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Abstract: SARS-CoV-2, a novel betacoronavirus strain, has caused a pandemic that has claimed the
lives of nearly 6.7M people worldwide. Vaccines and medicines are being developed around the
world to reduce the disease spread, fatality rates, and control the new variants. Understanding the
protein-protein interaction mechanism of SARS-CoV-2 in humans, and their comparison with the
previous SARS-CoV and MERS strains, is crucial for these efforts. These interactions might be used to
assess vaccination effectiveness, diagnose exposure, and produce effective biotherapeutics. Here, we
present the HuCoPIA database, which contains approximately 100,000 protein-protein interactions
between humans and three strains (SARS-CoV-2, SARS-CoV, and MERS) of betacoronavirus. The
interactions in the database are divided into common interactions between all three strains and
those unique to each strain. It also contains relevant functional annotation information of human
proteins. The HuCoPIA database contains SARS-CoV-2 (41,173), SARS-CoV (31,997), and MERS
(26,862) interactions, with functional annotation of human proteins like subcellular localization,
tissue-expression, KEGG pathways, and Gene ontology information. We believe HuCoPIA will serve
as an invaluable resource to diverse experimental biologists, and will help to advance the research in
better understanding the mechanism of betacoronaviruses.

Keywords: human; SARS-CoV-2; SARS-CoV; MERS; protein-protein interactions

1. Introduction

In late 2019, cases of pneumonia with an unclear cause occurred in the world. The
atypical clinical characteristics were reminiscent of viral pneumonia and triggered world-
wide concern due to the severity, quick dissemination, and the potential to affect both the
lungs and the possibility of a missed diagnosis [1]. A novel coronavirus [1,2] (nCoV-2019
later renamed to SARS-CoV-2) was found to be associated with these infections. Pathogens
emerging and re-emerging are major public health challenges [3]. The Coronaviridae family
of enveloped RNA viruses has a single-strand genome size ranging from 26 to 32 kilobases,
approximately [4]. They are widely spread between humans, other mammals, and birds,
causing respiratory, enteric, hepatic, and neurological disorders [5].

Most of these mechanisms involve protein-protein interactions (PPIs). In all living
cells, PPIs play a significant role in the infection cycle, as well as in initiating a defense
response [6]. Computational methods in particular boost the analysis of host-pathogen pro-
tein interactions around the genome [6–9]. Several data types or characteristics have been
developed for the prediction of host-pathogen interactions (HPIs), for example, protein
sequence similarity [7], gene ontology (GO) annotations [10], protein dominance interac-
tions [8], and protein structural information [11,12]. Interolog and domain-based techniques
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for the prediction of inter-species PPIs are widely used [6,13–17]. Many studies have been
performed in the past three years to understand the mechanisms of the interactions between
SARS-CoV-2 and the human proteome. Most of them concerned SARS-CoV-2’s interactions
with human proteins [18–27]. There is an immediate need to understand the complete PPI
network (interactome) between the human proteome and SARS-CoV-2, SARS-CoV and
MERS proteins, with localization and functional annotation such as gene ontology, KEGG
pathway, tissue expression, which can give insight into pathogenesis and molecular basis
of infection [28].

In this study, we examine the use of homology-based (interolog) and domain-based
methods to decipher the HPIs between the human and SARS families on a whole-proteome
scale. Three different viruses: SARS-CoV-2, SARS-CoV, and MERS, were analyzed against
the human proteome. We have compared the common and unique human proteins inter-
acting with these three viruses, and functional characterization of these HPIs may explain
the molecular mechanisms for pathogen infections. Through having a detailed functional
analysis of the expected interactome to better explain the infections of the illness, we
have identified novel protein hubs, enhanced molecular structures, biological processes,
tissue expression, and pathways. Furthermore, we have identified the localization of
the interacting protein in human cells. Additionally, we have found a difference in HPI
patterns between the three viruses. We assume researchers will be able to use the Hu-
CoPIA to search and compare interactions, which could be a good foundation for further
experimental validations, and further used in global vaccine development or to provide
a deeper understanding of the host of potential virulence factors and drug targets as set
out in this analysis. We have compiled all our predictions in a user-friendly database for
better visualization.

