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Abstract

Different aspects of the curse of dimensionality are known to present serious challenges to various

machine-learning methods and tasks. This paper explores a new aspect of the dimensionality curse,

referred to as hubness, that affects the distribution of k-occurrences: the number of times a point

appears among the k nearest neighbors of other points in a data set. Through theoretical and empir-

ical analysis involving synthetic and real data sets we show that under commonly used assumptions

this distribution becomes considerably skewed as dimensionality increases, causing the emergence

of hubs, that is, points with very high k-occurrences which effectively represent “popular” nearest

neighbors. We examine the origins of this phenomenon, showing that it is an inherent property

of data distributions in high-dimensional vector space, discuss its interaction with dimensionality

reduction, and explore its influence on a wide range of machine-learning tasks directly or indi-

rectly based on measuring distances, belonging to supervised, semi-supervised, and unsupervised

learning families.

Keywords: nearest neighbors, curse of dimensionality, classification, semi-supervised learning,

clustering

1. Introduction

The curse of dimensionality, a term originally introduced by Bellman (1961), is nowadays com-

monly used in many fields to refer to challenges posed by high dimensionality of data space. In the

field of machine learning, affected methods and tasks include Bayesian modeling (Bishop, 2006),

nearest-neighbor prediction (Hastie et al., 2009) and search (Korn et al., 2001), neural networks

(Bishop, 1996), and many others. One aspect of the dimensionality curse is distance concentration,

which denotes the tendency of distances between all pairs of points in high-dimensional data to

become almost equal. Distance concentration and the meaningfulness of nearest neighbors in high
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dimensions has been thoroughly explored (Beyer et al., 1999; Hinneburg et al., 2000; Aggarwal

et al., 2001; François et al., 2007). The effect of the phenomenon on machine learning was demon-

strated, for example, in studies of the behavior of kernels in the context of support vector machines,

lazy learning, and radial basis function networks (Evangelista et al., 2006; François, 2007).

There exists another aspect of the curse of dimensionality that is related to nearest neigh-

bors (NNs), which we will refer to as hubness. Let D ⊂ R
d be a set of d-dimensional points

and Nk(x) the number of k-occurrences of each point x ∈ D, that is, the number of times x occurs

among the k nearest neighbors of all other points in D, according to some distance measure. Under

widely applicable conditions, as dimensionality increases, the distribution of Nk becomes consider-

ably skewed to the right, resulting in the emergence of hubs, that is, points which appear in many

more k-NN lists than other points, effectively making them “popular” nearest neighbors. Unlike

distance concentration, hubness and its influence on machine learning have not been explored in

depth. In this paper we study the causes and implications of this aspect of the dimensionality curse.

As will be described in Section 4, the phenomena of distance concentration and hubness are

related, but distinct. Traditionally, distance concentration is studied through asymptotic behavior

of norms, that is, distances to the origin, with increasing dimensionality. The obtained results

trivially extend to reference points other than the origin, and to pairwise distances between all

points. However, the asymptotic tendencies of distances of all points to different reference points

do not necessarily occur at the same speed, which will be shown for normally distributed data by our

main theoretical result outlined in Section 4.2, and given with full details in Section 5.1. The main

consequence of the analysis, which is further discussed in Section 5.2 and supported by theoretical

results by Newman et al. (1983) and Newman and Rinott (1985), is that the hubness phenomenon is

an inherent property of data distributions in high-dimensional space under widely used assumptions,

and not an artefact of a finite sample or specific properties of a particular data set.

The above result is relevant to machine learning because many families of ML algorithms,

regardless of whether they are supervised, semi-supervised, or unsupervised, directly or indirectly

make use of distances between data points (and, with them, k-NN graphs) in the process of building

a model. Moreover, the hubness phenomenon recently started to be observed in application fields

like music retrieval (Aucouturier and Pachet, 2007), speech recognition (Doddington et al., 1998),

and fingerprint identification (Hicklin et al., 2005), where it is described as a problematic situation,

but little or no insight is offered into the origins of the phenomenon. In this paper we present

a unifying view of the hubness phenomenon through theoretical analysis of data distributions, and

empirical investigation including numerous synthetic and real data sets, explaining the origins of the

phenomenon and the mechanism through which hubs emerge, discussing the role of antihubs (points

which appear in very few, if any, k-NN lists of other points), and studying the effects on common

supervised, semi-supervised, and unsupervised machine-learning algorithms.

After discussing related work in the next section, we make the following contributions. First,

we demonstrate the emergence of hubness on synthetic and real data in Section 3. The following

section provides a comprehensive explanation of the origins of the phenomenon, through empirical

and theoretical analysis of artificial data distributions, as well as observations on a large collection

of real data sets, linking hubness with the intrinsic dimensionality of data. Section 5 presents the

details of our main theoretical result which describes the mechanism through which hubs emerge as

dimensionality increases, and provides discussion and further illustration of the behavior of nearest-

neighbor relations in high dimensions, connecting our findings with existing theoretical results.

The role of dimensionality reduction is discussed in Section 6, adding further support to the previ-
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ously established link between intrinsic dimensionality and hubness, and demonstrating that dimen-

sionality reduction may not constitute an easy mitigation of the phenomenon. Section 7 explores

the impact of hubness on common supervised, semi-supervised, and unsupervised machine-learning

algorithms, showing that the information provided by hubness can be used to significantly affect the

success of the generated models. Finally, Section 8 concludes the paper, and provides guidelines

for future work.

2. Related Work

The hubness phenomenon has been recently observed in several application areas involving sound

and image data (Aucouturier and Pachet, 2007; Doddington et al., 1998; Hicklin et al., 2005). Also,

Jebara et al. (2009) briefly mention hubness in the context of graph construction for semi-supervised

learning. In addition, there have been attempts to avoid the influence of hubs in 1-NN time-series

classification, apparently without clear awareness about the existence of the phenomenon (Islam

et al., 2008), and to account for possible skewness of the distribution of N1 in reverse nearest-

neighbor search (Singh et al., 2003),1 where Nk(x) denotes the number of times point x occurs

among the k nearest neighbors of all other points in the data set. None of the mentioned papers,

however, successfully analyze the causes of hubness or generalize it to other applications. One

recent work that makes the connection between hubness and dimensionality is the thesis by Beren-

zweig (2007), who observed the hubness phenomenon in the application area of music retrieval and

identified high dimensionality as a cause, but did not provide practical or theoretical support that

would explain the mechanism through which high dimensionality causes hubness in music data.

The distribution of N1 has been explicitly studied in the applied probability community (New-

man et al., 1983; Maloney, 1983; Newman and Rinott, 1985; Yao and Simons, 1996), and by math-

ematical psychologists (Tversky et al., 1983; Tversky and Hutchinson, 1986). In the vast majority

of studied settings (for example, Poisson process, d-dimensional torus), coupled with Euclidean

distance, it was shown that the distribution of N1 converges to the Poisson distribution with mean 1,

as the number of points n and dimensionality d go to infinity. Moreover, from the results by Yao

and Simons (1996) it immediately follows that, in the Poisson process case, the distribution of Nk

converges to the Poisson distribution with mean k, for any k ≥ 1. All these results imply that no

hubness is to be expected within the settings in question. On the other hand, in the case of continu-

ous distributions with i.i.d. components, for the following specific order of limits it was shown that

limn→∞ limd→∞ Var(N1) = ∞, while limn→∞ limd→∞ N1 = 0, in distribution (Newman et al., 1983,

p. 730, Theorem 7), with a more general result provided by Newman and Rinott (1985). Accord-

ing to the interpretation by Tversky et al. (1983), this suggests that if the number of dimensions is

large relative to the number of points one may expect a small proportion of points to become hubs.

However, the importance of this finding was downplayed to a certain extent (Tversky et al., 1983;

Newman and Rinott, 1985), citing empirically observed slow convergence (Maloney, 1983), with

the attention of the authors shifting more towards similarity measurements obtained directly from

psychological and cognitive experiments (Tversky et al., 1983; Tversky and Hutchinson, 1986) that

do not involve vector-space data. In Section 5.2 we will discuss the above results in more detail, as

well as their relations with our theoretical and empirical findings.

It is worth noting that in ε-neighborhood graphs, that is, graphs where two points are connected

if the distance between them is less than a given limit ε, the hubness phenomenon does not occur.

1. Reverse nearest-neighbor queries retrieve data points that have the query point q as their nearest neighbor.
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Settings involving randomly generated points forming ε-neighborhood graphs are typically referred

to as random geometric graphs, and are discussed in detail by Penrose (2003).

Concentration of distances, a phenomenon related to hubness, was studied for general distance

measures (Beyer et al., 1999; Durrant and Kabán, 2009) and specifically for Minkowski and frac-

tional distances (Demartines, 1994; Hinneburg et al., 2000; Aggarwal et al., 2001; François et al.,

2007; François, 2007; Hsu and Chen, 2009). Concentration of cosine similarity was explored by

Nanopoulos et al. (2009).

In our recent work (Radovanović et al., 2009), we performed an empirical analysis of hubness,

its causes, and effects on techniques for classification, clustering, and information retrieval. In this

paper we extend our findings with additional theoretical and empirical insight, offering a unified

view of the origins and mechanics of the phenomenon, and its significance to various machine-

learning applications.

3. The Hubness Phenomenon

In Section 1 we gave a simple set-based deterministic definition of Nk. To complement this definition

and introduce Nk into a probabilistic setting that will also be considered in this paper, let x,x1, . . . ,xn,

be n + 1 random vectors drawn from the same continuous probability distribution with support

S ⊆R
d , d ∈ {1,2, . . .}, and let dist be a distance function defined on R

d (not necessarily a metric).

Let functions pi,k, where i,k ∈ {1,2, . . . ,n}, be defined as

pi,k(x) =

{
1, if x is among the k nearest neighbors of xi, according to dist,

0, otherwise.

In this setting, we define Nk(x) = ∑n
i=1 pi,k(x), that is, Nk(x) is the random number of vectors from

R
d that have x included in their list of k nearest neighbors. In this section we will empirically

demonstrate the emergence of hubness through increasing skewness of the distribution of Nk on

synthetic (Section 3.1) and real data (Section 3.2), relating the increase of skewness with the di-

mensionality of data sets, and motivating the subsequent study into the origins of the phenomenon

in Section 4.

3.1 A Motivating Example

We start with an illustrative experiment which demonstrates the changes in the distribution of Nk

with varying dimensionality. Let us consider a random data set consisting of 10000 d-dimensional

points, whose components are independently drawn from the uniform distribution in range [0,1], and

the following distance functions: Euclidean (l2), fractional l0.5 (proposed for high-dimensional data

by Aggarwal et al., 2001), and cosine. Figure 1(a–c) shows the empirically observed distributions

of Nk, with k = 5, for (a) d = 3, (b) d = 20, and (c) d = 100. In the same way, Figure 1(d–f) depicts

the empirically observed Nk for points randomly drawn from the i.i.d. normal distribution.

For d = 3 the empirical distributions of N5 for the three distance functions (Figure 1(a, d)) are

consistent with the binomial distribution. This is expected by considering k-occurrences as node in-

degrees in the k-nearest neighbor digraph. For randomly distributed points in low dimensions, the

degree distributions of the digraphs closely resemble the degree distribution of the Erdős-Rényi (ER)

random graph model, which is is binomial and Poisson in the limit (Erdős and Rényi, 1959).

As dimensionality increases, the observed distributions of N5 depart from the random graph

model and become more skewed to the right (Figure 1(b, c), and Figure 1(e, f) for l2 and l0.5).
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Figure 1: Empirical distribution of N5 for Euclidean, l0.5, and cosine distances on (a–c) i.i.d. uni-

form, and (d–f) i.i.d. normal random data sets with n = 10000 points and dimensionality

(a, d) d = 3, (b, e) d = 20, and (c, f) d = 100 (log-log plot).

We verified this by being able to fit major right portions (that is, tails) of the observed distributions

with the log-normal distribution, which is highly skewed.2 We made similar observations with

various k values (generally focusing on the common case k ≪ n, where n is the number of points

in a data set), distance measures (lp-norm distances for both p ≥ 1 and 0 < p < 1, Bray-Curtis,

normalized Euclidean, and Canberra), and data distributions. In virtually all these cases, skewness

exists and produces hubs, that is, points with high k-occurrences. One exception visible in Figure 1

is the combination of cosine distance and normally distributed data. In most practical settings,

however, such situations are not expected, and a thorough discussion of the necessary conditions for

hubness to occur in high dimensions will be given in Section 5.2.

3.2 Hubness in Real Data

To illustrate the hubness phenomenon on real data, let us consider the empirical distribution of Nk

(k = 10) for three real data sets, given in Figure 2. As in the previous section, a considerable increase

in the skewness of the distributions can be observed with increasing dimensionality.

