

In the atomic limit, where tunneling can be neglected,
and in the presence of a band gap above the lowest band,
an incompressible Mott-insulating (MI) phase with one
atom per site (i.e. 2

1+
√

2
≈ 0.83 atoms per (λ/2)2, see

Appendix F) will exist whenever

ε(Φ) + U(Φ) > max
Φ′

(ε(Φ′)) ∀Φ, (11)

i.e., whenever the interaction dominates over the spread
in on-site energies, see Fig. 12. This suggests that for rel-
atively large lattice depths (but with V0 < 10Erec such

that a finite band gap exists) and sufficiently high scat-
tering lengths, there will always be an incompressible MI
phase with unit filling. We note, however, that excita-
tions of this Mott insulator or its extension to finite tem-
peratures would likely not be accurately described by the
current BH model, as double occupancies could hybridize
with the excited band.

Furthermore, Fig. 8 highlights that with increasing lat-
tice depth, the spread in ε(Φ) grows faster than the av-
erage on-site interaction. Eq. (11) therefore implies that
the transition from Bose glass to MI will for deeper lat-
tices shift to larger scattering lengths. This is in stark
contrast to a periodic lattice, where the transition from
superfluid to MI shifts to smaller scattering lengths for
deeper lattices.

As a third important conclusion, the continuous dis-
tribution of on-site energies ε(Φ) in the thermodynamic
limit directly implies that, at least in the atomic limit,
there are no incommensurate Mott phases below unit fill-
ing, as such states would always be gapless and compress-
ible. This suggests that the MI states with fractional fill-
ings found in recent quantum Monte-Carlo simulations
of the continuum model [46] might be limited to finite
system sizes, where configuration space by necessity is
only sampled coarsely.

IV. CONCLUSION

We presented a general numerical method for comput-
ing the Wannier functions and Hubbard Hamiltonians
of non-periodic potentials. This method was then ap-
plied to construct the Bose-Hubbard Hamiltonian of the
two-dimensional eightfold symmetric optical quasicrystal
(8QC). As a benchmark, we reproduced the localisation
transition in the non-interacting ground state and ob-
tained excellent agreement with earlier results.

In a second part, we introduced a configuration-space
representation of the 8QC. This representation, inspired
by existing schemes for incommensurate bilayer systems,
enables the description of the quasicrystal in the infinite-
size limit by ordering the lattice sites in terms of their
shape and local surrounding. We showed that the Hub-
bard model of an infinite 8QC can be re-expressed on a
dense and compact octagon with periodic boundary con-
ditions. In this representation, the Hubbard parameters
take the form of smooth functions.

This Hubbard model opens the door to large-scale nu-
merical simulations of quasicrystalline optical lattices,
and the developed configuration space enables new ana-
lytic arguments about the many-body physics and topo-
logical structure of these models.

In future studies, it will be of interest to apply the
configuration-space picture to other quasiperiodic lat-
tices, such as Aubry-André models and models interpo-
lating between quasicrystalline and Aubry-André limits.
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Appendix A: Finite-Difference Schrödinger equation

We use the Finite-Difference Schrödinger Equation
(FDS) for the numerical solution of the Schrödinger

eigenvalue equation Ĥ |ψi〉 = Ei |ψi〉, illustrated below
in the one-dimensional case for simplicity. Deriving the
FDS Hamiltonian consists of writing the matrix elements
of the Hamiltonian Ĥ = − 1

4π2 ∆ +V (x) (written in units
of Erec) in a discretised position basis |xi〉 with grid spac-
ing δx = L

N , where L is the system size and N the number
of grid points.

Using a finite-difference approximation, we can write
the Laplacian as

∆ψ(x) ≈ ψ(x+ δx)− 2ψ(x) + ψ(x− δx)

(δx)2
.

Therefore, its matrix elements in the discretised basis are

〈xi|∆ |xj〉 =
δi+1,j − 2δi,j + δi−1,j

(δx)2
.

The potential operator V̂ is diagonal in the discretised
basis and its matrix elements are 〈xi| V̂ |xj〉 = V (xi) δi,j .
Consequently, we can write the matrix elements of the
FDS Hamiltonian as

〈xi|H |xj〉 = − 1

4π2
〈xi|∆ |xj〉+ 〈xi| V̂ |xj〉 (A1)

= − 1

4π2

δi+1,j − 2δi,j + δi−1,j

(δx)2
+ V (xi) δi,j .