2. Material and Methods
2.1. Data Sources

The human reviewed proteome was obtained from (https://www.uniprot.org/facets=
reviewed%3Atrue%2Cmodel_organism%3A9606&query=human, accessed on 2 January
2021), SARS-CoV-2 isolates from 30 different countries, 4 isolates of SARS and 1 isolate of
MERS were obtained from the NCBI (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
virus?SeqType_s=Nucleotide&VirusLineage_ss=SARS-CoV-2,%20taxid:2697049, last ac-
cessed on 31 January 2021). The human proteome contains 26,526 proteins, whereas
SARS-CoV-2, SARS, and MERS isolates contain 44, 34, and 28 proteins, respectively. We
used CD-hit, a very widely used program for clustering and comparing protein or nu-
cleotide sequences, to eliminate duplicate proteins. We considered proteins from different
strains to be duplicates if they were 100% identical. Similarly, if they were different,
we tagged the protein with the country’s identity. For example, the nsp15 protein is
different in an isolate from Iran, so we named the nsp15 of Iran as nsp15_Iran. All hu-
man proteins were mapped to their corresponding median tissue expression information,
available in the GTEX https://www.gtexportal.org/home/datasets, accessed on 15 July
2021) database. Similarly, the subcellular localizations of the human proteins involved
in PPIs were mapped from the Uniport (https://www.uniprot.org/facets=reviewed%
3Atrue%2Cmodel_organism%3A9606&query=human, accessed on 12 October 2021) and
the Genecard (https://www.genecards.org/Guide/GeneCard#localization, accessed on
12 October 2021) databases. An overall workflow of the HuCoPIA database is depicted
in Figure 1.

https://www.uniprot.org/facets=reviewed%3Atrue%2Cmodel_organism%3A9606&query=human
https://www.uniprot.org/facets=reviewed%3Atrue%2Cmodel_organism%3A9606&query=human
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=SARS-CoV-2,%20taxid:2697049
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=SARS-CoV-2,%20taxid:2697049
https://www.gtexportal.org/home/datasets
https://www.uniprot.org/facets=reviewed%3Atrue%2Cmodel_organism%3A9606&query=human
https://www.uniprot.org/facets=reviewed%3Atrue%2Cmodel_organism%3A9606&query=human
https://www.genecards.org/Guide/GeneCard#localization
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Several inter- and intra-species interaction databases were used to conduct the in-
terolog and domain-based host pathogen interaction analyses. Six protein-protein interac-
tion databases: HPIDB [29], IntAct [30], DIP [31], MINT [32], BioGRID [33], and HIV [34],
have been built up as SQL databases on our own server for Interolog investigation. Simi-
larly, the PFAM [35] database was used to determine the domains present in the human and
viral proteomes. IDDI [36], 3DID [37], and DOMINE [38], three domain-domain interaction
databases, were downloaded and set up as SQL databases on our server.

2.2. Computational Prediction of Host Pathogen Interactions

The interolog-based interaction prediction is based on the conservation of protein-
protein interactions across comparable systems. There are no standard cutoff evaluation
parameters for defining a true homolog in predicting the HPIs. We found that using an
e-value of 1e-50, alignment coverage of 80%, and sequence identity of 40% were the best-fit
alignment parameters for predicting the human–betacoronavirus PPIs. Domain-based
analysis was one of the computational tools we utilized to uncover the host-pathogen
interactions of new COVID-19 strains and the human proteome. The goal of this study is
to obtain the domain structures of host and pathogen proteins, then utilize these domain
pairings to search DDI databases for probable DDIs. Human proteins are filtered with a
1e-23 e-value and 0.2 coverage, whereas viral proteins are filtered with a 1e-1 e-value and
default coverage. To reduce the false positive rate, all projected DDIs are compared to
the Negatome database. We use in-house python scripts and queries to link each domain
in the DDI to matching proteins. Following the introduction of interolog and domain-
domain analysis on an individual basis, it is critical that we combine all the expected
host-pathogen interactions into a single set of results. We have combined the data from
both methodologies, removed redundant host pathogen interactions, and given more
weight to interactions predicted by both interolog and domain-based processes. This is how
the PPIs for human and the coronaviridae family of viruses have been established. Because
we have considered three viruses, we have three consensus files (SARS-CoV-2, SARS, and
MERS). Apart from these three, we agreed on the common and different interactions of the
three viruses.