In all, we examined 50 real data sets from well known sources, belonging to three categories:

UCI multidimensional data, gene expression microarray data, and textual data in the bag-of-words

2. Fits were supported by the χ2 goodness-of-fit test at 0.05 significance level, where bins represent the number of

observations of individual Nk values. These empirical distributions were compared with the expected output of a

(discretized) log-normal distribution, making sure that counts in the bins do not fall below 5 by pooling the rightmost

bins together.
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RADOVANOVIĆ, NANOPOULOS AND IVANOVIĆ
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Figure 2: Empirical distribution of N10 for three real data sets of different dimensionalities.

representation,3 listed in Table 1. The table includes columns that describe data-set sources (2nd col-

umn), basic statistics (data transformation (3rd column): whether standardization was applied, or for

textual data the used bag-of-words document representation; the number of points (n, 4th column);

dimensionality (d, 5th column); the number of classes (7th column)), and the distance measure used

(Euclidean or cosine, 8th column). We took care to ensure that the choice of distance measure and

preprocessing (transformation) corresponds to a realistic scenario for the particular data set.

To characterize the asymmetry of Nk we use the standardized third moment of the distribution

of k-occurrences,

SNk
=

E(Nk −µNk
)3

σ3
Nk

,

where µNk
and σNk

are the mean and standard deviation of Nk, respectively. The corresponding (9th)

column of Table 1, which shows the empirical SN10
values for the real data sets, indicates that the

distributions of N10 for most examined data sets are skewed to the right.4 The value of k is fixed

at 10, but analogous observations can be made with other values of k.

It can be observed that some SNk
values in Table 1 are quite high, indicating strong hubness in the

corresponding data sets.5 Moreover, computing the Spearman correlation between d and SNk
over

all 50 data sets reveals it to be strong (0.62), signifying that the relationship between dimensionality

and hubness extends from synthetic to real data in general. On the other hand, careful scrutiny of the

charts in Figure 2 and SNk
values in Table 1 reveals that for real data the impact of dimensionality

on hubness may not be as strong as could be expected after viewing hubness on synthetic data in

Figure 1. Explanations for this observation will be given in the next section.

3. We used the movie review polarity data set v2.0 initially introduced by Pang and Lee (2004), while the computers and

sports data sets were first used by Radovanović and Ivanović (2006). Preprocessing of all text data sets (except dexter,

which is already preprocessed) involved stop-word removal and stemming using the Porter stemmer. Documents

were transformed into the bag-of-words representation with word weights being either term frequencies (tf), or term

frequencies multiplied by inverse document frequencies (tf-idf), with the choice based on independent experiments

involving several classifiers. All term frequency vectors were normalized to average document length.

4. If SNk
= 0 there is no skewness, positive (negative) values signify skewness to the right (left).

5. For comparison, sample skewness values for i.i.d. uniform data and Euclidean distance, shown in Figure 1(a–c), are

0.121, 1.541, and 5.445 for dimensionalities 3, 20, and 100, respectively. The values for i.i.d. normal data from

Figure 1(d–f) are 0.118, 2.055, and 19.210.
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Name Src. Trans. n d dmle Cls. Dist. SN10
SS

N10
Clu. C

N10
dm C

N10
cm B̃N10 C

N10
BN10

CAV

abalone UCI stan 4177 8 5.39 29 l2 0.277 0.235 62 −0.047 −0.526 0.804 0.934 0.806

arcene UCI stan 100 10000 22.85 2 l2 0.634 2.639 2 −0.559 −0.684 0.367 0.810 0.455

arrhythmia UCI stan 452 279 21.63 16 l2 1.984 6.769 8 −0.867 −0.892 0.479 0.898 0.524

breast-w UCI stan 699 9 5.97 2 l2 1.020 0.667 7 −0.062 −0.240 0.052 0.021 0.048

diabetes UCI stan 768 8 6.00 2 l2 0.555 0.486 15 −0.479 −0.727 0.322 0.494 0.337

dorothea UCI none 800 100000 201.11 2 cos 2.355 1.016 19 −0.632 −0.672 0.108 0.236 0.092

echocardiogram UCI stan 131 7 4.92 2 l2 0.735 0.438 5 −0.722 −0.811 0.372 0.623 0.337

ecoli UCI stan 336 7 4.13 8 l2 0.116 0.208 8 −0.396 −0.792 0.223 0.245 0.193

gisette UCI none 6000 5000 149.35 2 cos 1.967 4.671 76 −0.667 −0.854 0.045 0.367 0.241

glass UCI stan 214 9 4.37 7 l2 0.154 0.853 11 −0.430 −0.622 0.414 0.542 0.462

haberman UCI stan 306 3 2.89 2 l2 0.087 −0.316 11 −0.330 −0.573 0.348 0.305 0.360

ionosphere UCI stan 351 34 13.57 2 l2 1.717 2.051 18 −0.639 −0.832 0.185 0.464 0.259

iris UCI stan 150 4 2.96 3 l2 0.126 −0.068 4 −0.275 −0.681 0.087 0.127 0.147

isolet1 UCI stan 1560 617 13.72 26 l2 1.125 6.483 38 −0.306 −0.760 0.283 0.463 0.352

mfeat-factors UCI stan 2000 216 8.47 10 l2 0.826 5.493 44 −0.113 −0.688 0.063 0.001 0.145

mfeat-fourier UCI stan 2000 76 11.48 10 l2 1.277 4.001 44 −0.350 −0.596 0.272 0.436 0.415

mfeat-karhunen UCI stan 2000 64 11.82 10 l2 1.250 8.671 40 −0.436 −0.788 0.098 0.325 0.205

mfeat-morph UCI stan 2000 6 3.22 10 l2 −0.153 0.010 44 −0.039 −0.424 0.324 0.306 0.397

mfeat-pixel UCI stan 2000 240 11.83 10 l2 1.035 3.125 44 −0.210 −0.738 0.049 0.085 0.107

mfeat-zernike UCI stan 2000 47 7.66 10 l2 0.933 3.389 44 −0.185 −0.657 0.235 0.252 0.400

musk1 UCI stan 476 166 6.74 2 l2 1.327 3.845 17 −0.376 −0.752 0.237 0.621 0.474

optdigits UCI stan 5620 64 9.62 10 l2 1.095 3.789 74 −0.223 −0.601 0.044 0.097 0.168

ozone-eighthr UCI stan 2534 72 12.92 2 l2 2.251 4.443 49 −0.216 −0.655 0.086 0.300 0.138

ozone-onehr UCI stan 2536 72 12.92 2 l2 2.260 5.798 49 −0.215 −0.651 0.046 0.238 0.070

page-blocks UCI stan 5473 10 3.73 5 l2 −0.014 0.470 72 −0.063 −0.289 0.049 −0.046 0.068

parkinsons UCI stan 195 22 4.36 2 l2 0.729 1.964 8 −0.414 −0.649 0.166 0.321 0.256

pendigits UCI stan 10992 16 5.93 10 l2 0.435 0.982 104 −0.062 −0.513 0.014 −0.030 0.156

segment UCI stan 2310 19 3.93 7 l2 0.313 1.111 48 −0.077 −0.453 0.089 0.074 0.332

sonar UCI stan 208 60 9.67 2 l2 1.354 3.053 8 −0.550 −0.771 0.286 0.632 0.461

spambase UCI stan 4601 57 11.45 2 l2 1.916 2.292 49 −0.376 −0.448 0.139 0.401 0.271

spectf UCI stan 267 44 13.83 2 l2 1.895 2.098 11 −0.616 −0.729 0.300 0.595 0.366

spectrometer UCI stan 531 100 8.04 10 l2 0.591 3.123 17 −0.269 −0.670 0.200 0.225 0.242

vehicle UCI stan 846 18 5.61 4 l2 0.603 1.625 25 −0.162 −0.643 0.358 0.435 0.586

vowel UCI stan 990 10 2.39 11 l2 0.766 0.935 27 −0.252 −0.605 0.313 0.691 0.598

wdbc UCI stan 569 30 8.26 2 l2 0.815 3.101 16 −0.449 −0.708 0.065 0.170 0.129

wine UCI stan 178 13 6.69 3 l2 0.630 1.319 3 −0.589 −0.874 0.076 0.182 0.084

wpbc UCI stan 198 33 8.69 2 l2 0.863 2.603 6 −0.688 −0.878 0.340 0.675 0.360

yeast UCI stan 1484 8 5.42 10 l2 0.228 0.105 34 −0.421 −0.715 0.527 0.650 0.570

AMLALL KR none 72 7129 31.92 2 l2 1.166 1.578 2 −0.868 −0.927 0.171 0.635 0.098

colonTumor KR none 62 2000 11.22 2 l2 1.055 1.869 3 −0.815 −0.781 0.305 0.779 0.359

DLBCL KR none 47 4026 16.11 2 l2 1.007 1.531 2 −0.942 −0.947 0.338 0.895 0.375

lungCancer KR none 181 12533 59.66 2 l2 1.248 3.073 6 −0.537 −0.673 0.052 0.262 0.136

MLL KR none 72 12582 28.42 3 l2 0.697 1.802 2 −0.794 −0.924 0.211 0.533 0.148

ovarian-61902 KR none 253 15154 9.58 2 l2 0.760 3.771 10 −0.559 −0.773 0.164 0.467 0.399

computers dmoz tf 697 1168 190.33 2 cos 2.061 2.267 26 −0.566 −0.731 0.312 0.699 0.415

dexter UCI none 300 20000 160.78 2 cos 3.977 4.639 13 −0.760 −0.781 0.301 0.688 0.423

mini-newsgroups UCI tf-idf 1999 7827 3226.43 20 cos 1.980 1.765 44 −0.422 −0.704 0.524 0.701 0.526

movie-reviews PaBo tf 2000 11885 54.95 2 cos 8.796 7.247 44 −0.604 −0.739 0.398 0.790 0.481

reuters-transcribed UCI tf-idf 201 3029 234.68 10 cos 1.165 1.693 3 −0.781 −0.763 0.642 0.871 0.595

sports dmoz tf 752 1185 250.24 2 cos 1.629 2.543 27 −0.584 −0.736 0.260 0.604 0.373

Table 1: Real data sets. Data sources are the University of California, Irvine (UCI) Machine Learn-

ing Repository, Kent Ridge (KR) Bio-Medical Data Set Repository, dmoz Open Directory,

and www.cs.cornell.edu/People/pabo/movie-review-data/ (PaBo).
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4. The Origins of Hubness

This section moves on to exploring the causes of hubness and the mechanisms through which hubs

emerge. Section 4.1 investigates the relationship between the position of a point in data space

and hubness. Next, Section 4.2 explains the mechanism through which hubs emerge as points in

high-dimensional space that become closer to other points than their low-dimensional counterparts,

outlining our main theoretical result. The emergence of hubness in real data is studied in Section 4.3,

while Section 4.4 discusses hubs and their opposites—antihubs—and the relationships between

hubs, antihubs, and different notions of outliers.

4.1 The Position of Hubs

Let us consider again the i.i.d. uniform and i.i.d. normal random data examined in the previous

section. We will demonstrate that the position of a point in data space has a significant effect on its

k-occurrences value, by observing the sample mean of the data distribution as a point of reference.

Figure 3 plots, for each point x, its N5(x) against its Euclidean distance from the empirical data

mean, for d = 3, 20, 100. As dimensionality increases, stronger correlation emerges, implying

that points closer to the mean tend to become hubs. We made analogous observations with other

values of k, and combinations of data distributions and distance measures for which hubness occurs.

It is important to note that proximity to one global data-set mean correlates with hubness in high

dimensions when the underlying data distribution is unimodal. For multimodal data distributions,

for example those obtained through a mixture of unimodal distributions, hubs tend to appear close

to the means of individual component distributions of the mixture. In the discussion that follows

in Section 4.2 we will assume a unimodal data distribution, and defer the analysis of multimodal

distributions until Section 4.3, which studies real data.

4.2 Mechanisms Behind Hubness

Although one may expect that some random points are closer to the data-set mean than others, in

order to explain the mechanism behind hub formation we need to (1) understand the geometrical

and distributional setting in which some points tend to be closer to the mean than others, and then

(2) understand why such points become hubs in higher dimensions.6

Hubness appears to be related to the phenomenon of distance concentration, which is usually

expressed as the ratio between some measure of spread (for example, standard deviation) and some

measure of magnitude (for example, the mean) of distances of all points in a data set to some ar-

bitrary reference point (Aggarwal et al., 2001; François et al., 2007). If this ratio converges to 0

as dimensionality goes to infinity, it is said that the distances concentrate. Based on existing the-

oretical results discussing distance concentration (Beyer et al., 1999; Aggarwal et al., 2001), high-

dimensional points are approximately lying on a hypersphere centered at the data-set mean. More-

over, the results by Demartines (1994) and François et al. (2007) specify that the distribution of

distances to the data-set mean has a non-negligible variance for any finite d.7 Hence, the existence

of a non-negligible number of points closer to the data-set mean is expected in high dimensions.

6. We will assume that random points originate from a unimodal data distribution. In the multimodal case, it can be said

that the observations which follow are applicable around one of the “peaks” in the pdf of the data distribution.

