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Abstract. High-dimensional data are by their very nature often difficult to han-

dle by conventional machine-learning algorithms, which is usually characterized

as an aspect of the curse of dimensionality. However, it was shown that some of

the arising high-dimensional phenomena can be exploited to increase algorithm

accuracy. One such phenomenon is hubness, which refers to the emergence of

hubs in high-dimensional spaces, where hubs are influential points included in

many k-neighbor sets of other points in the data. This phenomenon was previ-

ously used to devise a crisp weighted voting scheme for the k-nearest neighbor

classifier. In this paper we go a step further by embracing the soft approach, and

propose several fuzzy measures for k-nearest neighbor classification, all based

on hubness, which express fuzziness of elements appearing in k-neighborhoods

of other points. Experimental evaluation on real data from the UCI repository

and the image domain suggests that the fuzzy approach provides a useful mea-

sure of confidence in the predicted labels, resulting in improvement over the crisp

weighted method, as well the standard kNN classifier.

1 Introduction

High dimensional data are ubiquitous in modern applications. They arise naturally when

dealing with text, images, audio, data streams, medical records, etc. The impact of this

high dimensionality is manyfold. It is a well known fact that many machine-learning

algorithms are plagued by what is usually termed the curse of dimensionality. This

comprises a set of properties which tend to become more pronounced as the dimension-

ality of the data increases. First and foremost is – the unavoidable sparsity of data. In

higher-dimensional spaces all data is sparse, meaning that there is not enough data to

make reliable density estimates. Another mitigating influence comes from the concen-

tration of distances, which has been thoroughly explored in the past [1, 2]. Namely, all

the distances between data points generated from the same distribution tend to become

increasingly more similar to one another as new dimensions are added. Luckily, this

does not affect multiple-distribution data as much, as was shown in [3]. The question of



whether the very concept of nearest neighbors is meaningful in high-dimensional data

sets was addressed in [4]. Admittedly, there are some difficulties, but nearest neighbor

methods remain popular, both for classification and clustering.

Hubness is a high-dimensional phenomenon which concerns k-nearest-neighbor

sets [5–7]. Denote by Nk(x) the number of k-occurrences of x, i.e., the number of

times x appears in k-nearest-neighbor lists of other points in the data. The distribution

of Nk(x) exhibits significant skew in high-dimensional cases, skew which increases

with intrinsic dimensionality of the data. This leads to the emergence of hubs, influen-

tial points which affect the reasoning procedure of nearest-neighbor-based methods for

many data points. Hubs appear as a consequence of the geometry of high-dimensional

space, and the behavior of data distributions within them. Most data sets (approxi-

mately) appear as hyperspheres or unions of hyperspheres centered around some distri-

bution means. This positioning renders points closer to the data centers more likely to be

included in k-nearest-neighbor lists of other data points. This tendency increases with

dimensionality. The hubness phenomenon was successfully applied to the k-nearest

neighbor (kNN) algorithm, yielding observable improvement in many cases [5, 8]. This

weighting scheme will be addressed in Section 2.1 as we start to explain the motivation

for our subsequent approach.

Our goal is to extend the class-nonspecific crisp kNN weighting scheme described

in [5] to class-specific soft voting in the spirit of the fuzzy k-nearest neighbor (FNN)

algorithm [9]. The rest of the paper is structured as follows. In Section 2 we present the

related work, focused around two major points – the hubness-weighted kNN algorithm,

and the FNN algorithm. While observing the former, we outline its weak points and

aim our proposed improvements in their direction. The respective hubness-based fuzzy

membership functions are presented in Section 3. We go on to evaluate the proposed

approach in Section 4. Finally, we give our final remarks as well as future research

directions in Section 5.

2 Related Work

2.1 Hubness-Weighted kNN

Weighted voting in nearest-neighbor classifiers has become something of a common

practice. Weights are usually either based on element position in the k-neighbor list

or its distance to the observed data point. Some more robust approaches taking into

account also the correlation between these differences have also been recently devel-

oped [10]. The hubness weighting scheme which was first proposed in [6] is a bit more

flexible, in a way that the weight associated to xi is w(xi, k), meaning that each point

in the training set has a unique associated weight, with which it votes whenever it ap-

pears in some k-neighbor list, regardless of its position in the list. This weighting is

based on the interpretation of how the hubness phenomenon affects kNN performance.

