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Abstract. A standard way of implementing Huffman’s optimal code construction al-
gorithm is by using a sorted sequence of frequencies. Several aspects of the algorithm
are investigated as to the consequences of relaxing the requirement of keeping the fre-
quencies in order. Using only partial order may speed up the code construction, which
is important in some applications, at the cost of increasing the size of the encoded file.

1 Introduction

Huffman’s algorithm [6] is one of the major milestones of data compression, and even
though more than half a century has passed since its invention, the algorithm or
its variants find their way into many compression applications to this very day. The
algorithm repeatedly combines the two smallest frequencies, and thus stores the set
of frequencies either in a heap or in sorted form, yielding an Ω(n log n) algorithm
for the construction of the Huffman code, where n is the size of the alphabet to be
encoded.

Working with a sorted set of frequencies is indeed a sufficient condition to get an
optimal code, but the condition is not necessary. In certain cases, one can get optimal
results even if the frequencies are not fully sorted, in other cases the code might not be
optimal, but very closely so. On the other hand, relaxing the requirement of keeping
the frequencies in order may yield time savings, as the generation of the code, if the
frequencies are already given in order, or if their order can be ignored, takes only
O(n) steps.

One might object that since the alphabet size n can often be considered as constant
relative to the size of the text to be encoded, there is no much sense in trying to
improve the code construction process, and any gained savings will only marginally
affect the overall compression time. But there are other scenarios for which the above
mentioned effort may be justifiable: the ratio between the sizes of the text and the
code is not always very large; instead of using a single Huffman code, better results are
obtained when several such codes are used. For example, when the text is considered
as being generated by a first order Markov process, one might use a different code for
the successors of the different characters. When dynamic coding is used, the code is
rebuilt periodically, sometimes even after each character read.

The loss incurred by not using an optimal (Huffman) code is often tolerable,
and other non-optimal variants with desirable features, such as faster processing and
simplicity have been suggested, for example Tagged Huffman codes [4], End-Tagged
Dense codes [2] and (s, c)-Dense codes [1]. Similarly, the loss of optimality caused by
moving to not fully sorted frequencies can also be acceptable in certain applications,
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for example when based on estimations rather than on actual counts. In a dynamic
encoding of a sequence of text blocks B1, B2, . . ., block Bt is often encoded on the
basis of the character frequencies in B1, . . . , Bt−1. The encoder could use the frequen-
cies from block Bt itself, but deliberately ignores them because they are yet unknown
to the decoder. By using the frequencies gathered up to block Bt−1 only, decoding
is possible without transmitting the code itself. The accuracy, however, of these esti-
mates is based on the assumption that block t is similar to the preceding ones as to
the distribution of its characters. If this assumption does not hold, the code may be
non-optimal anyway, so an additional effort of producing an optimal code for a set of
underlying frequencies that are not reliable, may be an overkill.

In the next section, we investigate some properties of the Huffman process on
non-sorted frequencies. Section 3 then deals with a particular application, designing
an algorithm for the dynamic compression of a sequence of data packets, and report
on some experiments. In Section 4 we investigate whether a similar approach may
have applications to other compression schemes than Huffman’s.

2 Using non-sorted frequencies

The following example shows that working with sorted frequencies is not a necessary
condition for obtaining optimality. Consider the sequence of weights {7, 5, 3, 3, 2, 2},
yielding the Huffman tree in Figure 1a. If we start with a slightly perturbed sequence
{7, 5, 3, 2, 3, 2} and continue according to Huffman’s algorithm, we get the tree in
Figure 1b, which is still optimal since its leaves are on the same levels as before,
but it is not a Huffman tree, in which we would not combine 2 with 3. The tree
of Figure 1c corresponds to starting with the sorted sequence, but not keeping the
order afterwards, working with the sequence {7, 5, 6, 4} instead of {7, 6, 5, 4} after two
merges.
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Figure 1: Optimal trees

Obviously, not paying at all attention to the order of the weights can yield very
bad encodings. Consider a typical sequence of weights yielding a maximally skewed
tree, that is, a tree with one leaf on each level (except the lowest level, on which there
are two leaves). The Fibonacci sequence is known to be the one with the slowest
increasing pace among the sequences giving such a biased tree [7], but for the ease of
description we shall consider the sequence of powers of 2, more precisely, the weights
1, 1, 2, 4, . . . , 2n, for some n.
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Applying regular Huffman coding to this sorted sequence, we get

SHuf = (n + 1) +
n
∑

i=0

(n− i + 1)2i = 2n+2 − 2

as total size of the encoded file. If one uses the same skewed tree, but assigns the
codewords in reverse order, which can happen if the initial sequence is not sorted and
the tree is built without any comparisons between weights, the size of the encoded
file will be

Srev = 1 +
n
∑

i=0

(i + 2)2i − 2n = (n + 1)2n+1 − 2n + 1.