7. These results apply to lp-norm distances, but our numerical simulations suggest that other distance functions men-

tioned in Section 3.1 behave similarly. Moreover, any point can be used as a reference instead of the data mean, but

we observe the data mean since it plays a special role with respect to hubness.

2494



HUBS IN SPACE

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

iid uniform,  d = 3,  C
dm

 N
5 = −0.018

Distance from data set mean

N
5

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

iid uniform,  d = 20,  C
dm

 N
5 = −0.803

Distance from data set mean

N
5

2 2.5 3 3.5 4
0

20

40

60

80

100

120

140

160

iid uniform,  d = 100,  C
dm

 N
5 = −0.865

Distance from data set mean

N
5

(a) (b) (c)

0 1 2 3 4 5
0

2

4

6

8

10

12

iid normal,  d = 3,  C
dm

 N
5 = −0.053

Distance from data set mean

N
5

1 2 3 4 5 6 7 8
0

10

20

30

40

50

iid normal,  d = 20,  C
dm

 N
5 = −0.877

Distance from data set mean

N
5

5 6 7 8 9 10 11 12 13 14 15
0

100

200

300

400

500

600

700

800

iid normal,  d = 100,  C
dm

 N
5 = −0.874

Distance from data set mean

N
5

(d) (e) (f)

Figure 3: Scatter plots and Spearman correlation of N5(x) against the Euclidean distance of point x

to the sample data-set mean for (a–c) i.i.d. uniform and (d–f) i.i.d. normal random data

sets with (a, d) d = 3, (b, e) d = 20, and (c, f) d = 100.

To illustrate the above discussion, Figure 4 depicts, for i.i.d. normal data, the distribution of

Euclidean distances of all points to the true data mean (the origin) for several d values. By definition,

the distribution of distances is actually the Chi distribution with d degrees of freedom (as the square

root of the sum of squares of i.i.d. normal variables, Johnson et al., 1994).8 In this setting, distance

concentration refers to the fact that the standard deviation of distance distributions is asymptotically

constant with respect to increasing d, while the means of the distance distributions asymptotically

behave like
√

d (a direct consequence of the results by François et al., 2007, discussed further in

Section 5.1). On the other hand, for lp-norm distances with p> 2, the standard deviation would tend

to 0 (François et al., 2007). However, for any finite d, existing variation in the values of random

coordinates causes some points to become closer to the distribution mean than others. This happens

despite the fact that all distance values, in general, may be increasing together with d.

To understand why points closer to the data mean become hubs in high dimensions, let us

consider the following example. We observe, within the i.i.d. normal setting, two points drawn

from the data, but at specific positions with respect to the origin: point bd which is at the expected

distance from the origin, and point ad which is two standard deviations closer. In light of the

above, the distances of ad and bd from the origin change with increasing d, and it could be said that

different ad-s (and bd-s) occupy analogous positions in the data spaces, with respect to changing d.

The distances of ad (and bd) to all other points, again following directly from the definition (Oberto

and Pennecchi, 2006), are distributed according to noncentral Chi distributions with d degrees of

8. For this reason, in Figure 4 we plot the known pdf, not the empirically obtained distribution.
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Figure 4: Probability density function of observing a point at distance r from the mean of a multi-

variate d-dimensional normal distribution, for d = 1, 3, 20, 100.
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Figure 5: (a) Distribution of distances to other points from i.i.d. normal random data for a point at

the expected distance from the origin (dashed line), and a point two standard deviations

closer (full line). (b) Difference between the means of the two distributions, with respect

to increasing d.

freedom and noncentrality parameter λ equaling the distance of ad (bd) to the origin. Figure 5(a)

plots the probability density functions of these distributions for several values of d. It can be seen

that, as d increases, the distance distributions for ad and bd move away from each other. This

tendency is depicted more clearly in Figure 5(b) which plots the difference between the means of

the two distributions with respect to d.

It is known, and expected, for points that are closer to the mean of the data distribution to be

closer, on average, to all other points, for any value of d. However, the above analysis indicates

that this tendency is amplified by high dimensionality, making points that reside in the proximity

of the data mean become closer (in relative terms) to all other points than their low-dimensional

analogues are. This tendency causes high-dimensional points that are closer to the mean to have

increased inclusion probability into k-NN lists of other points, even for small values of k. We will

discuss this relationship further in Section 5.2.

In terms of the notion of node centrality typically used in network analysis (Scott, 2000), the

above discussion indicates that high dimensionality amplifies what we will call the spatial centrality
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of a point (by increasing its proximity to other points), which, in turn, affects the degree centrality

of the corresponding node in the k-NN graph (by increasing its degree, that is, Nk). Other notions

of node centrality, and the structure of the k-NN graph in general, will be studied in more detail

in Section 5.2.1. The rest of this section will focus on describing the mechanism of the observed

spatial centrality amplification.

In the preceding discussion we selected two points from i.i.d. normal data with specific distances

from the origin expressed in terms of expected distance and deviation from it, and tracked the

analogues of the two points for increasing values of dimensionality d. Generally, we can express the

distances of the two points to the origin in terms of “offsets” from the expected distance measured

by standard deviation, which in the case of i.i.d. normal random data would be λd,1 = µχ(d) +
c1σχ(d) and λd,2 = µχ(d)+c2σχ(d), where λd,1 and λd,2 are the distances of the first and second point

to the origin, µχ(d) and σχ(d) are the mean and standard deviation of the Chi distribution with d

degrees of freedom, and c1 and c2 are selected constants (the offsets). In the preceding example

involving points ad and bd , we set c1 =−2 and c2 = 0, respectively. However, analogous behavior

can be observed with arbitrary two points whose distance to the data mean is below the expected

distance, that is, for c1,c2 ≤ 0. We describe this behavior by introducing the following notation:

∆µd(λd,1,λd,2) = |µχ(d,λd,2)−µχ(d,λd,1)|, where µχ(d,λd,i) is the mean of the noncentral Chi distribution

with d degrees of freedom and noncentrality parameter λd,i (i ∈ {1,2}). In the following theorem,

which we prove in Section 5.1, we show that ∆µd(λd,1,λd,2) increases with increasing values of d.

Theorem 1 Let λd,1 = µχ(d)+c1σχ(d) and λd,2 = µχ(d)+c2σχ(d), where d ∈N
+, c1,c2 ≤ 0, c1 < c2,

and µχ(d) and σχ(d) are the mean and standard deviation of the Chi distribution with d degrees of

freedom, respectively. Define

∆µd(λd,1,λd,2) = µχ(d,λd,2)−µχ(d,λd,1) ,

where µχ(d,λd,i) is the mean of the noncentral Chi distribution with d degrees of freedom and non-

centrality parameter λd,i (i ∈ {1,2}).
There exists d0 ∈N such that for every d > d0,

∆µd(λd,1,λd,2)> 0 ,

and

∆µd+2(λd+2,1,λd+2,2)> ∆µd(λd,1,λd,2) . (1)

The main statement of the theorem is given by Equation 1, which expresses the tendency of the

difference between the means of the two distance distributions to increase with increasing dimen-

sionality d. It is important to note that this tendency is obtained through analysis of distributions of

data and distances, implying that the behavior is an inherent property of data distributions in high-

dimensional space, rather than an artefact of other factors, such as finite sample size, etc. Through

simulation involving randomly generated points we verified the behavior for i.i.d. normal data by

replicating very closely the chart shown in Figure 5(b). Furthermore, simulations suggest that the

same behavior emerges in i.i.d. uniform data,9 as well as numerous other unimodal random data

distributions, producing charts of the same shape as in Figure 5(b). Real data, on the other hand,

9. The uniform cube setting will be discussed in more detail in Section 5.2, in the context of results from related work

(Newman and Rinott, 1985).
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tends to be clustered, and can be viewed as originating from a mixture of distributions resulting in a

multimodal distribution of data. In this case, the behavior described by Theorem 1, and illustrated

in Figure 5(b), is manifested primarily on the individual component distributions of the mixture,

that is, on clusters of data points. The next section takes a closer look at the hubness phenomenon

in real data sets.

4.3 Hubness in Real Data

Results describing the origins of hubness given in the previous sections were obtained by examining

data sets that follow specific distributions and generated as i.i.d. samples from these distributions.

To extend these results to real data, we need to take into account two additional factors: (1) real

data sets usually contain dependent attributes, and (2) real data sets are usually clustered, that is,

points are organized into groups produced by a mixture of distributions instead of originating from

a single (unimodal) distribution.

To examine the first factor (dependent attributes), we adopt the approach of François et al. (2007)

used in the context of distance concentration. For each data set we randomly permute the elements

within every attribute. This way, attributes preserve their individual distributions, but the dependen-

cies between them are lost and the intrinsic dimensionality of data sets increases, becoming equal

to their embedding dimensionality d (François et al., 2007). In Table 1 (10th column) we give the

empirical skewness, denoted as SS
Nk

, of the shuffled data. For the vast majority of high-dimensional

data sets, SS
Nk

is considerably higher than SNk
, indicating that hubness actually depends on the in-

trinsic rather than embedding dimensionality. This provides an explanation for the apparent weaker

influence of d on hubness in real data than in synthetic data sets, which was observed in Section 3.2.

To examine the second factor (many groups), for every data set we measured: (i) the Spearman

correlation, denoted as C
N10

dm (12th column), of the observed Nk and distance from the data-set mean,

and (ii) the correlation, denoted as C
N10
cm (13th column), of the observed Nk and distance to the

closest group mean. Groups are determined with K-means clustering, where the number of clusters

for each data set, given in column 11 of Table 1, was determined by exhaustive search of values

between 2 and ⌊√n⌋, to maximize C
N10
cm .10 In most cases, C

N10
cm is considerably stronger than C

N10

dm .

Consequently, in real data, hubs tend to be closer than other points to their respective cluster centers

(which we verified by examining the individual scatter plots).

To further support the above findings, we include the 6th column (dmle) to Table 1, corresponding

to intrinsic dimensionality measured by the maximum likelihood estimator (Levina and Bickel,

2005). Next, we compute Spearman correlations between various measurements from Table 1 over

all 50 examined data sets, given in Table 2. The observed skewness of Nk, besides being strongly

correlated with d, is even more strongly correlated with the intrinsic dimensionality dmle. Moreover,

intrinsic dimensionality positively affects the correlations between Nk and the distance to the data-

set mean / closest cluster mean, implying that in higher (intrinsic) dimensions the positions of hubs

become increasingly localized to the proximity of centers.

Section 6, which discusses the interaction of hubness with dimensionality reduction, will pro-

vide even more support to the observation that hubness depends on intrinsic, rather than embedding

dimensionality.

10. We report averages of C
N10
cm over 10 runs of K-means clustering with different random seeding, in order to reduce the

effects of chance.
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d dmle SN10
C

N10

dm C
N10
cm B̃N10 C

N10

BN10

dmle 0.87

SN10
0.62 0.80

C
N10

dm −0.52 −0.60 −0.42

C
N10
cm −0.43 −0.48 −0.31 0.82

B̃N10 −0.05 0.03 −0.08 −0.32 −0.18

C
N10

BN10
0.32 0.39 0.29 −0.61 −0.46 0.82

CAV 0.03 0.03 0.03 −0.14 −0.05 0.85 0.76

Table 2: Spearman correlations over 50 real data sets.

0 2 4 6 8 10 12
0

20

40

60

Distance from k−th NN

N
k

ionosphere

4 6 8 10 12 14 16
0

20

40

60

Distance from k−th NN

N
k

sonar

(a) (b)

Figure 6: Correlation between low Nk and outlier score (k = 20).

4.4 Hubs and Outliers

The non-negligible variance of the distribution of distances to the data mean described in Sec-

tion 4.2 has an additional “side”: we also expect points farther from the mean and, therefore, with

much lower observed Nk than the rest.11 Such points correspond to the bottom-right parts of Fig-

ure 3(b, c, e, f), and will be referred to as antihubs. Since antihubs are far away from all other points,

in high dimensions they can be regarded as distance-based outliers (Tan et al., 2005).

To further support the connection between antihubs and distance-based outliers, let us consider

a common outlier score of a point as the distance from its kth nearest neighbor (Tan et al., 2005).

Low Nk values and high outlier scores are correlated as exemplified in Figure 6(a, b) (in their lower-

right parts) for two data sets from Table 1.