As was mentioned before, hubness of an element xi is the number of its k-occurrences

in neighbor lists of other elements, and is denoted by Nk(xi). This can be decomposed

into two parts: Nk(xi) = GNk(xi)+BNk(xi), where GNk(xi) is the number of good

k-occurrences and BNk(xi) is the number of bad k-occurrences. Good occurrences are

those when the label of xi matches the label of the element in whose k-neighbor list



xi is observed. Bad occurrences are characterized by a mismatch of labels. Elements

with high bad hubness are often found in neighbor lists of elements belonging to other

categories in the data. This means that bad hubs exhibit a detrimental influence on k-

nearest-neighbor classification, because their vote often gives misleading information.

The aforementioned weighting scheme reduces these bad influences directly. Standard-

ized bad hubness is defined as hb(xi, k) = (BNk(xi) − µBNk
)/σBNk

, and the weight

associated to xi is then w(xi, k) = e−hb(xi,k). It was shown that this often leads to

significant improvement in high-dimensional settings where hubs naturally appear as

an artefact of dimensionality. The amount of improvement depends on the distribution

of bad hubness within the data.

What the described approach disregards completely is the structure of bad hubness.

In non-binary classification, when a label mismatch occurs, it can occur for any of

the classes. Instead of observing Nk(xi) as a sum of good and bad hubness, we could

decompose it into Nk(xi) =
∑nc

c=1 Nk,c(xi), where each Nk,c(xi) is the number of

k-occurrences of xi in neighborhoods of elements of class c, and nc is the total number

of classes. Good hubness is just the special case when c = yi, yi being the label of

xi in the data set. Therefore, instead of using the hubness information only to reduce

the votes of bad hubs, it is possible to take into account the structure of bad hubness,

which can be used to decompose the crisp vote given by xi into a fuzzy vote relying

on all Nk,c(xi). There already exists a framework that can assist in achieving this goal,

referred to as the fuzzy nearest neighbor classifier.

2.2 Fuzzy Nearest Neighbor Algorithm

Fuzzy sets are based on a notion of inherent ambiguity in the data, meaning that a single

element can be viewed as partially belonging to several different categories at the same

time [11]. This ambiguity is often problem-specific and the set membership function is

then provided by the domain experts. However, there are also ways of deducing some

sort of fuzziness automatically from the data. Denote by uci = uc(xi) the degree of

membership of xi in class c. The following properties must hold in order for uc to

define a fuzzy split on the data set:

nc
∑

c=1

uci = 1,

0 <
n

∑

i=1

uci < n,

uci ∈ [0, 1].

(1)

If a fuzzy measure uc is given, it is possible to perform k-nearest neighbor classifi-

cation in a fuzzy manner, as was first proposed by [9]. Let x be a newly observed data

instance for which we wish to perform classification. The degree of membership of x
in each of the classes is then defined as

uc(x) =

∑k
i=1 uci(‖x − xi‖

−(2/(m−1)))
∑k

i=1 (‖x − xi‖−(2/(m−1)))
, (2)



where ‖ · ‖ denotes the Euclidean norm. The parameter m in Eq. 2 determines how

heavily the distance is weighted when calculating contributions from each neighbor. For

large values of m, neighbors are weighted more equally, while low values of m favor

closer neighbors. The most commonly used default value for this parameter is m = 2,

so that fuzzy votes are weighted by the reciprocal of the distance.

There exist many ways for automatically generating suitable fuzzy measures from

the data. This is not only used for class membership fuzziness, but also for fuzzifying

attributes. A range of techniques can be used, including genetic algorithms, clustering,

neural networks, entropy, and others [12]. In the original fuzzy-nearest-neighbor arti-

cle [9], some simple ways to achieve this were also proposed, one of which was to

observe k nearest neighbors of xi and count the percentages of them coming from any

particular class. The final measure was a linear combination of the element’s label and

these percentages, normalized so as to fall in the desired [0, 1] range.

Apart from applying the fuzzy approach to specific domains, most attention has

been given lately to the issues of scalability in terms of achieving speedup in fuzzy

nearest neighbor search [13, 14], as well as improving the weighting scheme [15].

