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ABSTRACT
Distributed stochastic algorithms, equipped with gradient compres-
sion techniques, such as codebook quantization, are becoming in-
creasingly popular and considered state-of-the-art in training large
deep neural network (DNN) models. However, communicating the
quantized gradients in a network requires efficient encoding tech-
niques. For this, practitioners generally use Elias encoding-based
techniques without considering their computational overhead or
data-volume. In this paper, based on Huffman coding, we propose
several lossless encoding techniques that exploit different character-
istics of the quantized gradients during distributed DNN training.
Then, we show their effectiveness on 5 different DNNmodels across
three different data-sets, and compare them with classic state-of-
the-art Elias-based encoding techniques. Our results show that the
proposed Huffman-based encoders (i.e., RLH, SH, and SHS) can
reduce the encoded data-volume by up to 5.1×, 4.32×, and 3.8×,
respectively, compared to the Elias-based encoders.
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1 INTRODUCTION
As the DNN models are becoming complex, one of the fundamental
challenges in training them is their increasing size. To efficiently
train these models, practitioners generally employ distributed par-
allel training over multiple computing nodes/workers [5, 11]. In this
work, we focus on the data-parallel paradigm as it is the most widely
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adopted in practice. In this setting, at each iteration, each worker
maintains a local copy of the same DNN model, accesses one of
the non-intersecting partitions of the data, and calculates its local
gradient. The gradient information are exchanged synchronously
through the network for aggregation and the aggregated global
gradient is sent back to the workers. The workers jointly update
the model parameters by using this global gradient. However, the
network latency during gradient transmission creates a commu-
nication bottleneck and as a result, the training becomes slow. To
remedy this, gradient compression techniques, such as quantiza-
tion [2, 21, 49, 51], sparsification [1, 13, 42, 45], hybrid compressors
[4, 43], and low-rank methods [47, 48] are used. In this paper, we
focus on the gradient quantization techniques.

We are interested in quantization operators, Q(·) : Rd → Rd ,
that produce a lower-precision quantized vector Q(x) from the
original vector x . In general, depending on quantization technique,
the quantized gradient, Q(дit ), resulting from ith worker is further
encoded by using one of the existing encoding techniques. For in-
stance, random dithering [2] and ternary quantization [49] use Elias
encoding, Sattler et al. [37] use Golomb encoding [15], and CNat
[21] uses a fixed-length 8-bit encoding. In distributed settings, the
quality of the trained model may only be impacted due to com-
pression. Moreover, if the encoding is losses, it can help reduce the
communicated volume without further impact on model quality.

To elaborate more, let the total communication time, T , to be the
sum of the time taken for compression, transmission, and decom-
pression. The main goal of encoding techniques is to encode the
compressed gradients in compact form as a result of quantization
which can further reduce T . To reduce T , in this work, we focus
on the lossless encoding component used in gradient quantization
and evaluate their effectiveness across a wide range of compression
methods. That is, we decouple quantization from the encoding part
and explore possible combinations of quantization techniques and
lossless encoding.1 If the effective transfer speed (including any
reductions of transfer speed as a result of compression overhead) S ,
that accounts for network transmission and computation necessary
to compression and encoding, is constant for homogeneous train-
ing environments such as, data centers or private clusters, then
time, T can be translated primarily to the reduction of the com-
municated data-volume, V as T = V

S . Moreover, existing work on
quantization, exploit this assumption and employ arbitrary encod-
ing techniques without carefully considering their complexity and
the resulting data-volume. To this end, we try to fill this gap and
make the following contributions:

(i) Based on the classic Huffman coding, we propose three en-
coding techniques—(a) run-length Huffman (RLH) encoding, (b)

1As long as the encoding is lossless, the convergence of a distributed optimizer (e.g.,
SGD and its variants) with a quantization strategy Q (·) remains unaffected.
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sample Huffman (SH) encoding, and (c) sample Huffman with spar-
sity (SHS); to encode the quantized gradients generated from code-
book quantization. For each of these encoders, we calculate their
entropy, average code-length, and computational complexity and
compare against the state-of-the-art encoding techniques used in
gradient compression—Elias and Run-length encoding (RLE).