Next, let us recall the i.i.d. normal random data setting, and the probability density function

corresponding to observing a point at a specified distance from the mean, plotted in Figure 4. An

analogous chart for real data is given in Figure 7, which shows the empirical distributions of dis-

tances from the closest cluster mean for three real data sets, as described in Section 4.3. In both

figures it can be seen that in low dimensions the probability of observing a point near a center is quite

high, while as dimensionality increases it becomes close to zero. If we now consider a probabilistic

definition of an outlier as a point with a low probability of occurrence (Tan et al., 2005), in high

11. Assuming the presence of hubs, the existence of points with low Nk is implied by the constant-sum property of Nk:

for any data set D, ∑x∈D Nk(x) = k|D| (Aucouturier and Pachet, 2007).
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Figure 7: Probability density function of observing a point at distance r from the closest cluster

mean for three real data sets.

dimensions hubs actually are outliers, as points closer to the distribution (or cluster) mean than the

majority of other points. Therefore, somewhat counterintuitively, it can be said that hubs are points

that reside in low-density regions of the high-dimensional data space, and are at the same time close

to many other points. On the other hand, distance-based outliers correspond to probabilistic out-

liers that are farther away from the center(s). It follows that the definitions of distance-based and

probabilistic outliers significantly diverge from one another in high dimensions, with distance-based

outliers only partially corresponding to probabilistic outliers. To prevent confusion in the rest of the

paper, we shall continue to refer to “hubs” and “outliers” in the distance-based sense. Outliers will

be analyzed further in Section 7.3.2.

5. Proofs and Discussion

This section is predominantly devoted to the theoretical aspects of the behavior of distances in

high-dimensional space and the hubness phenomenon. Section 5.1 provides a step-by-step proof of

Theorem 1 which was introduced in Section 4.2, while Section 5.2 discusses additional aspects of

the phenomenon in the context of the geometry of high-dimensional spaces and the properties of

data distributions which occupy them.

5.1 Proof of Theorem 1

In this section we analyze the behavior of distances that provides the mechanism for the formation

of hubs, introduced in Section 4.2, culminating with the proof of Theorem 1. Section 5.1.1 reviews

distance concentration results by François et al. (2007), while Section 5.1.2 discusses distance dis-

tributions in i.i.d. normal random data and extended interpretations of the results by François et al.

(2007) in this setting. The notion of asymptotic equivalence that will be used in the proof of The-

orem 1 is the subject of Section 5.1.3. The expectation of the noncentral Chi distribution, which

is a key feature in the analysis of distance distributions in i.i.d. normal random data, is defined in

Section 5.1.4, together with the generalized Laguerre function on which it relies. Properties of the

generalized Laguerre function that will be used in the proof of Theorem 1 are presented in Sec-

tion 5.1.5. Finally, the proof of Theorem 1 is given in Section 5.1.6.
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5.1.1 DISTANCE CONCENTRATION RESULTS

We begin by reviewing the main results of François et al. (2007) regarding distance concentration.

Let Xd = (X1,X2, . . . ,Xd) be a random d-dimensional variable with i.i.d. components: Xi ∼ F , and

let ‖Xd‖ denote its Euclidean norm. For random variables |Xi|2, let µ|F |2 and σ2
|F |2 signify their

mean and variance, respectively. François et al. (2007) prove the following two lemmas.12

Lemma 2 (François et al., 2007, Equation 17, adapted)

lim
d→∞

E(‖Xd‖)√
d

= µ|F |2 .

Lemma 3 (François et al., 2007, Equation 21, adapted)

lim
d→∞

Var(‖Xd‖) =
σ2
|F |2

4µ|F |2
.

The above lemmas imply that, for i.i.d. random data, the expectation of the distribution of Eu-

clidean distances to the origin (Euclidean norms) asymptotically behaves like
√

d, while the stan-

dard deviation is asymptotically constant. From now on, we will denote the mean and variance of

random variables that are distributed according to some distribution F by µF and σ2
F , respectively.

5.1.2 DISTANCES IN I.I.D. NORMAL DATA

We now observe more closely the behavior of distances in i.i.d. normal random data. Let Zd =
(Z1,Z2, . . . ,Zd) be a random d-dimensional vector whose components independently follow the

standard normal distribution: Zi ∼N (0;1), for every i ∈ {1,2, . . . ,d}. Then, by definition, random

variable ‖Zd‖ follows the Chi distribution with d degrees of freedom: ‖Zd‖ ∼ χ(d). In other words,

χ(d) is the distribution of Euclidean distances of vectors drawn from Zd to the origin. If one were

to fix another reference vector xd instead of the origin, the distribution of distances of vectors drawn

from Zd to xd would be completely determined by ‖xd‖ since, again by definition, random variable

‖Zd − xd‖ follows the noncentral Chi distribution with d degrees of freedom and noncentrality

parameter λ = ‖xd‖: ‖Zd −xd‖ ∼ χ(d,‖xd‖).
In light of the above, let us observe two points, xd,1 and xd,2, drawn from Zd , and express their

distances from the origin in terms of offsets from the expected distance, with the offsets described

using standard deviations: ‖xd,1‖ = µχ(d)+ c1σχ(d) and ‖xd,2‖ = µχ(d)+ c2σχ(d), where c1,c2 ≤ 0.

We will assume c1 < c2, that is, xd,1 is closer to the data distribution mean (the origin) than xd,2. By

treating c1 and c2 as constants, and varying d, we observe analogues of two points in spaces of dif-

ferent dimensionalities (roughly speaking, points xd,1 have identical “probability” of occurrence at

the specified distance from the origin for every d, and the same holds for xd,2). Let λd,1 = ‖xd,1‖
and λd,2 = ‖xd,2‖. Then, the distributions of distances of points xd,1 and xd,2 to all points from the

data distribution Zd (that is, the distributions of random variables ‖Zd −xd,1‖ and ‖Zd −xd,2‖) are

noncentral Chi distributions χ(d,λd,1) and χ(d,λd,2), respectively. We study the behavior of these

two distributions with increasing values of d.

Lemmas 2 and 3, taking F to be the standard normal distribution N (0;1), and translating the

space so that xd,1 or xd,2 become the origin, imply that both µχ(d,λd,1) and µχ(d,λd,2) asymptotically

12. François et al. (2007) provide a more general result for lp norms with arbitrary p > 0.
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behave like
√

d as d →∞, while σ2
χ(d,λd,1)

and σ2
χ(d,λd,2)

are both asymptotically constant.13 However,

for xd,1 and xd,2 placed at different distances form the origin (λd,1 6= λd,2, that is, c1 6= c2), these

asymptotic tendencies do not occur at the same speed. In particular, we will show that as d increases,

the difference between µχ(d,λd,1) and µχ(d,λd,2) actually increases. If we take xd,1 to be closer to the

origin than xd,2 (c1 < c2), this means that xd,1 becomes closer to all other points from the data

distribution Zd than xd,2, simply by virtue of increasing dimensionality, since for different values

of d we place the two points at analogous positions in the data space with regards to the distance

from the origin.

5.1.3 ASYMPTOTIC EQUIVALENCE

Before describing our main theoretical result, we present several definitions and lemmas, beginning

with the notion of asymptotic equivalence that will be relied upon.

Definition 4 Two real-valued functions f (x) and g(x) are asymptotically equal, f (x)≈ g(x), iff for

every ε > 0 there exists x0 ∈R such that for every x > x0, | f (x)−g(x)|< ε.

Equivalently, f (x)≈ g(x) iff limx→∞ | f (x)−g(x)|= 0. Note that the ≈ relation is different from

the divisive notion of asymptotic equivalence, where f (x)∼ g(x) iff limx→∞ f (x)/g(x) = 1.

The following two lemmas describe approximations that will be used in the proof of Theorem 1,

based on the ≈ relation.

Lemma 5 For any constant c ∈R, let f (d) =
√

d + c , and g(d) =
√

d . Then, f (d)≈ g(d) .

Proof

lim
d→∞

∣∣∣
√

d + c−
√

d

∣∣∣= lim
d→∞

∣∣∣∣∣
(√

d + c−
√

d
)√d + c+

√
d√

d + c+
√

d

∣∣∣∣∣= lim
d→∞

∣∣∣∣
c√

d + c+
√

d

∣∣∣∣= 0 .

Lemma 6 µχ(d) ≈
√

d, and σχ(d) ≈ 1/
√

2 .

Proof Observe the expression for the mean of the χ(d) distribution,

µχ(d) =
√

2
Γ
(

d+1
2

)

Γ
(

d
2

) .

The equality xΓ(x) = Γ(x+1) and the convexity of logΓ(x) yield (Haagerup, 1982, p. 237):

Γ
(

d +1

2

)2

≤ Γ
(

d

2

)
Γ
(

d +2

2

)
=

d

2
Γ
(

d

2

)2

,

13. More precisely, the lemmas can be applied only for points x′d,i that have equal values of all components, since

after translation data components need to be i.i.d. Because of the symmetry of the Gaussian distribution, the same

expectations and variances of distance distributions are obtained, for every d, with any xd,i that has the same norm as

x′d,i, thereby producing identical asymptotic results.
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and

Γ
(

d +1

2

)2

=
d −1

2
Γ
(

d −1

2

)
Γ
(

d +1

2

)
≥ d −1

2
Γ
(

d

2

)2

,

from which we have
√

d −1 ≤
√

2
Γ
(

d+1
2

)

Γ
(

d
2

) ≤
√

d .

From Lemma 5 it now follows that µχ(d) ≈
√

d .

Regarding the standard deviation of the χ(d) distribution, from Lemma 3, taking F to be the

standard normal distribution, we obtain

lim
d→∞

σ2
χ(d) =

σ2
χ2(1)

4µχ2(1)
=

1

2
,

since the square of a standard normal random variable follows the chi-square distribution with one

degree of freedom, χ2(1), whose mean and variance are known: µχ2(1) = 1, σ2
χ2(1)

= 2. It now di-

rectly follows that σχ(d) ≈ 1/
√

2 .

5.1.4 EXPECTATION OF THE NONCENTRAL CHI DISTRIBUTION

The central notion in Theorem 1 is the noncentral Chi distribution. To express the expectation of

the noncentral Chi distribution, the following two definitions are needed, introducing the Kummer

confluent hypergeometric function 1F1, and the generalized Laguerre function.

Definition 7 (Itô, 1993, p. 1799, Appendix A, Table 19.I)

For a,b,z ∈R, the Kummer confluent hypergeometric function 1F1(a;b;z) is given by

1F1(a;b;z) =
∞

∑
k=0

(a)k

(b)k

· zk

Γ(k+1)
,

where (·)k is the Pochhammer symbol, (x)k =
Γ(x+k)

Γ(x) .

Definition 8 (Itô, 1993, p. 1811, Appendix A, Table 20.VI)

For ν,α,z ∈R, the generalized Laguerre function L
(α)
ν (z) is given by

L
(α)
ν (z) =

Γ(ν+α+1)

Γ(ν+1)
· 1F1(−ν;α+1;z)

Γ(α+1)
.

The expectation of the noncentral Chi distribution with d degrees of freedom and noncentrality

parameter λ, denoted by µχ(d,λ), can now be expressed via the generalized Laguerre function (Oberto

and Pennecchi, 2006):

µχ(d,λ) =

√
π
2

L
(d/2−1)
1/2

(
−λ2

2

)
. (2)
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5.1.5 PROPERTIES OF THE GENERALIZED LAGUERRE FUNCTION

The proof of Theorem 1 will rely on several properties of the generalized Laguerre function. In this

section we will review two known properties and prove several additional ones as lemmas.

An important property of the generalized Laguerre function is its infinite differentiability in z,

with the result of differentiation again being a generalized Laguerre function:

∂
∂z

L
(α)
ν (z) =−L

(α+1)
ν−1 (z) . (3)

Another useful property is the following recurrence relation:

L
(α)
ν (z) = L

(α)
ν−1(z)+L

(α−1)
ν (z) . (4)

Lemma 9 For α > 0 and z < 0:

(a) L
(α)
−1/2

(z) is a positive monotonically increasing function in z, while

(b) L
(α)
1/2

(z) is a positive monotonically decreasing concave function in z.

Proof (a) From Definition 8,

L
(α)
−1/2

(z) =
Γ(α+1/2)

Γ(1/2)
· 1F1(1/2;α+1;z)

Γ(α+1)
.

Since α > 0 all three terms involving the Gamma function are positive. We transform the remaining

term using the equality (Itô, 1993, p. 1799, Appendix A, Table 19.I):

1F1(a;b;z) = ez
1F1(b−a;b;−z) , (5)

which holds arbitrary a,b,z ∈R, obtaining

1F1(1/2;α+1;z) = ez
1F1(α+1/2;α+1;−z) .

From Definition 7 it now directly follows that L
(α)
−1/2

(z) is positive for α > 0 and z < 0.

To show that L
(α)
−1/2

(z) is monotonically increasing in z, from Equation 3 and Definition 8

we have
∂
∂z

L
(α)
−1/2

(z) =−L
(α+1)
−3/2

(z) =−Γ(α+1/2)

Γ(−1/2)
· 1F1(3/2;α+2;z)

Γ(α+2)
.

For α > 0 and z < 0, from Equation 5 it follows that 1F1(3/2;α+2;z)> 0. Since Γ(−1/2)< 0 and

all remaining terms are positive, it follows that −L
(α+1)
−3/2

(z) > 0. Thus, L
(α)
−1/2

(z) is monotonically

increasing in z.

(b) Proofs that L
(α)
1/2

(z) is positive and monotonically decreasing are very similar to the proofs in

part (a), and will be omitted. To address concavity, we observe the second derivative of L
(α)
1/2

(z):

∂2

∂z
L
(α)
1/2

(z) = L
(α+2)
−3/2

(z) =
Γ(α+3/2)

Γ(−1/2)
· 1F1(3/2;α+3;z)

Γ(α+3)
.