3 Proposed Hubness-Based Fuzzy Measures

The basis of our motivation was already mentioned in Section 2.1 while discussing the

properties of hubness-weighted kNN. Instead of using good and bad hubness, we pro-

pose to use class hubness Nk,c(xi) defined uniquely for each element in the training set.

It is immediately apparent that this measure can be fit into the fuzzy nearest-neighbor

framework. Contrary to the more usual fuzzy measures, it does not represent inherent

fuzziness of an element’s label, but instead measures the fuzziness of an appearance

of elements in k-neighbor sets, based on the training data. Regardless of the semantic

difference between the two, their form remains the same. There are, however, some dif-

ficulties with using hubness as a fuzzy measure. For small values of k, there are many

elements in the data which have zero hubness. This becomes even more pronounced

in high dimensions due to the mentioned skew of the distribution of k-occurrences.

Also, in non-binary classification problems, we need even more hubness data in order

to be able to properly estimate the partial memberships for all the existing categories.

This poses a serious limit on using class hubness for calculating fuzziness. We would

be forced to use very high k values, which could be detrimental in cases when best

kNN classification is achieved for smaller neighborhood sizes, as is often the case for

non-noisy small or medium-sized data sets.

We propose to handle the problems outlined above by only using hubness of the

elements which exhibit hubness greater than some predefined threshold. This in fact

separates the data for which it is possible to make reliable fuzzy estimates from those

which exhibit too low a hubness to be of any use in such a way. For the data below

the threshold, we propose to use a different fuzzy estimate. We explore four such ap-

proaches and discuss the pros and cons of their use in the rest of this section, as well as

analyzing the fruitfulness of their application in Section 4 when presenting the results

of experimental evaluation. Let X be the training set and Y the set of corresponding



labels. The hybrid fuzzy measure which we will be considering in the rest of the paper

takes the following form:

uc(xi) =

{

pk(y = c|xi) ≈
Nk,c(xi)+λ
Nk(xi)+ncλ , if Nk(x) > θ,

fk(c, xi), if Nk(x) < θ.

The term pk(y = c|xi) denotes the conditional probability of element x being of

class c if element xi appears in its k-neighbor set. For elements which exhibit hubness

above a certain threshold, this can be estimated by dividing the class hubness by total

hubness. The λ factor is a Laplace estimator, which is used for smoothing to prevent any

probability from being estimated as zero. By observing the formula for the conditional

probability, one can notice that the label yi of xi is not used at all when casting the vote

of xi! This is indeed a very peculiar property. Even though it is possible to work with

fuzziness defined in such a way, we wanted to make the fuzziness also dependent on

the element’s label, so we included each xi in its own neighbor list at the 0th position.

For high hubness elements, this does not make a large difference, but by doing so we

implicitly express a certain degree of confidence in label yi. The value of fk(c, xi) for

low-hubness elements should, ideally, represent a kind of estimate of the actual condi-

tional probability. Since this is not easy to achieve, alternative nearest neighbor-based

fuzzy estimates pose themselves as viable alternatives. We focused on four different

ways of dealing with low hubness: a crisp estimate method, a global estimate method,

as well as two different local estimates.

– What we refer to as the crisp estimate (CE) is the simplest and least flexible way of

handling low hubness, which is not in itself necessarily bad – to use the element’s

own label. In this scenario, low-hubness elements vote the same way they would

vote in kNN, with no attached fuzziness. Smoothing is performed by using the

same λ value as before.

– Global estimate (GE) is more flexible, but introduces the risk of adding more fuzzi-

ness than necessary. We compute the GE of the conditional probability as defined

in Eq. 3. The denominator is in fact what
∑

(x,y)∈(X,Y )|y=yi

∑nc

c=1 Nk,c(x) sums

up to. This is a sensible approach, but it remains questionable just how much is lost

and how much is gained by employing it. Even though it does give a global con-

ditional probability of elements from a particular class being included in neighbor

sets of another class, there is no guarantee that locally, in the observed part of the

data set, this estimate holds.

fk(c, xi) =
λ +

∑

(x,y)∈(X,Y )|y=yi
Nk,c(x)

ncλ +
∑

(x,y)∈(X,Y )|y=yi
Nk(x)

(3)