(ii) We analyze the performance of our proposed encoders on a
wide spectrum of quantization techniques [2, 21, 49], on a variety of
DNN models (ResNet-20, VGG-16, ResNet-50, GoogLeNet, LSTM),
performing different tasks, across diverse datasets (CIFAR-10, Ima-
geNet, Penn Tree Bank (PTB)) and report our findings. The results
show that RLH, SHS and SH can reduce the data-volume by up to
5.1×, 4.32× and 3.8× over the Elias-based encoders, respectively.
And, sampling-based techniques (i.e., SH and SHS) achieve faster
encoding times of up to 2.5× compared to the Elias-based encoders.

To the best of our knowledge, this is the first work that theoreti-
cally and empirically dissects the efficiency of different encoders
with respect to the communicated data-volume and complexity. Our
proposed encoders can also be used to encode the composition of
sparsification and quantization as in Q-sparse local SGD [4]. Since
compression is worker-independent and involves no inter-worker
communication, encoding methods can apply to compression in
asynchronous settings [34].
Notations.We denote ith component of a vector x by x[i]. By x it ,
we denote a vector arising from the t th iteration at the ith node. A
string of p consecutive zeros is denoted by 0p .

2 BACKGROUND
Distributed training. In distributed training, during backward
pass, each node i , produces a stochastic gradient дit which is aggre-
gated from n workers, via all-reduce,all-gather,Broadcast
communication in Horovod [40], or Push-Pull parameter server
architecture like BytePS [34]. The aggregated gradient 1

n
∑n
i=1 д

i
t

is used for updating the model parameters in each iteration.
To reduce communicated data-volume, many proposals use spar-

sification techniques where a subset of the gradient components
is communicated [1, 30, 42]. Although this reduces data volume,
in most cases it requires modifications and imposes constraints on
the communication techniques (e.g., some sparsifiers only work
with all-gather rather than the faster all-reduce collective). In
contrast, quantization reduces the bit-width needed for represent-
ing the gradient values [1, 30, 42] and to cultivate its benefits an
efficient encoding is required. That is, the workers produce quan-
tized stochastic gradient Q(дit ) and an encoding technique C(·) is
required to produce C(Q(дit )) for efficient communication. The next
step, which depends on the APIs of the deep-learning toolkits, such
as, TensorFlow, or Pytorch, is to produce a globally aggregated
quantized gradient д̃t = 1

n
∑n
i=1Q(д

i
t ), by collecting C(Q(дit )) from

each node and decoding them toQ(дit ). Finally, д̃t is encoded again
to C(д̃t ) and sent back to each worker node. Each node decodes
C(д̃t ) back to д̃t and updates the model parameter locally via the
optimizer used in DNN training. This process continues until con-
vergence. We formalize this abstraction (from the perspective of
the ith worker) with SGD as optimizer in Algorithm 1.
Codebook quantization. Codebook quantization is one of the
most popular gradient compression techniques. In some cases, it

Algorithm 1: Abstraction for Distributed quantized SGD—
From the perspective of the ith worker.
Input :Local data Di , model parameter xt , learning rate ηt > 0;
Output :Trained model x ∈ Rd .

1 for t = 1, 2, · · · , do
2 OnWorker :Compute a local stochastic gradient дit at t

th iteration;
3 Quantize дit to Q (дit );
4 Encode Q (дit ) to C(Q (дit ));
5 On Master :Decode C(Q (дit )) to Q (дit ) ;
6 Do all-to-all reduction д̃t = 1

n
∑n
i=1 Q (дit );

7 Encode д̃t to C(д̃t ) and send back to workers;
8 OnWorker :Decode C(д̃t );
9 Update model parameters locally via: xt+1 = xt − ηt д̃t ;
end

uses only binary bits. E.g., the sign compression in [6]. However,
in more sophisticated cases, the gradient components are projected
into a vector of fixed length (set by the user), such as random
dithering. The user can change the codebook length by varying
the quantization states, s , and the inclusion probabilities of each
component will vary. For a bit-width b and a scaling factor δ > 0,
Yu et al. in [51], quantized д[i] ∈ [ε, ε + δ ] with ε ∈ dom(δ ,b) :={
−2b−1δ , . . . ,−δ , 0, δ , . . . , (2b−1 − 1)δ

}
as:

д̃[i] =

{
ε with probability pi =

ε+δ−д[i]
δ

ε + δ with probability 1 − pi .
(1)

Different forms of (1) are adopted in [2, 21, 49], by changing the
quantization states s , which is the cardinality of the set dom(δ ,b).
For further details on the state-of-the-art codebook quantization
techniques, we refer to survey by Xu et al. [50].