Similarly to part (a), from Equation 5, Definition 7, and basic properties of the gamma function it

follows that L
(α+2)
−3/2

(z)< 0 for α > 0 and z < 0. Thus, L
(α)
1/2

(z) is concave in z.
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Lemma 10 For α > 0 and z < 0, L
(α+1)
1/2

(z)≈ L
(α)
1/2

(z) .

Proof From the recurrence relation in Equation 4 we obtain

L
(α+1)
1/2

(z) = L
(α+1)
−1/2

(z)+L
(α)
1/2

(z) .

Therefore, to prove the lemma it needs to be shown that for z < 0,

lim
α→∞

L
(α)
−1/2

(z) = 0 . (6)

From Definition 8 and Equation 5 we have

L
(α)
−1/2

(z) =
e−z

Γ(1/2)
· Γ(α+1/2)

Γ(α+1)
· 1F1(α+1/2;α+1;−z) .

From the asymptotic expansion by Fujikoshi (2007, p. 16, adapted),

1F1

(
1

2
n;

1

2
(n+b);x

)
= ex

(
1+O(n−1)

)
, (7)

where n is large and x ≥ 0, it follows that limα→∞ 1F1(α + 1/2;α + 1;−z) < ∞ . Thus, to prove

Equation 6 and the lemma it remains to be shown that

lim
α→∞

Γ(α+1/2)

Γ(α+1)
= 0 . (8)

As in the proof of Lemma 6, from the inequalities derived by Haagerup (1982) we have

√
β−1 ≤

√
2

Γ
(

β+1
2

)

Γ
(

β
2

) ≤
√

β ,

where β > 1. Applying inversion and substituting β with 2α+1 yields the desired limit.

Lemma 11 For α > 1/2 and z < 0:

(a) limz→−∞ L
(α)
−3/2

(z) = 0, and

(b) limα→∞ L
(α)
−3/2

(z) = 0.

Proof (a) From Definition 8 we have

L
(α)
−3/2

(z) =
Γ(α−1/2)

Γ(−1/2)
· 1F1(3/2;α+1;z)

Γ(α+1)
. (9)

The following property (Abramowitz and Stegun, 1964, p. 504, Equation 13.1.5),

1F1 (a;b;z) =
Γ(b)

Γ(b−a)
(−z)a

(
1+O(|z|−1)

)
(z < 0),
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when substituted into Equation 9, taking a = 3/2 and b = α+1, yields

L
(α)
−3/2

(z) =
1

Γ(−1/2)
(−z)−3/2

(
1+O(|z|−1)

)
. (10)

From Equation 10 the desired limit directly follows.

(b) The proof of part (b) is analogous to the proof of Lemma 10, that is, Equation 6. From

Definition 8 and Equation 5, after applying the expansion by Fujikoshi (2007) given in Equation 7,

it remains to be shown that

lim
α→∞

Γ(α−1/2)

Γ(α+1)
= 0 . (11)

Since Γ(α − 1/2) < Γ(α + 1/2) for every α ≥ 2, the desired limit in Equation 11 follows directly

from Equation 8.

5.1.6 THE MAIN RESULT

This section restates and proves our main theoretical result.

Theorem 1 Let λd,1 = µχ(d)+c1σχ(d) and λd,2 = µχ(d)+c2σχ(d), where d ∈N
+, c1,c2 ≤ 0, c1 < c2,

and µχ(d) and σχ(d) are the mean and standard deviation of the Chi distribution with d degrees of

freedom, respectively. Define

∆µd(λd,1,λd,2) = µχ(d,λd,2)−µχ(d,λd,1) ,

where µχ(d,λd,i) is the mean of the noncentral Chi distribution with d degrees of freedom and non-

centrality parameter λd,i (i ∈ {1,2}).
There exists d0 ∈N such that for every d > d0,

∆µd(λd,1,λd,2)> 0 , (12)

and

∆µd+2(λd+2,1,λd+2,2)> ∆µd(λd,1,λd,2) . (13)

Proof To prove Equation 12, we observe that for d > 2,

∆µd(λd,1,λd,2) = µχ(d,λd,2)−µχ(d,λd,1)

=

√
π
2

L
( d

2
−1)

1/2

(
−

λ2
d,2

2

)
−
√

π
2

L
( d

2
−1)

1/2

(
−

λ2
d,1

2

)

> 0 ,

where the last inequality holds for d > 2 because λd,1 < λd,2, and L
(d/2−1)
1/2

(z) is a monotonically

decreasing function in z < 0 for d/2−1 > 0 (Lemma 9).

In order to prove Equation 13, we will use approximate values of noncentrality parameters λd,1

and λd,2. Let λ̂d,1 =
√

d+c1/
√

2, and λ̂d,2 =
√

d+c2/
√

2. From Lemma 6 it follows that λ̂d,1 ≈ λd,1

and λ̂d,2 ≈ λd,2. Thus, by proving that there exists d2 ∈N such that for every d > d2,

∆µd+2(̂λd+2,1, λ̂d+2,2)> ∆µd (̂λd,1, λ̂d,2) , (14)
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we prove that there exists d1 ∈ N such that for every d > d1 Equation 13 holds. The existence of

such d1, when approximations are used as function arguments, is ensured by the fact that L
(α)
1/2

(z) is

a monotonically decreasing concave function in z (Lemma 9), and by the transition from α to α+1

having an insignificant impact on the value of the Laguerre function for large enough α (Lemma 10).

Once Equation 14 is proven, Equations 12 and 13 will hold for every d > d0, where d0 =max(2,d1).
To prove Equation 14, from Equation 2 it follows we need to show that

L
(d/2)
1/2

(
−1

2

(√
d +2+ c2/

√
2
)2
)
−L

(d/2)
1/2

(
−1

2

(√
d +2+ c1/

√
2
)2
)

> L
(d/2−1)
1/2

(
−1

2

(√
d + c2/

√
2
)2
)
−L

(d/2−1)
1/2

(
−1

2

(√
d + c1/

√
2
)2
)
. (15)

We observe the second derivative of L
(α)
1/2

(z):

∂2

∂z
L
(α)
1/2

(z) = L
(α+2)
−3/2

(z) .

Since L
(α+2)
−3/2

(z) tends to 0 as z →−∞, and tends to 0 also as α → ∞ (Lemma 11), it follows that the

two Laguerre functions on the left side of Equation 15 can be approximated by a linear function with

an arbitrary degree of accuracy for large enough d. More precisely, since L
(α)
1/2

(z) is monotonically

decreasing in z (Lemma 9) there exist a,b ∈ R, a > 0, such that the left side of Equation 15, for

large enough d, can be replaced by

−a

(
−1

2

(√
d +2+ c2/

√
2
)2
)
+b −

(
−a

(
−1

2

(√
d +2+ c1/

√
2
)2
)
+b

)

=
a

2

(√
d +2+ c2/

√
2
)2

− a

2

(√
d +2+ c1/

√
2
)2

. (16)

From Lemma 10 it follows that the same linear approximation can be used for the right side of

Equation 15, replacing it by

a

2

(√
d + c2/

√
2
)2

− a

2

(√
d + c1/

√
2
)2

. (17)

After substituting the left and right side of Equation 15 with Equations 16 and 17, respectively, it

remains to be shown that

a

2

(√
d +2+ c2/

√
2
)2

− a

2

(√
d +2+ c1/

√
2
)2

>
a

2

(√
d + c2/

√
2
)2

− a

2

(√
d + c1/

√
2
)2

. (18)

Multiplying both sides by
√

2/a, moving the right side to the left, and applying algebraic simplifi-

cation reduces Equation 18 to

(
c2 − c1

)(√
d +2−

√
d
)
> 0,

which holds for c1 < c2, thus concluding the proof.
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5.2 Discussion

This section will discuss several additional considerations and related work regarding the geometry

of high-dimensional spaces and the behavior of data distributions within them. First, let us consider

the geometric upper limit to the number of points that point x can be a nearest neighbor of, in

Euclidean space. In one dimension, this number is 2, in two dimensions it is 5, while in 3 dimensions

it equals 11 (Tversky and Hutchinson, 1986). Generally, for Euclidean space of dimensionality d

this number is equal to the kissing number, which is the maximal number of hyperspheres that can

be placed to touch a given hypersphere without overlapping, with all hyperspheres being of the

same size.14 Exact kissing numbers for arbitrary d are generally not known, however there exist

bounds which imply that they progress exponentially with d (Odlyzko and Sloane, 1979; Zeger and

Gersho, 1994). Furthermore, when considering k nearest neighbors for k > 1, the bounds become

even larger. Therefore, only for very low values of d geometrical constraints of vector space prevent

hubness. On the other hand, for higher values of d hubness may or may not occur, and the geometric

bounds, besides providing “room” for hubness (even for values of k as low as 1) do not contribute

much in fully characterizing the hubness phenomenon. Therefore, in high dimensions the behavior

of data distributions needed to be studied.

We focus the rest of the discussion around the following important result,15 drawing parallels

with our results and analysis, and extending existing interpretations.

Theorem 12 (Newman and Rinott, 1985, p. 803, Theorem 3, adapted)

Let x(i) = (x
(i)
1 , . . . ,x

(i)
d ), i = 0, . . . ,n be a sample of n+ 1 i.i.d. points from distribution F(X),

X = (X1, . . . ,Xd) ∈ R
d . Assume that F is of the form F(X) = ∏d

k=1F (Xk), that is, the coordinates

X1, . . . ,Xd are i.i.d. Let the distance measure be of the form D(x(i),x( j)) =∑d
k=1 g(x

(i)
k ,x

( j)
k ). Let N

n,d
1

denote the number of points among {x(1), . . . ,x(n)} whose nearest neighbor is x(0).

Suppose 0 < Var(g(X ,Y ))< ∞ and set

β = Correlation(g(X ,Y ),g(X ,Z)) , (19)

where X ,Y,Z are i.i.d. with common distribution F (the marginal distribution of Xk).

(a) If β = 0 then

lim
n→∞

lim
d→∞

N
n,d
1 = Poisson(λ = 1) in distribution (20)

and

lim
n→∞

lim
d→∞

Var(Nn,d
1 ) = 1 . (21)

(b) If β > 0 then

lim
n→∞

lim
d→∞

N
n,d
1 = 0 in distribution (22)

while

lim
n→∞

lim
d→∞

Var(Nn,d
1 ) = ∞ . (23)

14. If ties are disallowed, it may be necessary to subtract 1 from the kissing number to obtain the maximum of N1.

15. A theorem that is effectively a special case of this result was proven previously (Newman et al., 1983, Theorem 7)

for continuous distributions with finite kurtosis and Euclidean distance.
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What is exceptional in this theorem are Equations 22 and 23. According to the interpretation by

Tversky et al. (1983), they suggest that if the number of dimensions is large relative to the number

of points, one may expect to have a large proportion of points with N1 equaling 0, and a small

proportion of points with high N1 values, that is, hubs.16 Trivially, Equation 23 also holds for Nk

with k > 1, since for any point x, Nk(x)≥ N1(x).

The setting involving i.i.d. normal random data and Euclidean distance, used in our Theorem 1

(and, generally, any i.i.d. random data distribution with Euclidean distance), fulfills the conditions

of Theorem 12 for Equations 22 and 23 to be applied, since the correlation parameter β > 0. This

correlation exists because, for example, if we view vector component variable X j ( j ∈ {1,2, . . . ,d})

and the distribution of data points within it, if a random point drawn from X j is closer to the mean

of X j it is more likely to be close to other random points drawn from X j, and vice versa, producing

the case β > 0.17 Therefore, Equations 22 and 23 from Theorem 12 directly apply to the setting

studied in Theorem 1, providing asymptotic evidence for hubness. However, since the proof of

Equations 22 and 23 in Theorem 12 relies on applying the central limit theorem to the (normalized)

distributions of pairwise distances between vectors x(i) and x( j) (0 ≤ i 6= j ≤ n) as d → ∞ (obtaining

limit distance distributions which are Gaussian), the results of Theorem 12 are inherently asymptotic

in nature. Theorem 1, on the other hand, describes the behavior of distances in finite dimensionali-

ties,18 providing the means to characterize the behavior of Nk in high, but finite-dimensional space.

What remains to be done is to formally connect Theorem 1 with the skewness of Nk in finite dimen-

sionalities, for example by observing point x with a fixed position relative to the data distribution

mean (the origin) across dimensionalities, in terms of being at distance µχ(d)+ cσχ(d) from the ori-

gin, and expressing how the probability of x to be the nearest neighbor (or among the k nearest

neighbors) of a randomly drawn point changes with increasing dimensionality.19 We address this

investigation as a point of future work.