(A2)

We use a numerical matrix eigenvalue solver based on
Lancsoz’ algorithm [41] to obtain the lowest eigenvalues
Ei and corresponding eigenvectors |Ei〉 =

∑
cij |xj〉 of

the finite-difference Hamiltonian H with open boundary
conditions.

The FDS algorithm is naturally limited by Nyquist’s
theorem. In order for the algorithm to be accurate, the
inverse of the discretisation step should always be at least
twice the maximal momentum contained in the Fourier
transform of the considered state. Consequently, for a
given discretisation step size, the precision of the ob-
tained solution decreases for higher-lying states.

FIG. 13. (a): The boundary conditions for generating the
NOWF (b) are generated by combining two criteria. One is
the convex hull of the set of all sites within the cut-off radius
enlarged by 0.17λ (blue line). The second combines individ-
ual boundaries around each lattice site (red), that consist of
the contour lines sitting 15% above the bottom of the poten-
tial wells, enlarged by a factor of 2.5. The resulting boundary
wall is shown in b. Afterwards, a non-orthogonal Wannier
function (c) is constructed by localising a linear combination
of eigenstates around the central minimum (dark circle).

Appendix B: Boundary conditions for generating
the Wannier functions

The boundary conditions for calculating the NOWFs
consist of a hard wall of height 4V0, whose shape is gener-
ated in two steps. We first compute the convex hull of the
set of all lattice sites within the cut-off radius R, and then
enlarge it by 0.17λ (blue line on Fig. 13). This results
in a boundary that still strongly affects the wavefunc-
tion on the wells closest to the cut-off radius. Therefore,
we calculate a second boundary that closely matches the
shapes of the wells (red line on Fig. 13). This is created
from the contour line sitting 15% of the total amplitude
of the optical potential (which is 4V0) above the bottom
of the potential wells, and enlarged by a factor of 2.5.
Joining these two then leads to the boundary condition
shown in Fig. 13 b that improves convergence for small
cut-off radii.

Appendix C: Convergence checks

The convergence of the BH parameters is controlled
by two parameters: the grid spacing δx and the cut-off
radius R for the generation of NOWFs.



11

FIG. 14. Convergence of on-site energies (a), on-site inter-
action (b) and nearest-neighbour tunneling amplitudes up
to 2nd-order neighbours (c) as a function of the numeri-
cal grid spacing δx at V0 = 9Erec. System containing 63
lattice sites. Errors are obtained by comparing the results
with a ”converged” solution computed for a grid spacing of
δxmin = 4.76× 10−3 λ.

Fig. 14 shows the result of a convergence study in the
grid spacing at a lattice depth of 9Erec. We estimate
the convergence by comparing the Hubbard parameters
(on-site energies, interaction and nearest-neighbour tun-
neling amplitudes) to a ”converged” solution computed
with the smallest grid spacing of δxmin = 4.76 × 10−3 λ
on a system of 63 lattice sites. In the case of the tunnel-
ing elements, we considered the absolute error instead of
the relative error, as very small tunneling amplitudes can
have large relative errors without affecting the physics of
the model. As a result, we set the grid spacing for all
lattice depths to δx = 0.03λ, resulting in an accuracy of
≈ 1%. This requirement in grid spacing is most stringent
at the highest lattice depth, as deeper lattices reduce the
spread of the WFs.

Fig. 15 illustrates the convergence of a Wannier func-
tion for increasing cut-off radii R, for a relatively shal-
low depth of V0 = 1.5Erec. As seen on a logarithmic
scale, the relevant sidelobes (and thereby the tunneling
elements) quickly converge when R is increased.

To assess the convergence of the WF more quantita-
tively, Fig. 16 shows the effect of varying the cut-off ra-
dius R on the convergence of on-site energies, interaction
and nearest-neighbour tunneling amplitudes of 66 lat-
tice sites for V0 = 1.5Erec. We estimate convergence by
comparing them with the result of a ”converged” solu-
tion computed with a cut-off radius of 7λ. We expect
the requirement in cut-off radius R to be more strin-
gent at low lattice depth where the Wannier functions
are more spread out. As a result, we set the cut-off ra-
dius to R = 4λ for all lattice depths (except where stated
otherwise in the text).