2.1 Encoding technique
For communicating the quantized gradients resulting from different
codebook quantization, practitioners use different encodings. In the
following we define commonly used technical terms, the entropy
and average (expected) code-length that characterize the efficiency
of an encoding technique.
Entropy and code-length. For k characters with probabil-
ity distribution P = {p1,p2, · · · ,pk }, the entropy is: H (P) =

−
∑k
i=1 pi log(pi ). The average code-length for these k characters

with corresponding codeword-lengths {l1, l2, · · · , lk } and probabil-
ity distribution P is given by

∑k
i=1 pi li . The purpose of an encoding

technique is to minimize the average code-length. A uniquely de-
codable code of a given character set is optimal if there exists no
other uniquely decodable code with a smaller average code-length.
Run-length (RL) and Elias (ELI) encoding. Run-length en-
coding is a classic lossless encoding technique in which data
values (or characters) are encoded as tuples containing the
particular data-value and its frequency of consecutive occur-
rences. Elias is an universal coding technique with predeter-
mined codewords. Elias(0) and Elias(1) are defined as 1 and
0, else, for any x > 0, the binary code of Elias(x) is given
by 0 prepended by binary representation of x prepended by
Elias(number of bits taken by x in binary code−1).
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Figure 1: (a) Huffman encoding (16 bits), (b) RLH (14 bits).

2.2 Huffman coding
Huffman coding [22] is a lossless encoding which gives prefix
codes with optimal average decode-length and uses a greedy al-
gorithm to construct these Huffman codes and store them as a
tree. See Figure 1 (a) for an example of Huffman coding of string
“0001002000100”. We refer to [9] for a detailed algorithm. The fol-
lowing Lemma characterizes the properties of Huffman coding.

Lemma 1. [10] We have, H (P) ≤ CL(P) ≤ H (P) + 1, where H (P)
is the entropy and andCL(P) is the average code-length of Huffman
codes for a frequency distribution P on characters.

Decoding. To decode the compressed bit stream, we need to have
the Huffman tree which can either be constructed or be sent. We
traverse the tree in a bit by bit fashion to decode. The decoding
speed can be improved by traversing multiple bits called blocks at a
time [32], by using look up tables [18], and by efficiently using the
memory hierarchies [3].
Runtime. Once we have k characters and their frequencies, the
run-time for Huffman coding is O(k log(k)). This can be done in
O(k) time, if frequencies are given in a sorted order. However, in
practice, we need to obtain the frequencies for which we need to
take a pass on the entire data.

We realized that codebook quantization comes with an interest-
ing attribute—the quantized components reside in different quan-
tization states. If one considers these quantization states as the
characters, then number of items in each state represents their
frequencies rendering an ideal scenario to use Huffman coding for
communicating those characters. But gradient dimension poses a
major challenge even for smaller quantization states as one needs
to calculate the frequencies. Therefore, it is unrealistic to build a
Huffman tree by following the classical Huffman coding.
Huffman codes for compression. Schmidhuber et al. [39] used
Huffman coding to compress text files from a neural predictive
network. Han et al. in [17] used a three-stage compression method
consisting of pruning, quantization, and finally the Huffman coding
to encode the quantized weights (also see [8]). Ge et al. [16], pro-
posed a hybrid model compression algorithm with Huffman coding
to encode the sparse structure of the pruned weights. Huffman
codes are optimal among all variable length prefix codings. How-
ever, Elias [14] and Golomb encoding [15] can take advantage of
some interesting properties, such as repeated appearance of cer-
tain sequences and achieve a better average code-lengths. To the
best of our knowledge, in gradient compression, only SKCompress
[23] uses Huffman coding to encode sparse gradient indices. One
of the reasons for slow adoption of Huffman encoding is the cost
of building the Huffman tree which for modern DNNs, can pose
humongous computation overhead. Therefore, one may ask: Can

we achieve a better average code-length based on the classic
Huffman encoding and by exploiting certain properties of
the quantized gradients?