Returning to Theorem 12 and the value of β from Equation 19, as previously discussed, β > 0

signifies that the position of a vector component value makes a difference when computing dis-

tances between vectors, causing some component values to be more “special” than others. Another

contribution of Theorem 1 is that it illustrates how the individual differences in component values

combine to make positions of whole vectors more special (by being closer to the data center). On

the other hand, if β = 0 no point can have a special position with respect to all others. In this case,

Equations 20 and 21 hold, which imply there is no hubness. This setting is relevant, for example, to

points being generated by a Poisson process which spreads the vectors uniformly over Rd , where all

positions within the space (both at component-level and globally) become basically equivalent. Al-

though it does not directly fit into the framework of Theorem 12, the same principle can be used to

explain the absence of hubness for normally distributed data and cosine distance from Section 3.1:

in this setting no vector is more spatially central than any other. Equations 20 and 21, which im-

ply no hubness, hold for many more “centerless” settings, including random graphs, settings with

exchangeable distances, and d-dimensional toruses (Newman and Rinott, 1985).

16. Reversing the order of limits, which corresponds to having a large number of points relative to the number of dimen-

sions, produces the same asymptotic behavior as in Equations 20 and 21, that is, no hubness, in all studied settings.

17. Similarly to Section 4.2, this argument holds for unimodal distributions of component variables; for multimodal

distributions the driving force behind nonzero β is the proximity to a peak in the probability density function.

18. Although the statement of Theorem 1 relies on dimensionality being greater than some d0 which is finite, but can be

arbitrarily high, empirical evidence suggests that actual d0 values are low, often equaling 0.

19. For c < 0 we expect this probability to increase since x is closer to the data distribution mean, and becomes closer to

other points as dimensionality increases.
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Figure 8: (a) Out-link, and (b) in-link densities of groups of hubs with increasing size; (c) ratio of

the number of in-links originating from points within the group and in-links originating

from outside points, for i.i.d. uniform random data with dimensionality d = 3, 20, 100.

The following two subsections will address several additional issues concerning the interpreta-

tion of Theorem 12.

5.2.1 NEAREST-NEIGHBOR GRAPH STRUCTURE

The interpretation of Theorem 12 by Tversky et al. (1983) may be understood in the sense that, with

increasing dimensionality, very few exceptional points become hubs, while all others are relegated

to antihubs. In this section we will empirically examine the structural change of the k-NN graph as

the number of dimensions increases. We will also discuss and consolidate different notions node

centrality in the k-NN graph, and their dependence on the (intrinsic) dimensionality of data.

First, as in Section 3.1, we consider n = 10000 i.i.d. uniform random data points of different

dimensionality. Let us observe hubs, that is, points with highest N5, collected in groups of pro-

gressively increasing size: 5,10,15, . . . ,10000. In analogy with the notion of network density from

social network analysis (Scott, 2000), we define group out-link density as the proportion of the num-

ber of arcs that originate and end in nodes from the group, and the total number of arcs that originate

from nodes in the group. Conversely, we define group in-link density as the proportion of the num-

ber of arcs that originate and end in nodes from the group, and the total number of arcs that end in

nodes from the group. Figure 8(a, b) shows the out-link and in-link densities of groups of strongest

hubs in i.i.d. uniform random data (similar tendencies can be observed with other synthetic data

distributions). It can be seen in Figure 8(a) that hubs are more cohesive in high dimensions, with

more of their out-links leading to other hubs. On the other hand, Figure 8(b) suggests that hubs also

receive more in-links from non-hub points in high dimensions than in low dimensions. Moreover,

Figure 8(c), which plots the ratio of the number of in-links that originate within the group, and the

number of in-links which originate outside, shows that hubs receive a larger proportion of in-links

from non-hub points in high dimensions than in low dimensions. We have reported our findings for

k = 5, however similar results are obtained with other values of k.

Overall, it can be said that in high dimensions hubs receive more in-links than in low dimen-

sions from both hubs and non-hubs, and that the range of influence of hubs gradually widens as

dimensionality increases. We can therefore conclude that the transition of hubness from low to high

dimensionalities is “smooth,” both in the sense of the change in the overall distribution of Nk, and

the change in the degree of influence of data points, as expressed by the above analysis of links.
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So far, we have viewed hubs primarily through their exhibited high values of Nk, that is, high

degree centrality in the k-NN directed graph. However, (scale-free) network analysis literature

often attributes other properties to hubs (Albert and Barabási, 2002), viewing them as nodes that are

important for preserving network structure due to their central positions within the graph, indicated,

for example, by their betweenness centrality (Scott, 2000). On the other hand, as discussed by Li

et al. (2005), in both synthetic and real-world networks high-degree nodes do not necessarily need

to correspond to nodes that are central in the graph, that is, high-degree nodes can be concentrated

at the periphery of the network and bear little structural significance. For this reason, we computed

the betweenness centrality of nodes in k-NN graphs of synthetic and real data sets studied in this

paper, and calculated its Spearman correlation with node degree, denoting the measure by C
Nk

BC. For

i.i.d. uniform data (k = 5), when d = 3 the measured correlation is C
N5

BC = 0.311, when d = 20 the

correlation is C
N5

BC = 0.539, and finally when d = 100 the correlation rises to C
N5

BC = 0.647.20 This

suggests that with increasing dimensionality the centrality of nodes increases not only in the sense

of higher node degree or spatial centrality of vectors (as discussed in Section 4.2), but also in the

structural graph-based sense. We support this observation further by computing, over the 50 real

data sets listed in Table 1, the correlation between C
N10

BC and SN10
, finding it to be significant: 0.548.21

This indicates that real data sets which exhibit strong skewness in the distribution of N10 also tend

to have strong correlation between N10 and betweenness centrality of nodes, giving hubs a broader

significance for the structure of the k-NN graphs.

5.2.2 RATE OF CONVERGENCE AND THE ROLE OF BOUNDARIES

On several occasions, the authors of Theorem 12 have somewhat downplayed the significance of

equations 22 and 23 (Tversky et al., 1983; Newman and Rinott, 1985), citing empirically observed

slow convergence (Maloney, 1983), even to the extent of not observing significant differences be-

tween hubness in the Poisson process and i.i.d. uniform cube settings. However, results in the

preceding sections of this paper suggest that this convergence is fast enough to produce notable

hubness in high-dimensional data. In order to directly illustrate the difference between a setting

which provides no possibility for spatial centrality of points, and one that does, we will observe the

Poisson process vs. the i.i.d. unit cube setting. We will be focusing on the location of the nearest

neighbor of a point from the cube, that is, on determining whether it stays within the boundaries of

the cube as dimensionality increases.

Lemma 13 Let points be spread in R
d according to a Poisson process with constant intensity λ > 1.

Observe a unit hypercube C ⊂R
d , and an arbitrary point x = (x1,x2, . . . ,xd) ∈C, generated by the

Poisson process. Let pλ,d denote the probability that the nearest neighbor of x, with respect to

Euclidean distance, is not situated in C. Then,

lim
d→∞

pλ,d = 1 .

Proof Out of the 3d −1 unit hypercubes that surround C, let us observe only the 2d hypercubes that

differ from C only in one coordinate. We will restrict the set of considered points to these 2d cubes,

and prove that the probability that the nearest neighbor of x comes from one of the 2d cubes, p̂λ,d ,

converges to 1 as d → ∞. From this, the convergence of pλ,d directly follows, since pλ,d ≥ p̂λ,d .

20. Betweenness centrality is computed on directed k-NN graphs. We obtained similar correlations when undirected

graphs were used.

21. When betweenness centrality is computed on undirected graphs, the correlation is even stronger: 0.585.
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1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

d

p(
N

N
 i
s
 f

ro
m

 a
d

ja
c
e

n
t 

c
u

b
e

)

 

 

λ = 100

λ = 1000

λ = 10000

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

d

p(
N

N
 i
s
 f

ro
m

 a
d

ja
c
e

n
t 

c
u

b
e

)

 

 

λ = 100

λ = 1000

λ = 10000

(a) (b)

Figure 9: Probability that the nearest neighbor of a point from the unit hypercube originates from

one of the adjacent hypercubes, for Poisson processes with λ = 100, 1000, and 10000

expected points per hypercube, obtained through simulation and averaged over 10 runs.

Let p̂λ,d(i) denote the probability that the nearest neighbor of x comes from one of the two hy-

percubes which differ from C only in the ith coordinate, i ∈ {1,2, . . . ,d}. For a given coordi-

nate i and point x, let the 1-dimensional nearest neighbor of xi denote the closest yi value of all

other points y from the Poisson process, observed when all coordinates except i are disregarded.

Conversely, for a given coordinate i and point x, let the (d − 1)-dimensional nearest neighbor of

(x1, . . . ,xi−1,xi+1, . . . ,xd) denote the closest point (y1, . . . ,yi−1,yi+1, . . . ,yd), obtained when coordi-

nate i is disregarded.

Observing the ith coordinate only, the probability for the 1-dimensional nearest neighbor of xi

to come from one of the surrounding unit intervals is p̂λ,1. Although small, p̂λ,1 > 0. Assuming

this event has occurred, let y ∈ R
d be the point whose component yi is the 1-dimensional nearest

neighbor of xi that is not within the unit interval containing xi. Let rλ denote the probability that

the remaining coordinates of y, (y1, . . . ,yi−1,yi+1, . . . ,yd), constitute a (d − 1)-dimensional nearest

neighbor of (x1, . . . ,xi−1,xi+1, . . . ,xd), within the confines of C. It can be observed that rλ is strictly

greater than 0, inversely proportional to λ (roughly equaling 1/(λ−1)), and independent of d. Thus,

p̂λ,d(i)≥ p̂λ,1 · rλ > 0.

Let q̂λ,d = 1− p̂λ,d , the probability that the nearest neighbor of x comes from C (recall the

restriction of the location of the nearest neighbor to C and its immediately surrounding 2d hyper-

cubes). In light of the above, q̂λ,d = ∏d
i=1 q̂λ,d(i) = ∏d

i=1(1− p̂λ,d(i)). Since each p̂λ,d(i) is bounded

from below by a constant strictly greater than 0 (which depends only on λ), each q̂λ,d(i) is bounded

from above by a constant strictly smaller than 1. It follows that limd→∞ q̂λ,d = 0, and therefore

limd→∞ p̂λ,d = 1.

To illustrate the rate of convergence in Lemma 13, Figure 9 plots the empirically observed

probabilities that the nearest neighbor of a point from a unit hypercube originates in one of the 2d

immediately adjacent unit hypercubes ( p̂λ,d). It can be seen that the probability that the nearest

neighbor comes from outside of the cube quickly becomes close to 1 as dimensionality increases.

Please note that due to feasibility of simulation the plots in Figure 9 represent the empirical lower

bounds (that is, the empirical estimates of p̂λ,d) of the true probabilities from Lemma 13 (pλ,d) by

considering only the 2d immediately adjacent hypercubes.
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The above indicates that when boundaries are introduced in high dimensions, the setting com-

pletely changes, in the sense that new nearest neighbors need to be located inside the boundaries.

Under such circumstances, points which are closer to the center have a better chance of becoming

nearest neighbors, with the mechanism described in previous sections. Another implication of the

above observations, stemming from Figure 9, is that the number of dimensions does not need to be

very large compared to the number of points for the setting to change. As for boundaries, they can

be viewed as a dual notion to spatial centrality discussed earlier. With Poisson processes and cubes

this duality is rather straightforward, however for continuous distributions in general there exist no

boundaries in a strict mathematical sense. Nevertheless, since data sets contain a finite number of

points, it can be said that “practical” boundaries exist in this case as well.

6. Hubness and Dimensionality Reduction

In this section we elaborate further on the interplay of skewness of Nk and intrinsic dimensionality

by considering dimensionality-reduction (DR) techniques. The main question motivating the dis-

cussion in this section is whether dimensionality reduction can alleviate the issue of the skewness

of k-occurrences altogether. We leave a more detailed and general investigation of the interaction

between hubness and dimensionality reduction as a point of future work.

We examined the following methods: principal component analysis—PCA (Jolliffe, 2002), in-

dependent component analysis—ICA (Hyvärinen and Oja, 2000), stochastic neighbor embedding—

SNE (Hinton and Roweis, 2003), isomap (Tenenbaum et al., 2000), and diffusion maps (Lafon and

Lee, 2006; Nadler et al., 2006). Figure 10 depicts the relationship between the percentage of the

original number of features maintained by the DR methods and SNk
, for several high-dimensional

real data sets (musk1, mfeat-factors, and spectrometer; see Table 1) and i.i.d. uniform random data

(with Euclidean distance, k = 10, and the same number of neighbors used for isomap and diffusion

maps). For PCA, ICA, SNE, and the real data sets, looking from right to left, SNk
stays relatively

constant until a small percentage of features is left, after which it suddenly drops (Figure 10(a–c)).

It can be said that this is the point where the intrinsic dimensionality of data sets is reached, and fur-

ther reduction of dimensionality may incur loss of valuable information. Such behavior is in contrast

with the case of i.i.d. uniform random data (full black line in Figure 10(a–c)), where SNk
steadily

and steeply reduces with the decreasing number of randomly selected features (dimensionality re-

duction is not meaningful in this case), because intrinsic and embedded dimensionalities are equal.