As an additional test, we used the same δx and R to
generate the Hubbard Hamiltonian of a finite-size square
periodic lattice, and compared the nearest-neighbour
tunnelling amplitudes to the result expected from maxi-
mally localised Wannier functions computed using Bloch
waves. In the range V0 = 2 to 10Erec, the relative er-

FIG. 15. Convergence of an 8QC Wannier function as a func-
tion of cut-off radius R on linear (a) and logarithmic (b)
scales. Figure only shows the horizontal cross section of the
2D Wannier function. V0 = 1.5Erec.

FIG. 16. Convergence of the on-site energies(a), on-site inter-
action (b) and tunneling amplitudes up to 2nd-order neigh-
bours (c) as a function of the cut-off radius R. V0 = 1.5Erec.
System containing 66 lattice sites. Errors are obtained by
comparing the results with a ”converged” solution computed
for a cut-off radius of 7λ.

ror in on-site interaction and nearest-neighbour tunneling
was always below 3× 10−2.

Appendix D: Exponential localisation of the
Wannier functions

Fig. 17 shows cross-sections of 1600 different 8QC
Wannier functions, obtained for a low lattice depth of
V0 = 1.5Erec, i.e., below the ground state localisation
transition. These exhibit exponentially decaying side-
lobes that are clearly visible as a linear decay in loga-
rithmic scale (red lines).

Appendix E: Off-site interactions

Atoms on neighbouring sites can in principle interact
through various two-body processes due to the overlap
of the corresponding Wannier functions [38, 61, 62]. The
matrix elements of these processes involve integrals of the
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FIG. 17. Cross-section of 1600 different Wannier functions on
linear (a) and logarithmic (b) scales. V0 = 1.5Erec. Red lines
indicate the exponentially decaying sidelobes.

FIG. 18. (a,b): Histograms of two-body amplitudes between
neighbouring sites. 1st-order neighbours in blue and 2nd-
order neighbours in green. (c): Corresponding histogram for
two-body on-site interaction. Lattice depth is V0 = 1.5Erec.

form:

Uijkl ∝
∫
d2rw∗i (r)w∗j (r)wk(r)wl(r) , (E1)

which considers Wannier functions located on different
lattice sites. The most significant processes involve just
one pair of sites (Uiijj and Uiiij). To check whether
these off-site processes could be significant for the 8QC,
we explicitly compute the overlap integrals for pairs of
neighbouring sites, in a shallow lattice (V0 = 1.5Erec)
containing around 1600 sites. As seen in Fig. 18, these
off-site processes are always at least one order of magni-
tude smaller than the lowest on-site interaction energies.
We can therefore safely neglect them for all lattice depths
above 1.5Erec, where the off-site processes are even fur-
ther suppressed due to the increased confinement of the
WFs.

Appendix F: Density of sites of the eight-fold optical
quasicrystal

The configuration-space picture can be employed to
derive the exact density of lattice sites in the eight-fold

optical quasicrystal: we first note that in the limit of
vanishingly weak beams in the diagonal k+ and k− di-
rections, the resulting potential contains as many sites as
the usual square lattice – which has a density nsquare of
1 site per (λ/2)2. In addition, the configuration space of
this lattice with weak diagonal beams now constitutes a
densely populated square of side d. Increasing the weak
diagonal beams to restore the eight-fold symmetry adds
new periodic boundary conditions along the diagonal di-
rections in configuration space and reduce the square to
the octagon shown in Fig. 10. Since the density in con-
figuration space remains constant, we can directly infer
that the ratio of the density of sites in the 8QC (n8QC)
to the square lattice is given by the ratio of the area of
the octagon to the square, i.e., the inverse of the silver
mean:

n8QC

nsquare
=

2

1 +
√

2
≈ 0.8284 (F1)

Appendix G: Exceptional minima at the boundary
of configuration space

As mentioned in Section II, the lowest band of the
8QC lattice contains one state per local minimum of the
potential, up to some exceptional lattice sites. Indeed,
some very shallow local minima exist that do not host a
Wannier function in the lowest band, for an example see
the red cross in Fig. 19 c.