3 HUFFMAN BASED STRATEGIES
To answer the above question, we propose using novel encoding
techniques based on the classic Huffman coding.

3.1 Run-length Huffman (RLH) encoding
RLH encoding is a hybrid of two classic encoding techniques—
RLE and Huffman coding, in which the Huffman coding is
used on the string obtained by RLE. E.g., to decode the string
“0001002000100” we use RLE to get the following run-length docu-
ment: (3, 0), (1, 1), (2, 0), (1, 2), (3, 0), (1, 1), (2, 0), and then by using
each tuple as a single character, we apply the Huffman algorithm
on the character set with corresponding frequencies and obtain
the final encodings (see Figure 1 (b)). This encoding technique is
also known as modified huffman coding which is standardized by
TIFF and commonly used in fax compression [25]. To the best of
our knowledge, we are the first to propose a hybrid encoder for
encoding compressed gradients in distributed DNN training.
Entropy and code-length. In RLH, the distribution of the
characters are obtained by RLE. Therefore, the new dis-
tribution of characters after RLE, PRLH, is a function of
the original distribution, P . As a result, the entropy of
RLH: H (PRLH) ≤ H (P) [10]. This, together with Lemma 1
give: CL(PRLH) ≤ H (PRLH) + 1 ≤ H (P) + 1 ≤ CL(P) + 1. In prac-
tice, the code-length is much lower than this bound. The average
code-length of RLH is better than that of Elias. Golomb encoding
is also a special case of RLH encoding for only two characters
following Assumption 1.

Theoretically, all the encoding techniques take at leastO(d) time
for Q(д) ∈ Rd . However, RLH requires another iteration over Q(д)
before assigning the codes. In the following, we propose a sampling
technique to mitigate the additional overhead of RLH but with a
slight increase in the average code-length as shown in tables 3 and 4.
Similar to RLH, by using a run-length compression (RLC), Chen et
al. in [7] obtained a 1.2 × −1.9× compression on the convolution
layers of AlexNet [27].

3.2 Sample Huffman (SH) encoding
As the gradient dimension d is large, iterating through all the
quantized components and calculating their frequencies is not
cost-effective. To remedy this, we propose a uniform sampling
technique. Sampling techniques are quite popular in gradient
compression—E.g. to perform an efficient Top-k selection, [30] used
a sampling technique where r% of the gradient components are
chosen first, and then a Top-k selection is made on that sampled set.
We sample a set of indices, S from [d], where each Si is sampled uni-
formly from a discrete distribution [1,d], such that Si ∼ U[1,d]. We
pick the gradient components corresponding to those Si indices,
i ∈ [|S |], from the quantized gradient vector. Frequencies of the
quantized gradient components will be their frequency in those S
samples. We construct the Huffman codes using these frequencies.
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For implementation, we add 1 to the frequency of all the quanti-
zation states, to prevent any of them from being zero. We call this
as sample Huffman (SH) encoding.
Entropy and code-length. Let the probability distribution of
original qunatized gradient be P = {p1,p2, · · · ,ps } and within the
sample S of size |S | be P ′ = {p′1,p

′
2, · · · ,p

′
s }. Then the entropy

and average code-length of SH are: H (P ′) = −
∑s
i=1 p

′
i log(p

′
i )

and CL(P ′) = −
∑s
i=1 p

′
i li , respectively, where {l1, l2, · · · , lk } are

the codeword lengths of the characters with distribution P ′. As
we use Huffman coding on P ′, by Lemma 1 we have, CL(P ′) ≤

H (P ′) + 1. As, |S | → d and p′i → pi , we have H (P ′) → H (P), and
therefore, CL(P ′) → CL(P), the average code-length of Huffman.

However, for sparse vectors, Huffman coding is not effective
compared to RLE, as it encodes each character. We need to use the
sparsity to design an efficient encoding technique.

3.3 Sample Huffman with Sparsity (SHS)
We define the sparsity fraction of a vector p, as the fraction of its
components that are 0. Our next assumption is on the independence
of the quantized gradient components.

Assumption 1. Quantized gradient components are mutually
independent.

The above is a mild assumption. That is, if we know a particular
quantized gradient component to be 0, then the probability that the
next quantized gradient component to be 0 remains p.