– If the global estimate fails to capture the proportions contained in the underlying

conditional probability for a specific data instance, using a local fuzziness estimate

is a possible alternative. Since we already have the k-neighbor lists, it seems natural

to take advantage of this when trying to estimate an element’s fuzziness. Here we

depart from trying to estimate the actual conditional probability and experiment

with a more usual approach. Let {xi1 . . . xik} be the k nearest neighbors of xi and

for convenience denote xi also as xi0, since we insert each element into its neighbor



list at the 0th position. The local estimate (LE1) is then given by Eq. 4, where δcyij

is Kronecker’s delta function. It is not entirely clear which value of k would lead to

a good estimate, therefore in our experiments we used k = 10 by default.

fk(c, xi) =
λ +

∑k
j=0 δcyij

ncλ + k + 1
(4)

– There is an alternative way to define local fuzziness based on nearest neighbors and

this was in fact one of the methods from the original FNN paper [9]. It is based on

LE1, but made so as to emphasize the label of an element, as in the CE method.

In fact, it represents a linear combination of the two approaches. We will denote it

LE2, as defined in the following equation:

fk(c, xi) =







0.51 + 0.49 ·
λ+

P

k
j=1

δcyij

ncλ+k+1 , if c = yi,

0.49 ·
λ+

P

k
j=1

δcyij

ncλ+k+1 , if c 6= yi.

Apart from testing these fuzzy measures separately, we have also merged them into

a single hybrid hubness-based fuzzy nearest neighbor algorithm which we present in

Algorithm 1. Given the training data set, we use the leave-one-out procedure to try

classifying each point x from the training data by observing the remaining n − 1 ele-

ments. Such a classification is attempted for each element and for all the k values in a

given range, as well as different threshold values and different fk(c, xi). The configu-

ration leading to the highest accuracy on the training data is then selected for use on the

test set.

Time complexity of this approach is in fact completely comparable to the one of

hubness-weighted kNN, with the bottleneck being the computation of k-neighbor sets.

Fast approximate algorithms for calculating all k-neighbor sets do exist, with one of

the most recent presented by Chen et al. [16]. This approximate algorithm runs in

Θ(dn(1+α)) time, where α ∈ (0, 1] is a parameter used to set a trade-off between

speed and accuracy. This makes hubness-based algorithms potentially feasible for use

on large-scale data sets.

We tested two versions of the algorithm presented in Algorithm 1. The first version

uses the distance-based fuzzy vote weighting described in Eq. 2, which we denote by

dwh-FNN. As an alternative we also tested a version of the algorithm where no distance-

based weighting is performed, and fuzzy voting was performed simply by summing all

the respective uci for every class. This will be referred to as h-FNN in the rest of the

text. The parameter m from Eq. 2 was set to 2 by default, this being the value which is

most frequently used.

4 Experimental Evaluation

This section presents the results of experiments that compare the standard k-nearest

neighbor classifier and hubness-weighted kNN, with the two proposed hubness-based

fuzzy approaches h-FNN and dwh-FNN. Section 4.1 employs data sets from the estab-

lished UCI repository of various dimensionalities, while Section 4.2 focuses on high-

dimensional data from the image domain.



Algorithm 1 Hubness-based Fuzzy Nearest Neighbor: Training

int[][] nearestNeighbors = calculateNearestNeighborLists(kmin, kmax);

float[][][] classHubnessAllK = calculateElementToClassHubness(nearestNeighbors);

float[][][] GEAllK = calculateGlobalEstimates(nearestNeighbors);

float[][] LE1 = calculateLE1(nearestNeighbors);

float[][] LE2 = calculateLE2(nearestNeighbors);

float[][] CE = calculateCE(nearestNeighbors);

float maxAcc = 0;

int bestK, bestTheta;

for all θ = θmin; θ ≤ θmax; θ++ do

for all k = kmin; k ≤ kmax; k++ do

float GEAcc, LE1Acc, LE2Acc, CEAcc = 0;

for all i = 0; i < trainingData.length; i++ do

if votebyGE(xi, GEAllK, ClassHubnessAllK, nearestNeighbors) == xi.label then

GEAcc++;

end if

if votebyLE1(xi, LE1, ClassHubnessAllK, nearestNeighbors) == xi.label then

LE1Acc++;