Careful inspections shows that in configuration space
these minima are always located just outside the edge of
the octagon and that they correspond to the higher min-
ima of asymmetric double wells, see the inset on Fig. 19
c. The other minimum of the double-well is then always
located inside the octagon. Numerically diagonalising a
patch containing such a double well shows that only the
lower state of this double well contributes to the ground
band, while the higher state can be found in the excited
band. The code accounts for the lowest band state hosted
in the double-well by generating one Wannier function
localised around the minimum lying inside the octagon.
By construction, this state will corresponds to the lower
eigenstate of the double well.

The minima sitting exactly on the boundaries of the
octagon form perfectly symmetric double-wells in real
space, see Fig. 19 a,b. In this configuration, the sym-
metric combination belongs to the lowest band, while the
antisymmetric combination is part of the excited band.
Such configurations of lattice sites have also been ob-
served in discrete octagonal quasicrystals obtained from
cut-and-project procedures from hypercubic 4 dimen-
sional lattices [63]. As these constitute a set of measure
zero in configuration space they are statistically irrele-
vant in the thermodynamic limit and hence require no
special treatment.

Another specific case arises for the minima located ex-
actly on the eight corners of the octagon. In this case,
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FIG. 19. Sites (crosses) located close to the edges of the
octagon (right) correspond to very shallow double wells in
real space (left), which contain only one state in the lowest
band. (a, b) shows the case of a perfectly symmetric double
well, lying exactly on the edge of the octagon. Both minima
(black crosses) are separated by a shallow barrier of height
≈ 0.01V0. (c,d) shows an asymmetric double-well, one of the
minima (red cross) lies outside of the octagon. Insets show a
1D cross-section of the double-well potentials.

the potential forms a perfectly 8-fold symmetric ring con-
taining 8 local minima separated by very weak potential
barriers, see Fig. 20. This configuration is a center of
global rotational symmetry of the 8QC, and can hence
occur only once.

We can obtain an estimate for the energies of the states
hosted on this ring using exact diagonalisation of a patch
containing the ring. Fig. 21 shows the energies of theses
states as a function of lattice depth, and compares them
to the typical energy spectrum of the rest of the lattice.
As we see, the ring contains 3 low energy states that are
located at the upper limit of the lowest band. The 5
higher-lying states are instead located within the excited
bands.

Using the classification of 1st-order neighbours devel-
oped below, we can see that in situations close to, but not
equal to, the 8-fold symmetric ring (or the corner of the
octagon), there will naturally be three minima within the
octagon while the other 1st-order neighbours lie outside
of it. The configuration-space construction hence in all
cases automatically selects the right number of minima
to reproduce the lowest band.

FIG. 20. Sites (crosses) located on the 8 corners of the oc-
tagon (right) form an 8-fold symmetric ring, separated by
shallow potential barriers. This constitutes one of the sym-
metry centers of the 8QC.

Appendix H: Neighbours classification and tunneling
amplitudes

In contrast to for instance the regular square lat-
tice, it is not possible to write down an unambiguous
definition for nearest-neighbours in the 8QC based on
real-space distances. In configuration space, however,
nearest-neighbours and higher order neighbours can be
defined rigorously, identically to what is done in the per-
pendicular space of discrete quasicrystals [64].

We start by rewriting the expressions for ΦXY and
ΦD (Eq. (7), Eq. (8)) by stating the modulo operation
explicitly, and setting all φi to zero for simplicity:

ΦXY (x, y) = (x−m1 d) ex

+ (y −m2 d) ey (H1)

ΦD(x, y) =

(
x+ y√

2
−m3 d

)
e+

+

(
x− y√

2
−m4 d

)
e− (H2)

Here, m1, m2 ∈ Z (which are functions of x and y)
label the lattice sites of the XY lattice, while m3 and
m4 label the sites of the D lattice (see Fig. 22), and the
ei with i ∈ {x, y,+,−} are unit vectors along the four
lattice directions in Fig. 2. In turn, we can re-write the
expression for Φ = ΦXY −ΦD.