With this assumption, we propose a new encoding technique
to give efficient codes for sparse vectors. Let Q(д) be a quantized
gradient with sparsity fraction p and s distinct quantization states.
The sparsity fraction is estimated by using the sampling technique
described in Section 3.2. The probability to encounter n′ zeros fol-
lowed by a non-zero quantization state ispn

′

(1 − p), by Assumption
1. For a given length cap γ , we treat each of these sequences with
n′ zeros as character An′ for 1 ≤ n′ < γ . All the sequences of zeros
with string lengths greater than or equal to γ have probability of
occurrence pγ and can be represented by using multiple Ai s. By
using these (s + γ − 1) characters and their frequencies, we now
construct the Huffman tree and define the encoding as sample Huff-
man with sparsity (SHS). Note that, length cap was also used for
run length limited encoding in [36]. Note that our work is valid for
any number of quantized states giving the optimal compression
and the compression strategy in [37], is a special case of our SHS.
An example. Consider 4 quantized states {0, 1, 2, 3} with
frequencies {0.7, 0.05, 0.05, 0.2} and γ = 5. The proba-
bility of the string 05 is 0.75 and the rest of the zero
strings with length i (1 ≤ i ≤ 4) have probability 0.3(0.7)i . The
characters {0, 1, 2, 3, 00, 000, 0000, 00000} are given probability
{0.21, 0.05, 0.05, 0.2, 0.147, 0.1029, 0.072, 0.168} and the encodings
will be {01, 11110, 11111, 00, 101, 100, 1110, 110}.
Entropy and optimal code. For a set of s + 1 characters with
probability distribution P = {p,p1,p2, · · · ,ps }, where p is the
probability of the occurrence of the character (0), the probabil-
ity distribution of s + γ characters of SHS with length cap γ
is Pγ := {p1,p2, · · · ,ps }

⋃
{pi (1 − p)|i ∈ [1,γ − 1]}

⋃
{pγ }. There-

fore, the entropy is H (Pγ )

= −pγ log(pγ ) −
∑s
i=1 pi log(pi ) −

∑γ−1
i=1 (1 − p)pi log(pi (1 − p))

Table 1: Sample of the encoding time of the quantized gradient
Quantizer Model Encoding time (s)

Huffman Elias RLE SH SHS RLH

RD

ResNet-20 0.20 0.26 0.26 0.11 0.13 0.85
VGG-16 13.95 18.95 18.83 6.60 7.07 26.02

GoogLeNet 6.84 9.03 9.68 4.10 4.67 10.83
ResNet-50 20.80 18.46 18.24 9.04 10.40 32.26
PTB-LSTM 85.55 53.64 80.68 22.17 32.4 151.94

As γ → ∞, we have

H (P∞) = −
∑s
i=1 pi log(pi ) − p log(1 − p) − p

log(p)
1 − p

.

The optimal codes for SHS are achieved when γ → ∞. By using
the above definitions we get the following lemma.

Lemma 2. For SHS with length cap γ > 0, we have H (Pγ ) =

H (P∞) + (pγ+1logp)/(1 − p) + pγ log(1 − p).

Our next lemma guarantees that the average code-length of SHS
obtained by introducing a length cap is within ∆+ 1 bits ofCL(P∞)

and its proof follows from Lemma 1 and 2.

Lemma 3. For SHS with length cap γ > 0, we have CL(Pγ ) ≤

H (Pγ ) + 1 = H (P∞) + ∆ + 1 ≤ CL(P∞) + ∆ + 1, where CL(Pγ ) and
H (Pγ ) denote the average Huffman code-length and the entropy
of the character set formed with length cap γ respectively and
∆ = pγ log(1 − p) + (pγ+1logp))/(1 − p).

3.4 Time complexity Analysis
Suppose Q(д) ∈ Rd and has s quantization states. Although it
takes O(d) time for all techniques for a single pass over the gra-
dient, the time to assign these code-words is different for each of
them. For Huffman coding assigning code-words take O(s log(s))
time and hence the total timewill beO(d + s log(s)). Similarly, when
there are k distinct characters formed after RLE, RLH will take
O(d + k log(k)) time. Note that, k varies between s and

√
d . In SH

without sparsity, we sample d ′ gradient components out of d gra-
dient components, and then determine the frequencies of the s
quantization states by using sampled d ′ components. As a result, it
takes O(d + s log(s)) time. For SHS, with a given length cap γ , the
time complexity is O(d + (s + γ ) Ûlog(s + γ )). In practice, d ≫ s,k,γ ,
so the time complexities remain O(d).