end if

if votebyLE2(xi, LE2, ClassHubnessAllK, nearestNeighbors) == xi.label then

LE2Acc++;

end if

if votebyCE(xi, CE, ClassHubnessAllK, nearestNeighbors) == xi.label then

CEAcc++;

end if

end for

updateMaxAccAndBestConfiguration(GEAcc, LE1Acc, LE2Acc, CEAcc);

end for

end for

4.1 UCI Data Sets

Hubness-based fuzzy measures that we proposed are of a hybrid nature, since in each

case they combine two different estimates. In order to see how different estimates might

be applied, we calculated on each data set, for a range of neighborhood sizes, the per-

centage of data points which have hubness below/above a given threshold. For two of

the used data sets, the plots for several lower thresholds for hubness can be seen in

Fig. 1. Naturally, great variation of behavior can be observed across different data sets,

since it is related to the aforementioned skew of the hubness distribution in high dimen-

sions. In other words, we expect for highly skewed data sets the term fk(c, xi) to play

a more important role than in the case of low to medium-skewed data with respect to

hubness. It is precisely for these data sets that the mentioned estimates of actual hub-

ness may become as important as hubness itself. From Fig. 1, however, the difference

becomes quite clear. For less skewed data sets, if good classification can be achieved

for neighborhood size k ∈ [10, 20] or above, then there is probably enough hubness

information to allow for its use as a fuzzy measure. If, on the other hand, the nature of

the data is such that best results are obtained for low k values, ranging maybe from 1
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(b) Dexter data set

Fig. 1. Percentage of elements with hubness over a certain threshold, for neighborhood sizes 1–20

to 5, the situation is reversed. However, when dealing with highly skewed data, such

as in case of the Dexter data set, influence of fk(c, xi) is non-negligible even when

considering higher k values.

The first round of testing was performed on 15 data sets taken from the UCI data

repository. The used data sets are of various sizes and dimensionalities, and are summa-

rized in Table 1, with the first six columns denoting data-set name, size, dimensionality

(d), number of classes (nc), and the observed skewness of the distributions of N1 and

N10 (SN1
, SN10

).3 For each data set, the skew of the distribution of k-occurrences was

calculated for various k values, to indicate the degree of hubness of the data. Euclidean

distance was used in all the experiments.

On the described UCI data sets, kNN, hubness-weighted kNN, h-FNN and dwh-

FNN were tested. In all the algorithm tests, 10 runs of 10-fold cross-validation were

performed. All algorithm parameters were set automatically, separately on each fold

during the training phase, based on the training set. Neighborhood sizes were tested

in the range k ∈ [1, 20] and thresholds θ ∈ [0, 10]. Classification accuracies achieved

by the classifiers are given in Table 2. The corrected resampled t-test [17] was used to

test for statistical significance of differences in accuracy for each data set. Differences

which were found to be significant with p < 0.01 compared to dwh-FNN are denoted

by symbols ◦/• in the table.

The dwh-FNN classifier was selected as the baseline for statistical comparison in

Table 2 since we determined that it generally outperformed all other classifiers. To

provide a more detailed pairwise classifier comparison, Table 3 shows the number of

wins of classifiers signified by the column label, over classifiers denoted by the row

labels, with statistically significant wins given in parenthesis.

Overall improvement over kNN is apparent already from the shown average scores

over all data sets in Table 2, as well as Table 3. Particular improvements vary and there

do exist data sets for which none can be observed, as well as some where performance

degradation is present. Hubness-weighted kNN, h-FNN and dwh-FNN exhibit similar

3 Skewness, the standardized 3rd moment of a distribution, is 0 if the distribution is symmetrical,

while positive (negative) values indicate skew to the right (left).