Since PCA is equivalent to metric multidimensional scaling (MDS) when Euclidean distances are

used (Tenenbaum et al., 2000), and SNE is a variant of MDS which favors the preservation of dis-

tances between nearby points, we can roughly regard the notion of intrinsic dimensionality used in

this paper as the minimal number of features needed to account for all pairwise distances within

a data set. Although ICA does not attempt to explicitly preserve pairwise distances, combinations

of independent components produce skewness of Nk which behaves in a way that is similar to the

skewness observed with PCA and SNE.

On the other hand, isomap and diffusion maps replace the original distances with distances

derived from a neighborhood graph. It can be observed in Figure 10(d, e) that such replacement

generally reduces SNk
, but in most cases does not alleviate it completely. With the decreasing number

of features, however, SNk
of real data sets in Figure 10(d, e) still behaves in a manner more similar

to SNk
of real data sets for PCA, ICA, and SNE (Figure 10(a–c)) than i.i.d. random data (dash-dot

black line in Figure 10(d, e)).
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Figure 10: Skewness of N10 in relation to the percentage of the original number of features

maintained by dimensionality reduction, for real and i.i.d. uniform random data and

(a) principal component analysis—PCA, (b) independent component analysis—ICA,

(c) stochastic neighbor embedding—SNE, (d) isomap, and (e) diffusion maps.

The above observations signify that, if distances are not explicitly altered (as with isomap and

diffusion maps DR methods), that is, if one cares about preserving the original distances, dimension-

ality reduction may not have a significant effect on hubness when the number of features is above

the intrinsic dimensionality. This observation is useful in most practical cases because if dimension-

ality is reduced below intrinsic dimensionality, loss of information can occur. If one still chooses to

apply aggressive dimensionality reduction and let the resulting number of features fall below intrin-

sic dimensionality, it can be expected of pairwise distances and nearest-neighbor relations between

points in the data set to be altered, and hubness to be reduced or even lost. Whether these effects

should be actively avoided or sought really depends on the application domain and task at hand, that

is, whether and to what degree the original pairwise distances represent valuable information, and

how useful are the new distances and neighborhoods after dimensionality reduction.

7. The Impact of Hubness on Machine Learning

The impact of hubness on machine-learning applications has not been thoroughly investigated so far.

In this section we examine a wide range of commonly used machine-learning methods for super-

vised (Section 7.1), semi-supervised (Section 7.2), and unsupervised learning (Section 7.3), that

either directly or indirectly use distances in the process of building a model. Our main objective is

to demonstrate that hubs (as well as their opposites, antihubs) can have a significant effect on these

methods. The presented results highlight the need to take hubs into account in a way equivalent to

other factors, such as the existence of outliers, the role of which has been well studied.
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7.1 Supervised Learning

To investigate possible implications of hubness on supervised learning, we first study the interaction

of k-occurrences with information provided by labels (Section 7.1.1). We then move on to examine

the effects of hubness on several well-known classification algorithms in Section 7.1.2.

7.1.1 “GOOD” AND “BAD” k-OCCURRENCES

When labels are present, k-occurrences can be distinguished based on whether labels of neighbors

match. We define the number of “bad” k-occurrences of x, BNk(x), as the number of points from

data set D for which x is among the first k NNs, and the labels of x and the points in question

do not match. Conversely, GNk(x), the number of “good” k-occurrences of x, is the number of

such points where labels do match. Naturally, for every x ∈ D, Nk(x) = BNk(x)+GNk(x).

To account for labels, Table 1 includes B̃N10 (14th column), the sum of all observed “bad”

k-occurrences of a data set normalized by ∑x N10(x) = 10n. This measure is intended to express the

total amount of “bad” k-occurrences within a data set. Also, to express the amount of information

that “regular” k-occurrences contain about “bad” k-occurrences in a particular data set, C
N10

BN10
(15th

column) denotes the Spearman correlation between BN10 and N10 vectors. The motivation behind

this measure is to express the degree to which BNk and Nk follow a similar distribution.

“Bad” hubs, that is, points with high BNk, are of particular interest to supervised learning be-

cause they carry more information about the location of the decision boundaries than other points,

and affect classification algorithms in different ways (as will be described in Section 7.1.2). To

understand the origins of “bad” hubs in real data, we rely on the notion of the cluster assumption

from semi-supervised learning (Chapelle et al., 2006), which roughly states that most pairs of points

in a high density region (cluster) should be of the same class. To measure the degree to which the

cluster assumption is violated in a particular data set, we simply define the cluster assumption vi-

olation (CAV) coefficient as follows. Let a be the number of pairs of points which are in different

classes but in the same cluster, and b the number of pairs of points which are in the same class and

cluster. Then, we define

CAV =
a

a+b
,

which gives a number in the [0,1] range, higher if there is more violation. To reduce the sensitivity

of CAV to the number of clusters (too low and it will be overly pessimistic, too high and it will

be overly optimistic), we choose the number of clusters to be 3 times the number of classes of a

particular data set. Clustering is performed with K-means.

For all examined real data sets, we computed the Spearman correlation between the total amount

of “bad” k-occurrences, B̃N10, and CAV (16th column of Table 1) and found it strong (0.85, see Ta-

ble 2). Another significant correlation (0.39) is observed between C
N10

BN10
and intrinsic dimensionality.

In contrast, B̃N10 and CAV are not correlated with intrinsic dimensionality nor with the skewness of

N10. The latter fact indicates that high dimensionality and skewness of Nk are not sufficient to induce

“bad” hubs. Instead, based on the former fact, we can argue that there are two, mostly independent,

forces at work: violation of the cluster assumption on one hand, and high intrinsic dimensionality on

the other. “Bad” hubs originate from putting the two together; that is, the consequences of violating

the cluster assumption can be more severe in high dimensions than in low dimensions, not in terms

of the total amount of “bad” k-occurrences, but in terms of their distribution, since strong regular

hubs are now more prone to “pick up” bad k-occurrences than non-hub points. This is supported by
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the positive correlation between C
N10

BN10
and intrinsic dimensionality, meaning that in high dimensions

BNk tends to follow a more similar distribution to Nk than in low dimensions.

7.1.2 INFLUENCE ON CLASSIFICATION ALGORITHMS

We now examine how skewness of Nk and the existence of (“bad”) hubs affects well-known clas-

sification techniques, focusing on the k-nearest neighbor classifier (k-NN), support vector ma-

chines (SVM), and AdaBoost. We demonstrate our findings on a selection of data sets from Table 1

which have relatively high (intrinsic) dimensionality, and a non-negligible amount of “badness”

(B̃Nk) and cluster assumption violation (CAV). Generally, the examined classification algorithms

(including semi-supervised learning from Section 7.2) exhibit similar behavior on other data sets

from Table 1 with the aforementioned properties, and also with various different values of k (in the

general range 1–50, as we focused on values of k which are significantly smaller than the number

of points in a data set).

k-nearest neighbor classifier. The k-nearest neighbor classifier is negatively affected by the

presence of “bad” hubs, because they provide erroneous class information to many other points. To

validate this assumption, we devised a simple weighting scheme. For each point x, we compute its

standardized “bad” hubness score:

hB(x,k) =
BNk(x)−µBNk

σBNk

,

where µBNk
and σBNk

are the mean and standard deviation of BNk, respectively. During majority

voting in the k-NN classification phase, when point x participates in the k-NN list of the point being

classified, the vote of x is weighted by

wk(x) = exp(−hB(x,k)),

thus lowering the influence of “bad” hubs on the classification decision. Figure 11 compares the

resulting accuracy of k-NN classifier with and without this weighting scheme for six data sets from

Table 1. Leave-one-out cross-validation is performed, with Euclidean distance being used for de-

termining nearest neighbors. The k value for Nk is naturally set to the k value used by the k-NN

classifier, and hB(x,k) is recomputed for the training set of each fold. The reduced accuracy of the

unweighted scheme signifies the negative influence of “bad” hubs.

Although “bad” hubs tend to carry more information about the location of class boundaries

than other points, the “model” created by the k-NN classifier places the emphasis on describing

non-borderline regions of the space occupied by each class. For this reason, it can be said that

“bad” hubs are truly bad for k-NN classification, creating the need to penalize their influence on

the classification decision. On the other hand, for classifiers that explicitly model the borders be-

tween classes, such as support vector machines, “bad” hubs can represent points which contribute

information to the model in a positive way, as will be discussed next.

Support vector machines. We consider SVMs with the RBF (Gaussian) kernel of the form:

K(x,y) = exp
(
−γ‖x−y‖2

)
,

where γ is a data-dependent constant. K(x,y) is a smooth monotone function of Euclidean distance

between points. Therefore, Nk values in the kernel space are exactly the same as in the original
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Figure 11: Accuracy of k-NN classifier with and without the weighting scheme.

space.22 To examine the influence of “bad” hubs on SVMs, Figure 12 illustrates 10-fold cross-

validation accuracy results of SVM trained using sequential minimal optimization (Platt, 1999;

Keerthi et al., 2001), when points are progressively removed from the training sets: (i) by decreas-

ing BNk (k = 5), and (ii) at random. Accuracy drops with removal by BNk, indicating that bad

hubs are important for support vector machines. The difference in SVM accuracy between ran-

dom removal and removal by BNk becomes consistently significant at some stage of progressive

removal, as denoted by the dashed vertical lines in the plots, according to the paired t-test at 0.05

significance level.23

The reason behind the above observation is that for high-dimensional data, points with high BNk

can comprise good support vectors. Table 3 exemplifies this point by listing the normalized average

ranks of support vectors in the 10-fold cross-validation models with regards to decreasing BNk. The

ranks are in the range [0,1], with the value 0.5 expected from a random set of points. Lower values

of the ranks indicate that the support vectors, on average, tend to have high BNk. The table also

lists the values of the γ parameter of the RBF kernel, as determined by independent experiments

involving 9-fold cross-validation.

AdaBoost. Boosting algorithms take into account the “importance” of points in the training set

for classification by weak learners, usually by assigning and updating weights of individual points—

the higher the weight, the more attention is to be paid to the point by subsequently trained weak

learners. We consider the AdaBoost.MH algorithm (Schapire and Singer, 1999) in conjunction with

22. Centering the kernel matrix changes the Nk of points in the kernel space, but we observed that the overall distribution

(that is, its skewness) does not become radically different. Therefore, the following arguments still hold for centered

kernels, providing Nk is computed in the kernel space.

23. Since random removal was performed in 20 runs, fold-wise accuracies for statistical testing were obtained in this

case by averaging over the runs.
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Figure 12: Accuracy of SVM with RBF kernel and points being removed from the training sets by

decreasing BN5, and at random (averaged over 20 runs).

Data set γ SV rank Data set γ SV rank

mfeat-factors 0.005 0.218 segment 0.3 0.272

mfeat-fourier 0.02 0.381 spectrometer 0.005 0.383

optdigits 0.02 0.189 vehicle 0.07 0.464

Table 3: Normalized average support vector ranks with regards to decreasing BN5.

CART trees (Breiman et al., 1984) with the maximal depth of three.24 We define for each point x its

standardized hubness score:

h(x,k) =
Nk(x)−µNk

σNk

, (24)

where µNk
, σNk

are the mean and standard deviation of Nk, respectively. We set the initial weight of

each point x in the training set to

wk(x) =
1

1+ |h(x,k)| ,

normalized by the sum over all points, for an empirically determined value of k. The motivation

behind the weighting scheme is to assign less importance to both hubs and outliers than other points

(this is why we take the absolute value of h(x,k)).

Figure 13 illustrates on six classification problems from Table 1 how the weighting scheme helps

AdaBoost achieve better generalization in fewer iterations. The data sets were split into training,

24. More precisely, we use the binary “Real AdaBoost” algorithm and the one-vs-all scheme to handle multi-class prob-

lems, which is equivalent to the original AdaBoost.MH (Friedman et al., 2000).
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validation, and test sets with size ratio 2:1:1, parameter k was chosen based on classification ac-

curacy on the validation sets, and accuracies on the test sets are reported. While it is known that

AdaBoost is sensitive to outliers (Rätsch et al., 2001), improved accuracy suggests that hubs should

be regarded in an analogous manner, that is, both hubs and antihubs are intrinsically more difficult

to classify correctly, and the attention of the weak learners should initially be focused on “regu-

lar” points. The discussion from Section 4.4, about hubs corresponding to probabilistic outliers in

high-dimensional data, offers an explanation for the observed good performance of the weighting

scheme, as both hubs and antihubs can be regarded as (probabilistic) outliers.

To provide further support, Figure 14 depicts binned accuracies of unweighted AdaBoost trained

in one fifth of the iterations shown in Figure 13, for points sorted by decreasing Nk. It illustrates

how in earlier phases of ensemble training the generalization power with hubs and/or antihubs is

worse than with regular points. Moreover, for the considered data sets it is actually the hubs that

appear to cause more problems for AdaBoost than antihubs (that is, distance-based outliers).