We present a sample of the encoding time values of various en-
coders applied on the quantized gradient vectors usingRD quantizer
in table 1.2 The results show that the sampling-based approaches
result in the fastest encoding times and RLH is the slowest en-
coder. However, as shown later, RLH yields the best compression
ratio and the proposed Huffman encoders, in many cases, are the
second best. Therefore, a trade-off exists between the proposed
Huffman encoders that compresses more versus ones with lower
time complexity. Specifically, the speeds of SH and SHS encoders are
comparable but they can be up to 7× faster than RLH. In contrast,
RLH, which is significantly slower, can achieve higher compression
ratios of up to 3× on average compared to SH and SHS.

Although all the encoding techniques take O(d) time, Elias en-
coding need only one pass over the data and classic and run-length
Huffman need two passes over the data, and that is 2d time. In
case of sampling, let |S | = d ′ ≪ d . If d ′ gradient components are
selected, the total time taken is d + d ′ (which is less than Huffman’s
2Encoding times may vary on different systems. The results are based on a non-
optimized implementation ran on a personal computer equipped with low-end CPU.
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2d time) and this behaves as good as the Huffman coding. SHS also
performs as good as RLH in d + d ′ time, when the sparsity assump-
tion holds. All the proposed encoding techniques are lossless, as
they apply lossless Huffman coding on different character sets [22].
Parallel implementation. The encoders in this study are paral-
lelizable [28, 38]. Given n workers, we can partition the gradient
inton subvectors for RLH and allow eachworker to find the frequen-
cies of its corresponding subvector. We handle the sequences which
are partitioned into two different sub vectors by decreasing the fre-
quency of length of each partitioned sequences and increasing the
frequency of their combined length, both by one. We can perform
a merger at the end of each part, in case a run length sequence
is partitioned. Let lei be the length of the run length sequence of
the character cei at the end of the ith partition for all i ∈ [0,n − 1].
Further let lbi+1 be the length of the run length sequence of the char-
acter cbi+1 in the beginning of the (i + 1)th partition for all i ∈ [1,n].
Then, if and only if cei = cbi+1, we decrease the frequencies of
lei , l

b
i+1 by 1 and increase the frequency of lei + l

b
i+1 sequence by 1

for the character cei . The run time to find the frequencies will be
O(d/n). For SH and SHS, sampling can be done inn partitions taking
(d ′/n) time. Huffman tree for s characters can also be constructed
in log(s) time in parallel [28]. With this, the tree construction takes
O(logk) for RLH, O(log s) for SH, and O(log(s + γ )) for SHS. The
parallel version of these algorithms can leverage highly-parallel
accelerators such as GPU and FPGAs [29, 33, 44].

4 EVALUATION
In this section, we evaluate various encoding schemes covered by
our study. The results show that RLH excels over all other encoding
techniques in most of the benchmarks. In particular, RLH, SHS and
SH can improve the compressed volume by up to 5.1×, 4.32× and
3.8× compared to the commonly used Elias encoding, respectively.
Compression techniques. In this study, we use the following
compression techniques: random dithering (RD) [2], ternary quan-
tization (TQ) [49], natural compression (CNat) [21].
Benchmarks. We implement distributed training using Py-
Torch [35] as the ML framework and Horovod [40] as the communi-
cation library. The compression techniques are implemented using
high-level PyTorch APIs. The benchmarks, models, and datasets
used in this work are listed in Table 2.
Hyperparameters.We set the local mini-batch size to 160 images
per batch for CNN benchmarks on CIFAR-10 and ImageNet datasets
and 20 tokens per batch for RNN benchmark on PTB dataset. We
set the learning rate to 0.5 for CIFAR-10, 0.05 for ImageNet, and 22.0
for PTB benchmarks. The learning rate is warmed up and grows
exponentially during the first 5 epochs until it reaches the chosen
learning rate. We run CIFAR-10 experiments for 70 epochs and PTB
experiments for 30 epochs. Due to the length of ImageNet experi-
ments, we only run them for 15 epochs. Finally, we use a sample
size (d ′) of 104 in all our experiments.3. TQ is the only method that
requires careful consideration. First, it does not converge without
an Error-Feedback (see [42, 43]). Secondly, the learning rate for TQ

3We also experiment with smaller sample sizes of 102 and 103 and we find that both
the code-lengths of SH and SHS are larger by up to 1% of Huffman code-length. We
leave detailed sensitivity analysis of the sample size to the future work.