Table 1. Summary of UCI datasets

Data set size d nc SN1
SN10

colonTumor 62 2000 2 1.04 1.06

dexter 300 20000 2 2.95 3.33

diabetes 768 8 2 0.73 0.15

ecoli 336 7 8 0.62 0.37

glass 214 9 6 0.58 0.23

ionosphere 351 34 2 2.17 1.71

iris 150 4 3 0.46 0.03

isolet-1 1560 617 26 1.30 1.20

mfeat-fourrier 2000 76 10 1.20 0.75

ozone-eighthr 2534 72 2 1.31 0.70

page-blocks 5473 10 5 0.79 0.11

parkinsons 195 22 2 0.39 −0.19

segment 2310 19 7 0.70 0.16

vehicle 846 18 4 0.92 0.44

yeast 1484 8 10 0.78 0.27

Table 2. Classification accuracy of kNN, hubness-weighted kNN (hw-kNN), h-FNN and dwh-

FNN on UCI data sets. The symbols ◦/• denote statistically significant better/worse performance

compared to dwh-FNN

Data set kNN hw-kNN h-FNN dwh-FNN

colonTumor 65.1±19.6 • 72.5±20.6 74.9±20.0 74.5±20.0

dexter 60.1±18.2 • 72.5± 7.9 ◦ 68.6± 8.3 68.5± 8.3

diabetes 76.5± 4.1 ◦ 72.0± 4.6 • 74.2± 4.9 74.2± 4.9

ecoli 85.4± 6.0 84.5± 6.4 83.6± 6.4 84.3± 6.3

glass 70.5± 9.3 ◦ 67.6±10.0 ◦ 65.4± 9.9 ◦ 63.8±10.0

ionosphere 89.7± 5.2 87.5± 5.7 • 89.9± 5.5 90.0± 5.6

iris 96.9± 4.0 ◦ 95.3± 4.8 95.1± 4.7 94.7± 4.8

isolet-1 90.0± 2.6 ◦ 81.3± 3.4 • 81.2± 3.8 • 82.3± 3.6

mfeat-fourier 77.5± 2.9 • 80.3± 2.6 • 81.0± 2.6 • 81.9± 2.6

ozone-eighthr 76.8± 2.5 • 93.4± 1.8 93.4± 1.3 93.6± 1.3

page-blocks 93.5± 1.0 • 96.0± 0.8 96.1± 0.8 96.2± 0.8

parkinsons 82.7± 7.7 • 92.1± 5.8 92.5± 5.2 92.7± 5.2

segment 89.9± 1.7 • 91.2± 1.7 90.8± 1.8 • 91.2± 1.8

vehicle 60.7± 5.7 • 66.6± 5.1 64.4± 4.9 65.2± 5.6

yeast 59.0± 4.1 ◦ 52.3± 4.1 • 55.1± 3.8 55.5± 3.8

Average 78.29 80.34 80.41 80.57



Table 3. Pairwise comparison of classifiers on UCI data: number of wins (with statistically sig-

nificant ones in parenthesis)

kNN hw-kNN h-FNN dwh-FNN

kNN – 8 (8) 9 (8) 9 (8)

hw-kNN 7 (6) – 9 (4) 10 (5)

h-FNN 6 (6) 6 (2) – 11 (3)

dwh-FNN 6 (5) 5 (2) 4 (1) –

improvement patterns, which makes sense given that they aim at exploiting the same

phenomenon. Improvement over the standard kNN classifier signifies that there is a lot

of usable bad-hubness information in the data. Fuzzy approaches appear to offer addi-

tional improvement over hw-kNN, justifying our approach and the need to differentiate

between classes when employing bad hubness for nearest-neighbor classification. The

cases where standard kNN is significantly better than hubness-based approaches most

probably stem from the difficulties of estimating pk(y = c|xi), which requires more

data in the case of non-binary classification, as well as fk(c, xi) occasionally being an

inappropriate substitute in cases of low hubness.

It appears that distance-based weighting described in Eq. 2 does not bring drastic

overall improvement to hubness-based fuzzy membership functions that are used in the

FNN algorithm, at least not for the default value of the m parameter. This is not all

that surprising, though. As was stated in previous discussion, the semantics of hubness-

based fuzziness differs slightly from that of more usual fuzzy measures. This is due to

the fact that class hubness marks the fuzziness of the elementary event that point xi

appears in a k-neighbor set of an element of some specific category. This hubness is

estimated by previous appearances of that element in k-neighbor sets of various other

elements in the training data. Among these occurrences, xi may be located at either

place within each observed k-neighbor set. In other words, hubness is a measure which

is for a fixed k independent of which positions in k-neighbor sets an element takes. If

these lists were to undergo a random permutation, the hubness for that fixed neighbor-

hood size would have remained unchanged.