Φ(x, y) = d

(
−m1 +

m3 +m4√
2

)
ex

+ d

(
−m2 +

m3 −m4√
2

)
ey (H3)

As an aside, we note that this form also makes it ap-
parent that the octagon is populated densely and uni-
formly, as the equidistribution theorem [65] ensures that
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FIG. 21. Blue and red circled dots: Energy spectrum of a ring
containing 8 minima (inset, lower right) obtained by exact di-
agonalisation in continuum. Background: bulk energy spec-
trum of the 8QC from Fig. 3. The lowest three states of the
ring contribute to the lowest band (blue circled dots), while
the remaining higher-lying states are located within the higher
bands (red circled dots). Upper left inset shows the energy
spectrum and the 8 lowest ring eigenstates for V0 = 5Erec.

FIG. 22. Real-space neighbours (black dots) can be found
around adjacent lattice sites of the square lattices (red and
blue dots) underlying the 8QC. Red and blue labels indicate
the indices of some of the sites adjacent to the (m1,m2) site
of the XY lattice and (m3,m4) site of the D lattice. This
illustrates that the nearest neighbour to the right (black ar-
row) is offset by {∆m1,∆m2,∆m3,∆m4} = {1, 0, 1, 1} so
that Φ′ −Φ = ẽx.

FIG. 23. 1st, 2nd and 3rd-order neighbours of a given site
(black cross) in real (a) and configuration (b) space con-
structed by Φ′ = Φ +

∑
i ciẽi with ci ∈ Z and

∑
|ci| =

{1, 2, 3}. (blue): 1st-order neighbours. (green): 2nd-order
neighbours. (red): 3rd-order neighbours. Black lines connect
1-order neighbours.

the decimal part of sequences of the form xn = αn with
α irrational and n the sequence of natural numbers must
be uniformly dense in the interval [0, 1[.

Let us now consider two neighbouring sites of the
8QC that correspond to the integers {m1,m2,m3,m4},
{m′1,m′2,m′3,m′4} (see Fig. 22) and local displacements
Φ′ and Φ. We can then rewrite the vector connecting Φ′

to Φ as

Φ′ −Φ =d

(
−∆m1 +

∆m3 + ∆m4√
2

)
ex

+ d

(
−∆m2 +

∆m3 −∆m4√
2

)
ey (H4)

with ∆mi = m′i −mi. In real-space, nearest neighbours
cannot be more than one unit cell of the XY and D lat-
tices away, i.e., |∆mi| ∈ {0, 1}.

This is clearly visible in Fig. 22. Here, the vector con-
necting the lattice site defined by {m1,m2,m3,m4} to
its right-hand neighbour defined by {m1 + 1,m2,m3 +
1,m4 + 1}, amounts to Φ′ −Φ = − d

1+
√

2
ex. Thanks to

eightfold symmetry, the same reasoning can be applied
in all 8 directions, leading to:

ẽi ∈ ±
d

1 +
√

2
{ex, ey, e+, e−} (H5)

.
Fig. 23 shows that vectors of the form Φ+ẽi, if they lie

within the octagon, do indeed correspond to close neigh-
bours in real space and we accordingly define first-order
neighbours as sites separated by the vectors ẽi in config-
uration space. This is identical to the definition of first-
order neighbours in the perpendicular space of eightfold
discrete quasicrystals [64].

In turn, we can define the nth-order neighbours of
a given site as the set of surrounding sites that lie on
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FIG. 24. Tunneling amplitudes Jen
k

(Φi) ≡ J(Φ,Φ + en
k ) for

V0 = 2.5Erec along a cut through configuration space, see
Fig. 11 for definition of α, β and γ points. (blue): 1st-order
neighbours. (green): 2nd-order neighbours. (red): 3rd-order
neighbours. 1st-order neighbours are always characterised by
negative J. (b) Same as (a) but zoomed in on positive tunnel-
ing amplitudes.

the octagon and are connected through the sum of at
least n vectors ẽi, i.e., Φ′ = Φ +

∑
i ciẽi with ci ∈ Z

and
∑
|ci| = n. We refer to the vector connecting n-

th order neighbours as ẽni . Fig. 23 shows an example
of 1st, 2nd and 3rd-order neighbours. Using this defini-
tion, 1st-order neighbours sit on the edges of the square
and rhombuses of the corresponding Ammann–Beenker
tiling [43], while second-order neighbours are separated
via two edges. Pairs of sites along the short diagonals of
the rhombuses are therefore 2nd-order neighbours even
though they lie close to each other in real space and give
rise to significant (negative) tunneling amplitudes.