Table 2: Summary of the benchmarks used
Task Neural Architecture Model Dataset No. of Parameters

Image
Classification CNN

ResNet-20 [24] CIFAR-10 [26] 269,722
VGG-16 [41] CIFAR-10 [26] 14,728,266

GoogLeNet [46] ImageNet [12] 6,610,344
ResNet-50 [24] ImageNet [12] 25,557,032

Language
Modelling RNN LSTM [20] Penn Tree Bank [31] 66,034,000

Table 3: Test Perplex. and comp. ratios for PTB benchmark
Baseline

Perplexity (↓) Quantizer Quantized
Perplexity Compression Ratio (×)

Huffman Elias RLE SH SHS RLH

103.398
RD 125.955 31 348 80 31 203 491
TQ 970.335 31 10814 3746 31 855 16432
CNat 103.2 24 6 3 24 27 32

has to be carefully tuned for each benchmark. We perform trial-
and-error tuning for the learning rate that allows for some-level of
convergence and so learning rate for TQ is 0.005 for CIFAR-10, 0.01
for ImageNet and 22 for PTB datasets.
Evaluation metrics.We evaluate all encoding techniques by us-
ing two metrics—(i) the quality of the trained model and (ii) the
communicated volume to achieve such quality. We report the ac-
tual code-length in bits of the communicated gradient (along with
the decoding information such as the code-book) in each iteration
for different quantization techniques. We also report the training
accuracy and the compression ratio which is the code-length of
the non-compressed gradient normalized by the code-length (the
encoded compressed gradient) . Considering 32-bit as the default
floating-point precision in modern DNN models, we define the
compression ratio as:
Compression ratio := Bits to represent 32 bit float gradient

Bits to represent the encoded gradient .

We present the best and the second best scores in red and blue
colors, respectively. Note that, the code-book length (i.e., decoding
information) in most cases are less than 0.1% of the total volume.
Main observations. The baseline is the no-compression run using
32-bit floating-point precision. Since, quantizations are lossy, the
accuracy of the training, with qunatization, are less than that of
baseline (except for TQ in VGG16 benchmark). In terms of accuracy,
CNat and RDwith s = 256 are typically able to achieve close baseline
model qualities. On the contrary, TQ even with Error-Feedback [42]
struggles to achieve acceptable model qualities. This is because the
number of quantization states to represent the gradient components
of CNat and RD (s = 256) are significantly more compared to TQ
which quantizes only the sign of the gradient components. However,
the higher quality implies less compression, CNat and RD (s = 256)
have the smallest compression-ratios (large volume) while TQ, with
3 states to encode, has the largest compression ratios (small volume).
RNN-LSTM results. In Figure 2a, the code-length of most en-
coders are comparable for CNat, except for RLE and Elias which
results in larger code-length. For both RD and TQ, encoders achieve
different code-length and RLH is the smallest among them. Table 3
shows that only RD and CNat achieves test perplexity close to the
no-compression baseline while TQ is not able to converge to the
optimal point and has significant gap with the baseline. In terms
of volume the encoded compressed gradients of TQ achieves the
largest compression ratios. Moreover, RLH is able to reduce the
volume over Elias by 81% (or 5.1×).
ResNet-50 results. Figure 2b shows the code-length of the various
encoders. In this benchmark, RLH can significantly reduce the
length of the code over the other encoders. SHS also performs better
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Figure 2: The actual data volume of different methods for different benchmarks.