2.3. Subcellular Localization of Human Proteins Involved in PPIs

Pathogenesis of a wide spectrum of human illnesses is attributed to abnormal protein
localization [39]. The understanding of mis-localized proteins might aid in enhancing
treatment strategies for a variety of disorders. This information aids pharmaceutical ex-
perts in identifying target regions, which aids in the development of new pharmacological
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treatments and the better utilization of current drugs. Recognizing the relevance of subcel-
lular localization in HPI research, we used the UniProt (https://www.uniprot.org/facets=
reviewed%3Atrue%2Cmodel_organism%3A9606&query=human, accessed on 12 October
2021) and Genecard (https://www.genecards.org/Guide/GeneCard#localization, accessed
on 12 October 2021) datasets to map the subcellular localization for most proteins. The
subcellular localization of all human proteins was downloaded from these two sources and
then assigned to the proteins involved in PPIs using our in-house Python scripts.

2.4. Tissue Specificity of Human Proteins Involved in PPIs

Genes with disease-related mutations are found in all cells of the body, however,
genes that are expressed more heavily in certain tissues can cause functional problems
and pathophysiological abnormalities. However, it is critical to comprehend the entire
disease-tissue network, since other tissues may be impacted but not show any signs of
malfunction. The median tissue expression information was downloaded from the GTEX
database [40] (https://www.gtexportal.org/home/datasets, accessed on 15 July 2021).
Then, the file was filtered using our in-house Python script and the tissue were selected
based on the expression for each protein. Finally, we have highly expressed tissue for each
human protein.

2.5. Gene Ontology and KEGG Pathways Involved in PPIs

Functional enrichment analysis, Gene Ontology, and KEGG pathway information of
the genes were used to provide critical insights on the disease-causing genes and their
processes, which is one of the essential phases. To accomplish GO and KEGG enrichment in
our investigation, we utilized the R program clusterProfiler [41]. This package was chosen
because it used the Benjamini and Hochberg approach for determining the statistical
significance of enrichment data [42]. This technique employs an FDR control strategy that
reduces not just false positives but also false negatives. We also utilized the cluster profiler
package’s simplify function, to get rid of duplicate GO phrases based on semantic similarity
measurements. Then the enriched pathways and GO terms were assigned to individual
proteins using the in-house Python script.

2.6. Implementation

To handle the large PPIs dataset, and for faster results, HuCoPIA has been im-
plemented on a High-Performance Computing cluster; HuCoPIA has been built using
MERN stack technology. Express JS and a source-available cross-platform document-
oriented database program (MongoDB), classified as a NoSQL database, were used for
the back-end development. The React JS application was used to develop the front-
end of the database. All the back-end server code, in TypeScript, is available at (https:
//github.com/usubioinfo/hucobe, accessed on 22 November 2022), and the front-end
React JS code can be accessed at (https://github.com/usubioinfo/hucopia, accessed on
November 22„ 2022), and finally the database was implemented through PM2, an ad-
vanced process manager for JavaScript runtime. The network visualization was imple-
mented using the Cytoscape (https://js.cytoscape.org/, accessed on July 21 March 2022)
JavaScript plugin.