7.2 Semi-Supervised Learning

Semi-supervised learning algorithms make use of data distribution information provided by unla-

beled examples during the process of building a classifier model. An important family of approaches

are graph-based methods, which represent data as nodes of a graph, the edges of which are weighted

by pairwise distances of incident nodes (Chapelle et al., 2006).

We consider the well-known algorithm by Zhu et al. (2003), whose strategy involves computing

a real-valued function f on graph nodes, and assign labels to nodes based on its values. Function f ,

which exhibits harmonic properties, is obtained by optimizing a quadratic energy function that

involves graph edge weights, with the probability distribution on the space of functions f formed

using Gaussian fields. For data points x,y ∈ R
d we consider edge weights assigned by the radial

basis function (RBF) of the following form:

W (x,y) = exp

(
−‖x−y‖2

σ2

)
,

where σ is a data-dependent constant. Therefore, large edge weights are assigned between nodes

that are close to one another with respect to Euclidean distance.

Taking into account the properties of hubs and antihubs discussed in previous sections, for high-

dimensional data sets it can be expected of hubs to be closer to many other points than “regular”

points are, and thus carry larger edge weights and be more influential in the process of determining

the optimal function f . Conversely, antihubs are positioned farther away from other points, and

are expected to bear less influence on the computation of f . Therefore, following an approach that

resembles active learning, selecting the initial labeled point set from hubs could be more beneficial

in terms of classification accuracy than arbitrarily selecting the initial points to be labeled. On the

other extreme, picking the initial labeled point set from the ranks of antihubs could be expected to

have a detrimental effect on accuracy.

To validate the above hypothesis, we evaluated the accuracy of the harmonic function algorithm

by Zhu et al. (2003) on multiple high-dimensional data sets from Table 1, for labeled set sizes

ranging from 1% to 10% of the original data set size, with the test set consisting of all remaining

unlabeled points. Because the setting is semi-supervised, we compute the Nk scores of points based

on complete data sets, instead of only training sets which was the case in Section 7.1.2. Based on
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Figure 13: Accuracy of AdaBoost with and without the weighting scheme: (a) k = 20, (b) k = 15,

(c) k = 10, (d) k = 20, (e) k = 20, (f) k = 40.
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Figure 14: Binned accuracy of AdaBoost by decreasing Nk, at one fifth of the iterations shown in

Figure 13.
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Figure 15: Accuracy of the semi-supervised algorithm by Zhu et al. (2003) with respect to the initial

labeled set size as a percentage of the original data set size. Labeled points are selected

in the order of decreasing N5 (hubs first), increasing N5 (antihubs first), and in random

order. Sigma values of the RBF are: (a) σ = 2.9, (b) σ = 2, (c) σ = 2.1, (d) σ = 0.9,

(e) σ = 1.8, and (f) σ = 0.7.

the Nk scores (k = 5), Figure 15 plots classification accuracies for labeled points selected in the order

of decreasing N5 (we choose to take hub labels first), in the order of increasing N5 (antihub labels

are taken first), and in random order (where we report accuracies averaged over 10 runs).25 It can be

seen that when the number of labeled points is low in comparison to the size of the data sets, taking

hub labels first generally produces better classification accuracy. On the other hand, when assigning

initial labels to antihubs, accuracy becomes significantly worse, with a much larger labeled set size

required for the accuracy to reach that of randomly selected labeled points.

7.3 Unsupervised Learning

This section will discuss the interaction of the hubness phenomenon with unsupervised learning,

specifically the tasks of clustering (Section 7.3.1) and outlier detection (Section 7.3.2).

7.3.1 CLUSTERING

The main objectives of (distance-based) clustering algorithms are to minimize intra-cluster distance

and maximize inter-cluster distance. The skewness of k-occurrences in high-dimensional data influ-

ences both objectives.

25. We determined the σ values of the RBF function in a separate experiment involving 10 runs of random selection of

points for the labeled set, the size of which is 10% of the original data set.
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Intra-cluster distance may be increased due to points with low k-occurrences. As discussed

in Section 4.4, such points are far from all the rest, acting as distance-based outliers. Distance-

based outliers and their influence on clustering are well-studied subjects (Tan et al., 2005): outliers

do not cluster well because they have high intra-cluster distance, thus they are often discovered

and eliminated beforehand. The existence of outliers is attributed to various reasons (for example,

erroneous measurements). Nevertheless, the skewness of Nk suggests that in high-dimensional data

outliers are also expected due to inherent properties of vector space. Section 7.3.2 will provide

further discussion on this point.

Inter-cluster distance, on the other hand, may be reduced due to points with high k-occurrences,

that is, hubs. Like outliers, hubs do not cluster well, but for a different reason: they have low

inter-cluster distance, because they are close to many points, thus also to points from other clusters.

In contrast to outliers, the influence of hubs on clustering has not attracted significant attention.

To examine the influence of both outliers and hubs, we used the popular silhouette coeffi-

cients (SC) (Tan et al., 2005). For the ith point, let ai be the average distance to all points in its cluster

(ai corresponds to intra-cluster distance), and bi the minimum average distance to points from other

clusters (bi corresponds to inter-cluster distance). The SC of the ith point is (bi − ai)/max(ai,bi),
ranging between −1 and 1 (higher values are preferred). The SC of a set of points is obtained by

averaging the silhouette coefficients of the individual points.

We examined several clustering algorithms, and report results for the spectral algorithm of Meilă

and Shi (2001) and Euclidean distance, with similar results obtained for classical K-means, as well

as the spectral clustering algorithm by Ng et al. (2002) in conjunction with K-means and the algo-

rithm by Meilă and Shi (2001). For a given data set, we set the number of clusters, K, to the number

of classes (specified in Table 1). We select as hubs those points x with h(x,k) > 2, that is, Nk(x)
more than two standard deviations higher than the mean (note that h(x,k), defined by Equation 24,

ignores labels). Let nh be the number of hubs selected. Next, we select as outliers the nh points

with the lowest k-occurrences. Finally, we randomly select nh points from the remaining points (we

report averages for 100 different selections). To compare hubs and antihubs against random points,

we measure the relative SC of hubs (antihubs): the mean SC of hubs (antihubs) divided by the mean

SC of random points. For several data sets from Table 1, Figure 16 depicts with bars the relative

silhouette coefficients.26 As expected, outliers have relative SC lower than one, meaning that they

cluster worse than random points. Notably, the same holds for hubs, too.27

To gain further insight, Figure 16 plots with lines (referring to the right vertical axes) the relative

mean values of ai and bi for hubs and outliers (dividing with those of randomly selected points).

Outliers have high relative ai values, indicating higher intra-cluster distance. Hubs, in contrast,

have low relative bi values, indicating reduced inter-cluster distance. In conclusion, when clustering

high-dimensional data, hubs should receive analogous attention as outliers.

7.3.2 OUTLIER DETECTION

This section will briefly discuss possible implications of high dimensionality on distance-based out-

lier detection, in light of the findings concerning the hubness phenomenon presented in previous

sections. Section 4.4 already discussed the correspondence of antihubs with distance-based outliers

26. Data sets were selected due to their high (intrinsic) dimensionality—similar observations can be made with other

high-dimensional data sets from Table 1.

27. The statistical significance of differences between the SC of hubs and randomly selected points has been verified with

the paired t-test at 0.05 significance level.
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Figure 16: Relative silhouette coefficients for hubs (gray filled bars) and outliers (empty bars). Rel-

ative values for a and b coefficients are also plotted (referring to the right vertical axes).

in high dimensions, and demonstrated on real data the negative correlation between Nk and a com-

monly used outlier score—distance to the kth nearest neighbor. On the other hand, a prevailing

view of the effect of high dimensionality on distance-based outlier detection is that, due to distance

concentration, every point seems to be an equally good outlier, thus hindering outlier-detection al-

gorithms (Aggarwal and Yu, 2001). Based on the observations regarding hubness and the behavior

of distances discussed earlier, we believe that the true problem actually lies in the opposite extreme:

high dimensionality induces antihubs that can represent “artificial” outliers. This is because, from

the point of view of common distance-based outlier scoring schemes, antihubs may appear to be

stronger outliers in high dimensions than in low dimensions, only due to the effects of increasing

dimensionality of data.

To illustrate the above discussion, Figure 17(a) plots for i.i.d. uniform random data the highest

and lowest outlier score (distance to the kth NN, k = 5) with respect to increasing d (n = 10000

points, averages over 10 runs are reported). In accordance with the asymptotic behavior of all pair-

wise distances discussed in previous sections, both scores increase with d. However, as Figure 17(b)

shows, the difference between the two scores also increases. This implies that a point could be con-

sidered a distance-based outlier only because of high dimensionality, since outliers are not expected

for any other reason in i.i.d. uniform data (we already demonstrated that such a point would most

likely be an antihub). As a consequence, outlier-detection methods based on measuring distances

between points may need to be adjusted to account for the (intrinsic) dimensionality of data, in order

to prevent dimensionality-induced false positives.

8. Conclusion

In this paper we explored an aspect of the curse of dimensionality that is manifested through the

phenomenon of hubness—the tendency of high-dimensional data sets to contain hubs, in the sense

of popular nearest neighbors of other points. To the best of our knowledge, hubs and the effects they
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Figure 17: (a) Highest and lowest distance to the 5th nearest neighbor in i.i.d. uniform random data,

with respect to increasing d. (b) The difference between the two distances.

have on machine-learning techniques have not been thoroughly studied subjects. Through theoret-

ical and empirical analysis involving synthetic and real data sets we demonstrated the emergence

of the phenomenon and explained its origins, showing that it is an inherent property of data dis-

tributions in high-dimensional vector space that depends on the intrinsic, rather than embedding

dimensionality of data. We also discussed the interaction of hubness with dimensionality reduction.

Moreover, we explored the impact of hubness on a wide range of machine-learning tasks that di-

rectly or indirectly make use of distances between points, belonging to supervised, semi-supervised,

and unsupervised learning families, demonstrating the need to take hubness into account in an equiv-

alent degree to other factors, like the existence of outliers.

Besides application areas that involve audio and image data (Aucouturier and Pachet, 2007;

Doddington et al., 1998; Berenzweig, 2007; Hicklin et al., 2005), identifying hubness within data

and methods from other fields can be considered an important aspect of future work, as well as de-

signing application-specific methods to mitigate or take advantage of the phenomenon. We already

established the existence of hubness and its dependence on data dimensionality on collaborative

filtering data with commonly used variants of cosine distance (Nanopoulos et al., 2009), time-series

data sets in the context of k-NN classification involving dynamic time warping (DTW) distance

(Radovanović et al., 2010b), text data within several variations of the classical vector space model

for information retrieval (Radovanović et al., 2010a), and audio data for music information retrieval

using spectral similarity measures (Karydis et al., 2010). In the immediate future we plan to perform

a more detailed investigation of hubness in the fields of outlier detection and image mining. An-

other application area that could directly benefit from an investigation into hubness are reverse k-NN

queries (which retrieve data points that have the query point q as one of their k nearest neighbors,

Tao et al., 2007).

One concern we elected not to include into the scope of this paper is the efficiency of com-

puting Nk. It would be interesting to explore the interaction between approximate k-NN graphs

(Chen et al., 2009) and hubness, in both directions: to what degree do approximate k-NN graphs

preserve hubness information, and can hubness information be used to enhance the computation of

approximate k-NN graphs for high-dimensional data (in terms of both speed and accuracy).

Possible directions for future work within different aspects of machine learning include a more

formal and theoretical study of the interplay between hubness and various distance-based machine-
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learning models, possibly leading to approaches that account for the phenomenon at a deeper level.

Supervised learning methods may deserve special attention, as it was also observed in another study

(Caruana et al., 2008) that the k-NN classifier and boosted decision trees can experience problems in

high dimensions. Further directions of research may involve determining whether the phenomenon

is applicable to probabilistic models, (unboosted) decision trees, and other techniques not explicitly

based on distances between points; and also to algorithms that operate within general metric spaces.

Since we determined that for K-means clustering of high-dimensional data hubs tend to be close

to cluster centers, it would be interesting to explore whether this can be used to improve iterative

clustering algorithms, like K-means or self-organizing maps (Kohonen, 2001). Nearest-neighbor

clustering (Bubeck and von Luxburg, 2009) of high-dimensional data may also directly benefit from

hubness information. Topics that could also be worth further study are the interplay of hubness with

learned metrics (Weinberger and Saul, 2009) and dimensionality reduction, including supervised

(Vlassis et al., 2002; Geng et al., 2005), semi-supervised (Zhang et al., 2007), and unsupervised

approaches (van der Maaten et al., 2009; Kumar, 2009). Finally, as we determined high correlation

between intrinsic dimensionality and the skewness of Nk, it would be interesting to see whether

some measure of skewness of the distribution of Nk can be used for estimation of the intrinsic

dimensionality of a data set.
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Miloš Radovanović, Alexandros Nanopoulos, and Mirjana Ivanović. Nearest neighbors in high-
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