RD TQ CNat
104

106

108

D
at

a
V

ol
um

e
(b

it
s)

Baseline:8 Mbits

(a) ResNet20

RD TQ CNat
105

107

109

D
at

a
V

ol
um

e
(b

it
s)

Baseline:471 Mbits

(b) VGG16
Figure 3: The actual data volume for CIFAR10 benchmark.

than Elias for CNat and RD. Table 4 shows that only CNat achieves
close accuracy to the no-compression baseline. However, RD and TQ
loses about 10 and 25 accuracy points, respectively. This shows the
sensitivity of this model, which is based on Residual Networks [19],
to compression. In terms of volume, similar to former results, the
encoded compressed gradient of TQ achieves the best compression
ratios and RLH can reduce the encoded volume over RLE by 88%
(or 8.3×) and Elias by 74% (or 3.76×).
GoogLeNet Results. Figure 2c shows the code-length of the en-
coders. The code-length pattern is different from all the other bench-
marks. The code-length of (NH and SH) encoders are the same for all
quantiziers. Unlike other benchmarks, the encoders are more space
efficient on quantized vectors of CNat compared to RD. Yet, still TQ
achieves the least volume and RLH achieves the least code-length.
ResNet-20 results. In Figure 3a, we present the code-length from
various encoders. The code-length of most encoders are comparable
for CNat and RD. In TQ, RLH can significantly reduce the length of
the code over the other encoders. Table 4 shows that only RD and
CNat achieves the close accuracy to the no-compression baseline
while TQ loses about 7.5 accuracy points. However, in terms of
volume, the encoded compressed gradient of TQ achieves the best
compression ratios. Moreover, RLH can reduce the volume over
Elias by up to 32% (or 1.5×).
VGG-16 results. Figure 3b shows similar pattern for CNat and TQ
but slightly different pattern for RD. RLH can achieve the smallest
code-length among all the encoders. Also, SHS can achieve better
results compared to Elias. Table 4 shows that TQ achieves in this
case the best model quality excelling over the baseline while RD
and CNat achieves lower but close accuracy to the no-compression
baseline due to the dense nature of the VGG16 DNN making it re-
silient to compression. In terms of volume, the encoded compressed

Table 4: Accuracy and comp. ratios for CNN models

Model Baseline
Accuracy (↑) Quantizer Quantized

Accuracy Compression Ratio (×)

Huffman Elias RLE SH SHS RLH

ResNet50 53.317
RD 43.256 31 184 41 31 156 253
TQ 25.34 32 947 266 32 470 1353
CNat 53.00 23 9 4 23 32 35

ResNet20 94.286
RD 93.333 21 17 2 21 19 21
TQ 86.786 31 82 18 31 87 121
CNat 93.375 10 4 1 10 9 10

VGG16 96.75
RD 94.141 30 68 14 30 71 98
TQ 97.375 32 265 70 32 231 391
CNat 95.125 16 7 2 16 15 16

gradient of TQ has still the highest compression ratios followed
by RD then CNat. Moreover, RLH can reduce the communicated
volume over Elias by up to 55% (or 2.2×).

4.1 Limitation of encoding techniques
The main drawback for quantization techniques is the computa-
tional complexity of the associated encoding mechanisms which
prohibits their wide-adoption. Our prototype, which uses high-level
APIs of the ML framework, is not computationally efficient and is
not optimized with respect to the run-time. For this reason, this
work only provides empirical-based guidance into the efficiency of
different encoders with respect to the communicated volume. How-
ever, quantization and encoding can be generally recommended
only if their implementations can leverage some-degree of paral-
lelism in the modern hardware accelerators. Recently, commercial
and research compression prototypes are leveraging specialized
modern hardware (e.g., FPGA [29]).

5 CONCLUSION
In this work, we explore the efficiency of the encoding techniques
necessary for communicating quantized gradient vectors during
distributed DNN training. We highlight the limitations of different
encoders commonly used by many recent quantizers and propose
variants of Huffman coding to mitigate them. We analyze the com-
plexities of the encoding techniques and empirically evaluate their
performance in popular benchmarks. Our evaluation shows that
while the commonly used Elias encoder achieves acceptable com-
pressed volumes, the proposed Huffman-based encoders (RLH, SHS
and SH) can excel over Elias-based encoders and provide further
reductions by up to 5.1×, 4.32× and 3.8×, respectively. As part of
our future work, we aim to implement our schemes on modern
accelerators and conduct extensive empirical analysis.
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