3. Results
3.1. Interolog-Based Interaction Prediction

The interolog-based interaction prediction is based on conservation of protein-protein
interactions across comparable systems. For example, if A and A′ are orthologs and B
and B’ are orthologs, then the interactions between A and B (in a certain system) and
between A′ and B′ (in another system) are interologs [7]. The four proteomes, human,
SARS-CoV-2, SARS-CoV, and MERS, were first aligned against each of the six-interaction
databases mentioned above, using BLAST’s default parameters. The resulting alignments
were filtered with different combinations of e-values (default, 1e-4, 1e-10, 1e-20, 1e-50,

https://www.uniprot.org/facets=reviewed%3Atrue%2Cmodel_organism%3A9606&query=human
https://www.uniprot.org/facets=reviewed%3Atrue%2Cmodel_organism%3A9606&query=human
https://www.genecards.org/Guide/GeneCard#localization
https://www.gtexportal.org/home/datasets
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1e-100), sequence coverages (default, 30, 40, 50, 80%), and sequence identities (default,
30, 40, 50, 80%). There are no standard cutoff evaluation parameters for defining a true
homolog in predicting the HPIs. However, different cutoff values have been reported by
different studies [15,29,43]. Therefore, we used a grid search strategy which generated
150 combinations. In our analysis, we found that using an e-value of 1e-50, alignment
coverage of 80%, and sequence identity of 40% were the best-fit alignment parameters for
predicting the human–betacoronavirus PPIs. To reduce the false positive PPIs, we have
selected a very low e-value and high coverage, because some of the virus proteins were too
small. The total predicted interactions by the interolog method are SARS-CoV-2 (95,530),
SARS-CoV (93,055), and MERS (55,643). All the following interolog results, predicted PPIs,
and functional enrichment analysis are based on these parameters.

3.2. Domain-Based Interaction Prediction

Domain-based analysis was one of the computational tools we utilized to uncover the
host-pathogen interactions of new COVID-19 strains and the human proteome. The goal of
this study was to obtain the domain structures of host and pathogen proteins, then utilize
these domain pairings to search DDI databases for probable DDIs. There are a variety of
ways for extracting domains from protein sequences; in our case, we used a program called
HMMER, which uses hidden Markov models to extract domains from sequence patterns. By
comparing our human and viral protein sequences to the HMM-PFAM database, we were
able to identify all the domains. The domain pairings between human proteins and viral
proteins were then set up in a SQL database named HPD (Human-pathogen domain pairs).
To uncover all the potential domain-domain interactions, we brute-forced all the domain
pairings in HPD against the three DDI databases (3DID, IDDI, and Domine). The predicted
DDIs were then traced back to PPIs using our in-house python scripts and SQL queries to
link each domain in the DDI to matching proteins. Several studies have effectively used
the profile-HMM technique to predict host-pathogen interactions. Default e-value and
coverage settings were used for all protein sequences at first, and then they were filtered
to determine the best combination of parameters. Human proteins were filtered with a
1e-23 e-value and 0.2 coverage, whereas viral proteins were filtered with a 1e-1 e-value and
default coverage. To reduce the false positive rate, all projected DDIs were compared to the
Negatome database. Human and viral protein sequences were aligned with the Negatome
dataset first, using severe query settings such as e-values of 1e-3 and 1e-1, identities of 40
and 20, and coverages of 30 and 20 for human and virus proteins, respectively. All the
projected erroneous interactions were deleted from the domain-domain analysis predictions.
The total predicted interaction by the domain method was SARS-CoV-2 (4296), SARS-CoV
(5864), and MERS (6194).

3.3. Integration of Results from Two Approaches

Following the introduction of interolog and domain-domain analysis on an individual
basis, it was critical that we combined all the expected host-pathogen interactions into a
single set of results. To begin, we combined all six interolog result sets (one from each of
the six databases), merged them, and deleted duplicate predictions to create a single set of
PPIs. Similarly, all three result sets were derived from three DDI databases and blended to
retain just the interactions that were similar. We used consensus in the instance of DDA,
since the IDDI database projected 30 times more interactions than the other two databases,
which is exceedingly unlikely. As a result, we were able to minimize the number of false
positives from DDA and arrive at a consistent set of DDIs. In this way we integrated the
results from both approaches, deleted the duplicate host pathogen interactions, and given
higher weight to the interactions predicted by both interolog and domain-based procedures.
This is how the PPIs between human and the coronaviridae family of viruses were agreed
upon. We have three consensus files since we considered three viruses (SARS-CoV-2,
SARS, and MERS). Apart from these three, we reached an agreement on the three viruses’
shared and distinct interactions. Therefore, we have seven sets of consensus results in the
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conclusion. One set for each of the three viruses, one set for each of the three in which
just the interactions unique to that virus are present, and one set in which all three viruses’
interactions are present. The total predicted interactions in consensus between the interolog
and domain-based procedures are SARS-CoV-2 (1399), SARS-CoV (1758), and MERS (1002).