Similarly to the smooth surfaces formed by the on-
site energy ε(Φ) and the on-site interaction U(Φ), the
tunneling amplitudes connecting two sites Φ,Φ′ can be
written as a function J(Φ,Φ′) in configuration space. If
we restrict ourselves to nth-order neighbours, we know
that Φ − Φ′ = enk . Therefore, for each enk we define a
smooth function Jen

k
(Φ) ≡ J(Φ,Φ + enk ) and plot a cut

through this function in Fig. 24.

Finally, Fig. 25 shows the distributions and mean val-
ues for the total tunneling amplitudes connecting 1st, 2nd
and 3rd-order neighbours. While 1st and 2nd-order tun-
neling can have comparable amplitudes, tunneling ampli-
tudes connecting 3rd-order neighbours are significantly
weaker for all lattice depths. This also highlights that
even though the Ammann–Beenker tiling is bipartite, the
8QC is not.

FIG. 25. Distributions of 1st, 2nd and 3rd-order total tun-
neling amplitudes versus lattice depth. Circled dots show
the mean values of the distributions. (blue): 1st-order neigh-
bours. (green): 2nd-order neighbours. (red): 3rd-order neigh-
bours.

Appendix I: Relation between configuration and
perpendicular spaces of the 8QC

Here we show that the 8QC configuration space intro-
duced in this work directly corresponds to the perpendic-
ular space of discrete octagonal quasicrystals. Both form
a densely and uniformly populated octagon, where lattice
sites are ordered in terms of their local surroundings.

Let us first introduce the perpendicular space of dis-
crete octagonal quasicrystals. These quasicrystals can be
obtained using a cut-and-project method at an irrational
angle of a four dimensional hypercubic lattice [42, 63].

Let {e1, e2, e3, e4} be a basis of R4, and define the hy-
percubic lattice as the set of their integer combinations.

We then project the 4D hypercubic lattice into two
orthogonal subspaces: the ”physical space” and ”per-
pendicular” space, using the projection maps π and π⊥

respectively. These are defined as:

π =

(
1 0 1√

2
1√
2

0 1 −1√
2

1√
2

)
(I1)

π⊥ =

(
−1 0 1√

2
1√
2

0 1 1√
2
−1√

2

)
(I2)

The 2D quasicrystalline lattice can then be obtained
as the set of physical space positions of the hypercubic
lattice sites whose perpendicular space image lies within
a certain ”acceptance window”. A common choice for
this window is to set it equal to the perpendicular space
image of the hypercubic Wigner-Seitz cell.

Let us now turn the the configuration space of the 8QC.
The optical potential can be obtained as an irrational cut
of a 4 dimensional hypercubic optical potential (where we
fixed all phases φi to 0 for simplicity)
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V4D(x1, x2, x3, x4) = V0

4∑
i=1

sin2(
2π

λ
xi) (I3)

by setting x3 = x1+x2√
2

and x3 = x1−x2√
2

.

In turn, we can rewrite the configuration-space coor-
dinates in 4 dimensions:

Φ = ΦXY −ΦD (I4)

with

ΦXY =

(
x1 mod d
x2 mod d

)
=

(
x̃1

x̃2

)
(I5)

ΦD =
1√
2

(
x3 mod d+ x4 mod d
x3 mod d− x4 mod d

)
=

1√
2

(
x̃3 + x̃4

x̃3 − x̃4

)
(I6)

This directly leads to

Φ =

(
x̃1 − x̃3+x̃4√

2

x̃2 − x̃3−x̃4√
2

)
=

(
1 0 −1√

2
−1√

2

0 1 −1√
2

1√
2

)x̃1

x̃2

x̃3

x̃4

 , (I7)

which shows that, up to a sign change, the 8QC con-
figuration space is identical to the perpendicular space
projection map π⊥ Eq. (I2).
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