Let us assume that we wish to determine the label of a new example x by using

h-FNN. The contribution of those xi closer to x stems not only from previous events

when they were also close to the observed element, but also from previous events when

they were much further away. The same holds for farther elements in the k-neighbor

set. This is why a linear combination of class hubness contributions is sufficient and

any additional distance-based weighting seems superfluous. On the other hand, due to

the fact that we can not calculate proper class hubness probabilities for low hubness

elements, this is only partially true. In those cases when fuzziness is estimated for low

hubness xi, distance-based weighting might bring some improvement, by emphasizing

more important votes. In practice, most k-neighbor sets will probably contain a mixture

of these cases.

Comparisons between different hubness-based fuzzy membership functions pro-

posed in Section 3 were also performed. Experiments were rerun without automatic
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Fig. 2. Average best k values for different hubness-based fuzzy approaches, according to the

results from tests on UCI data

parameter selection on the folds, so that the algorithms were trained once for every com-

bination of k ∈ [1, 20] and θ ∈ [0, 4], for every proposed fuzzy scheme. We extracted

the parameter values from the range where the algorithms achieved highest accuracy

scores, based again on the 10 times 10-fold cross-validation procedure, for every data

set. Averages of k values for which the best results were obtained are shown for every

used fuzzy scheme in Fig. 2. For each fuzzy approach, lower k values were selected on

average if no distance-based vote weighting was performed. This suggests that is dis-

tance weighting is performed, more neighbors are required to convey the same amount

of information, due to some votes being downgraded. Also, global hubness-based fuzzi-

ness (GE) finds its maximum at lower k-values than other measures. This suggests that

it might indeed be the most appropriate among the observed approaches, since at lower

k-values all fk(c, xi) exhibit greater influence on classification, as was discussed previ-

ously. However, average best accuracies for all the approaches were basically the same.

This means that hubness itself is still the most important part of the hybrid fuzziness.

By following the same logic, we conclude that CE is indeed the least flexible way to re-

place unknown low class hubness probabilities, being the crisp approach. There seems

to be no significant difference between the two local fuzzy measures. Average θ value

for which best accuracy was achieved was around 1.5 for all approaches. This means

that more often than not, class hubness was to be preferred to any of the fk(c, xi) terms,

even when based only on 3 or 4 k-occurrences.

Frequencies of selected neighborhood size falling in one of the four ranges: [1, 5],
[6, 10], [11, 15], [16, 20], are shown in Fig. 3. Two ranges are preferred more often,

namely k ∈ [1, 5] and k ∈ [11, 15]. By examining all the results, we found that in cases

of the more tangible accuracy improvements, larger k values (k > 10) were selected,

while lower k values usually signify equal or only slightly better performance. This

can be seen as natural, since larger k values provide the algorithm with more hubness

information and hence better probability estimates, on which the used fuzziness was

based. However, not all data sets are such that high k values make sense, since in some

it may induce a larger breach of locality. This is why hubness-based approaches are not
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Fig. 3. Frequency of selected best k values, based on the results from tests on UCI data

expected to lead to an improvement over all data sets. This is their inherent limitation.

Of course, this also depends heavily on the size of a particular data set. With more data,

higher k values can be observed more safely. In high-dimensional spaces this is also

affected by the curse of dimensionality because the data is always sparse.

4.2 ImageNet Data

ImageNet database is a large online repository (http://www.image-net.org/) containing

over 12 million images grouped in more than 17000 synsets (classes). Images are inher-

ently high-dimensional data, and are therefore quite suitable for testing hubness-based

approaches. Out of synsets from the ImageNet hierarchy we constructed five image data

sets for testing, with the used classes summarized in Table 4. Some of them combine

completely different images, as subs-3, while some are made more difficult by contain-

ing several different plant types in different categories, as in subs-6. SIFT features and

color histograms were extracted for each image [18]. A codebook of 400 most repre-

sentative SIFT features was obtained by clustering from a large sample. Each image

was thus represented by a 400-dimensional array of codebook frequencies, as well as a

16-dimensional color histogram. We used the Manhattan distance on this group of data

sets. No feature weighting was performed, meaning that color and texture information

was given equal significance. This may not be optimal, but we were not interested in

performing optimal image classification, since our goal was only to compare the ap-

proaches under consideration on high-dimensional data. As in the previous section,

Table 5 gives an overview of the obtained data sets. Note that this data exhibits a much

higher skew of the distribution of k-occurrences than most UCI data sets from Table 1.