3.4. HuCoPIA PPI’s Evaluation

For evaluating the predicted PPIs, we downloaded the high confidence, experimen-
tally validated, interactions from [19]. There were 389, 366, and 296 high confidence
protein-protein interactions present for SARS-CoV-2, SARS-CoV, and MERS, respectively.
We searched these interactions in our PPI data and found 310/389, 291/366, and 276/296 in-
teractions for SARS-CoV-2, SARS-CoV, and MERS, respectively. The detailed experimental
interaction results are presented in Supplementary Table S1. Similarly, for the false positive
interactions, we downloaded the human-virus negative interactions (70 in total, involving
59 human proteins) from the Negatome [44] and IntAct [30] databases, and searched human
protein in our database, finding hits for 19/59 for SARS-CoV-2, 19/59 for SARS-CoV, and
18/59 for MERS, with almost 100 % sensitivity and 76 % specificity. The detailed negative
interaction results are presented in Supplementary Table S2. As shown with this example,
the chance of getting a false positive interaction is much lower from the database.

4. Usage

HuCoPIA can be accessed freely at http://bioinfo.usu.edu/hucopia/ accessed on
22 December 2022. The HuCoPIA database contains SARS-CoV-2 (98,427 (2809 unique
interactions)), SARS-CoV (97,161 (1479 unique interactions)), and MERS (60,835 (3408
unique interactions)) interactions. Users can provide a comma-separated list of human
genes or upload a text file and select a virus (SARS-CoV-2, SARS-CoV, or MERS), interaction
type (Unique, Common, All), interaction type (Interolog, Domain, Consensus), pathogen
proteins, and annotation type (Tissue expression, Localization, KEGG pathway, Gene
ontology). The resulting interactions can be downloaded in a tab-delimited file. Also,
users can visualize the PPI interaction network in a Cytoscape environment with further
links to public databases (UniProt, NCBI) for existing annotation details. Users can also
download the network as a PNG or in JSON format, which can be opened in network
analyzer software such as Gephi, Cytoscape, or others.

5. Case Study

Here, we present an example study on how to search inside the HuCoPIA database.
Suppose a user has a list of genes (e.g., STOM, DDX21, AP2M1, TBK1, ERP44, OS9, UBE3A,
RBM28, HERC2, DCAF7) from the human genome, and they want to search for interactions
based on tissue expression annotation. We have selected these genes involved in virus
replication from the literature. The step-wise procedure of searching genes in HuCoPIA is
explained in detail below:

1. Upload the genes text file on HuCoPIA (http://bioinfo.usu.edu/hucopia/, last ac-
cessed on 22 December 2022), select all virus proteins from the dropdown for each
virus, and select tissue expression as the annotation type. Figure 4 shows the home-
page of HuCoPIA with the search options. An intermediate results page will be shown
after ‘show interactions’ page.

2. The search results are displayed in a table. Information such as pathogen protein,
pathogen isolate, pathogen protein length, human gene, human protein, human
protein length, functional annotation, interaction source database, confidence, and
PubMed links are available. Figure 2 depicts the results page. Further, a user can
download the results as a csv file or visualize them in a network. Users can click on
the proteins, or other links in blue, to check the detailed information. For the ten
genes we submitted, there are 234 interactions involving 21 virus proteins. The results
are presented in Supplementary Table S3.

http://bioinfo.usu.edu/hucopia/
http://bioinfo.usu.edu/hucopia/
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3. The network visualization of the interactions is generated by clicking on the network
visualization button, and the resulting network is displayed with a table. In the
info section, users can get information about the genes. The network is displayed in
Figures 3, 5 and 6.
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Case Study Genes Discussion

AP2M1 is reported to be a crucial host factor for SARS-CoV infection. Based on the
previously reported discovery of sunitinib, a kinase inhibitor is involved in the regulation of
AP2M1. AP2M1 encodes the µ2 component of the AP2 complex, which is a clathrin adapter
protein complex. AP2M1, clathrin, and other components form a clathrin-dependent
endocytic pathway by which cells absorb metabolites, hormones, proteins, and viruses
via inward budding of the plasma membrane [45,46]. In our study, we found that AP2M1
interacts with 21 SARS-CoV-2 proteins, one SARS-CoV-2 protein, and 20 MERS proteins.
The DDX DEAD box RNA helicase is a versatile protein that is involved in every step of
RNA metabolism. As a result, host RNA helicases may be able to govern and maintain a
huge viral RNA genome. DDX21 has been reported to strongly restrict the entry of SARS-
CoV-2, while others such as DDX1, DDX3, DDX5, and DDX6 were required for SARS-CoV-2
replication. The SARS-CoV-2 N protein interacts with DDX6 and hijacks it to carry out viral
replication [47]. We found that DDX21 interacts with 19 SARS-CoV-2 proteins, no SARS-
CoV proteins, and 19 MERS proteins. Heterozygous detrimental mutations in the TBK1
gene have been linked to severe COVID-19 infection [48]. TBK1 was found to interact with
16 SARS-CoV-2 proteins, one SARS-CoV protein, and 15 MERS proteins. ER stress and UPR
induction activation by SARS-CoV-2, and SARS-CoV ORF proteins has been reported [49].
The ERP44 protein interacts with five SARS-CoV-2 proteins, one SARS-CoV proteins, and
four MERS proteins. RBM28 and other RNA binding proteins have been reported to
interact with the SARS-CoV-2 interactome [50]. ER-associated degradation pathways are
involved in MHV-induced DMV formation and viral replication, and effectors like OS9 are
involved in this [51,52]. OS 9 was found to interact with nine SARS-CoV-2 proteins, one
SARS-CoV proteins, and eight MERS proteins. STOM has also been reported to interact
with SARS-CoV-2 proteins [53], and we found it interacting with 18 SARS-CoV-2, and
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18 MERS proteins, while for SARS-CoV there was no interaction predicted. The interaction
of ubiquitin and proteasome is also required for the various phases of the coronavirus
infection cycle [54]. HERC2 was found to interact with 14 SARS-CoV-2 proteins and
14 MERS proteins, but no PPI were obtained for SARS-CoV. The UBE3A protein is reported
to be cleaved by the SARS-C-V-2 Mpro protein [54,55]. In our study, we found UBE3A to
interact with 14 SARS-CoV-2 and 14 MERS proteins. DCAF7 has also been reported as a
drug target for COVID 19 [56]. DCAF7 is also found to interact with 14 SARS-CoV-2 and
MERS proteins. We believe that these example proteins from the case study are all good
candidates for drug targeting, and that these protein interactions could be further validated
for use as drug targets against these three viruses. Similarly, HuCoPIA can be used to
explore other novel targets in humans against these three coronaviridae family viruses.

6. Conclusions

HuCoPIA is a database of computationally identified protein-protein interactions
between the human proteome and three strains (SARS-CoV-2, SARS-CoV, and MERS)
of betacoronavirus. HuCoPIA provides a user-friendly interface where users can search
for protein-protein interactions by selecting different options such as common or unique
interactions across the three viruses, and different functional annotations. It provides
access to functional annotations of the human proteome, for example, gene ontology, tissue
expression, localization, and KEGG pathway. The comparison of these viruses allows
us to obtain common or unique interactions between human proteins and these viruses.
Moreover, it provides the most highly expressed tissues and subcellular localization in
the human genome. Interactions present in HuCOPIA are computationally predicted, and
though we have removed the false interactions with the Negatome database, still these
interactions need further experimental validation. We will keep updating the protein
functional annotation information inside HuCoPIA as per the availability in biological
databases, and remove more false positives based on the availability of negative interactions.
Researchers will be able to use HuCoPIA to search and compare interactions and then these
interactions can be validated experimentally and further used in global (e.g., pan viral)
vaccine development or to better understand the pathogenesis mechanisms.
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