On each of the subsamples we performed 10 times 10-fold cross-validation. The

value of k was chosen automatically from the range k ∈ [1..10] on each fold. Average

accuracies of the classifiers are given in Table 6. Statistically significant differences

(p < 0.05) compared to dwh-FNN are denoted by symbols ◦/•. Pairwise classifier

comparison is shown in Table 7.



Table 4. Class structure of the used ImageNet data subsamples

Data set Classes

subs-3 sea moss, fire, industrial plant

subs-4 cloud, butterfly orchid, herbaceous plant, bird

subs-5 bird, fire, tracked vehicle, people, compass flower

subs-6 fish, industrial plant, wind turbine, compass flower, butterfly orchid, evergreen plant

subs-7 football, worm, sea star, night club, cloud, orchidaceous plant, mountain range

Table 5. Summary of ImageNet data sets

Data set size d nc SN1
SN10

subs-3 2731 416 3 15.85 6.19

subs-4 6054 416 4 8.87 6.32

subs-5 6555 416 5 26.08 11.88

subs-6 6010 416 6 13.19 6.23

subs-7 8524 416 7 5.62 4.60

Table 6. Classification accuracy of kNN, hubness-weighted kNN (hw-kNN), h-FNN and dwh-

FNN on ImageNet data sets for k ∈ [1..10]. The symbol • denotes statistically significant worse

performance compared to dwh-FNN

Data set kNN hw-kNN h-FNN dwh-FNN

subs-3 78.29±2.38 • 81.51±3.34 82.16±2.26 82.34±2.23

subs-4 54.68±2.02 • 65.91±1.82 64.83±1.62 64.87±1.61

subs-5 50.80±2.08 • 58.06±3.80 • 61.54±1.93 61.81±1.95

subs-6 63.09±1.81 • 70.10±1.68 68.84±1.58 69.04±1.64

subs-7 46.71±1.63 • 51.99±4.68 • 58.85±1.60 59.04±1.59

Average 54.71 65.51 67.24 67.42

Table 7. Pairwise comparison of classifiers on ImageNet data: number of wins (with statistically

significant ones in parenthesis)

kNN hw-kNN h-FNN dwh-FNN

kNN – 5 (5) 5 (5) 5 (5)

hw-kNN 0 (0) – 3 (2) 3 (2)

h-FNN 0 (0) 2 (0) – 5 (0)

dwh-FNN 0 (0) 2 (0) 0 (0) –



Hubness-based algorithms show obvious improvement on all subsets over the stan-

dard kNN classifier. As the number of categories increases, improvement of h-FNN and

dwh-FNN over hubness-weighted kNN becomes more pronounced, which is consistent

with observations on UCI data.

5 Conclusions and Future Work

We have proposed several ways of incorporating hubness into fuzzy membership func-

tions for data elements. This was meant as a generalization of the previous hubness-

weighted kNN approach. Fuzzy nearest-neighbor classification offers better confidence

measures of the proposed labels, which leads to potentially easier interpretability of

the results by experts working on the problem – and this is the reason we decided

to extend the previous crisp hubness-based approach into a fuzzy counterpart. Several

hybrid fuzzy membership functions were tested and evaluated. Global class-to-class

neighborhood probabilities appear to be the most reliable way to deal with low-hubness

elements. The fuzzy nearest-neighbor classifier employing these fuzzy measures outper-

forms the basic kNN classifier and also offers improvement over the hubness-weighted

kNN. The accuracy improvement thus achieved may not be large on average, but the

main advantage of the fuzzy approach lies in the mentioned interpretability of the re-

sults, and the fact that the approach takes advantage of high intrinsic dimensionality

of data instead of being hampered by it, taking a step closer to mitigating the curse of

dimensionality.

There is still room for improvement of the proposed methods, with several issues

which we plan to address in our future work. Alternative local fuzzy estimates for low-

hubness elements need to be explored, since there is no clear reason why the global

estimate should lead to better performance as it currently does. Also, an option of using

a linear combination of hubness and these estimates for low-hubness elements appears

promising, since that way the little hubness information that these elements have would

not be simply discarded, but rather extended by this additional information.
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