The ratio Srev/SHuf may thus increase linearly with n, the size of the alphabet.
We therefore turn to a more realistic scenario, in which some partial ordering

is allowed, but requiring an upper bound of O(n) order operations, as opposed to
θ(n log n) for a full sort. Indeed, the simplest implementation of Huffman coding,
after an initial sort of the weights, is keeping a sorted linked list, and repeatedly
removing the two smallest elements and inserting their sum in its proper position,
overall a θ(n2) process. Using two queues Q1 and Q2, the first for the initial weights
and the other for those created by adding two previous weights, the complexity can
be reduced to O(n) because the elements to be inserted into Q2 appear in order [9]. If
one starts with a sequence which is inversely sorted, the first element to be inserted
into Q2 will be the largest; hence if one continues as in the original algorithm by
extracting either the two smallest elements of Q1, or those of Q2, or the smallest from
Q1 and that of Q2, the first element of Q2 will be used again only after the queue Q1

has been emptied. The resulting tree is thus a full binary tree, with all its leaves on
the same level if n is a power of 2, or on two adjacent levels if not. The depth of this
tree, for the case n = 2k, will be k. Returning to the above sequence of weights, the
total size of the encoded file will thus be

Sfixed = log n

(

1 +
n
∑

i=0

2i

)

= 2n+1 log n.

The ratio Sfixed/SHuf still tends to infinity, but increases only as log n as opposed to
n above.

One of the ways to get some useful partial ordering in linear time is the one used
in Yao’s Minimum Spanning tree algorithm [12]: a parameter K is chosen, and the
set of weights W is partitioned into K subsets of equal size W1, . . . ,WK , such that
all the elements of Wi are smaller than any element in Wi+1, for i = 1, . . . , K − 1,
but without imposing any order within each of the sets Wi. The total time for such
a partition is only O(n log K), using repeatedly an O(n) algorithm for finding the
median first of the whole set W , then of its two halves (the n/2 lower and the n/2
upper values), then of the quarters, etc. Starting with such a partition and continuing
with the help of two queues, one gets an overall linear algorithm, since K is fixed.
On the other hand, K can be used as a parameter of how close the initial ordering
should be to a full sort.

To empirically test this partition approach, we chose the following input files of
different sizes and languages: the Bible (King James version) in English, and the
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1-grams 2-grams 3-grams 4-grams
English 52 808 6026 21886
French 131 2965 18864 56078

Table 1: Alphabet sizes

French version of the European Union’s JOC corpus, a collection of pairs of questions
and answers on various topics used in the arcade evaluation project [10]. To get also
different alphabet sizes, the Bible text was stripped of all punctuation signs, whereas
the French text has not been altered. We then also considered extended alphabets,
consisting of bigrams, trigrams and 4-grams, that is, the text was split into a sequence
of k-grams, 1 ≤ k ≤ 4, and for fixed k, the set of the different non-overlapping k-
grams was considered as an alphabet. Table 1 shows the sizes of the alphabets so
obtained.
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Figure 2: Average number of bits per char as function of number of blocks in partition

Each sequence of weights was then partitioned as explained above into K equal
parts, with K = 1, 2, 4, 8, . . ., where in each part the original lexicographic order of
the elements has been retained. Figure 2 plots the average number of bits needed to
encode a single character as function of the number of partition parts K. All the plots
exhibit a decreasing trend and obviously converge to the optimum when K reaches
the alphabet size, but it should be noted that the convergence pace is quite fast. For
example, for the 4-tuple alphabets, using K = 1024 corresponding to 10 partition
phases, there is a loss of only 1.1% for the English and 2.2% for the French texts over
the optimal Huffman code.

Another kind of partial ordering relates to a dynamic environment where the
Huffman trees to be used are constantly updated. An application of this idea to a
packet transmission system is discussed in the next section.

3 Dynamic compression of a sequence of data packets

Consider a stream of data packets P1, P2, . . . of varying sizes, which should be trans-
mitted in compressed form over some channel. In practice, the sizes have great
variability, ranging from small packets of several bytes up to large ones, spanning
Megabytes. Compression of packet Pt will be based on Pt−k, Pt−k+1, . . . , Pt−1, where



50 Proceedings of the Prague Stringology Conference 2008

k could be chosen as t− 1 if one wishes to use the full history, or as some constant if
the compression of each packet should only depend on the distribution in some fixed
number of preceding packets.

Normally, after having processed Pt, the distribution of the weights should be
updated and a new Huffman tree should be built accordingly. The weights of ele-
ments which did not appear earlier are treated similarly to the appearance of new
elements in dynamic Huffman coding. We suggest, however, to base the Huffman tree
reconstruction not on a full sort of the updated frequencies, but on a partial one
obtained from a single scan of a bubble-sort procedure. For the formal description,
let si, 1 ≤ i ≤ n, be the elements to be encoded. These elements can typically be
characters, but could also be pairs or triplets of characters as in the example above,
or even words, or more generally, any set of strings or more general elements, as long
as there is some unambiguous way to partition the text into a sequence of such ele-
ments. Let f(si) be the frequency of si and note that we do not require the sequence
f(s1), f(s2), . . . to be non-decreasing. The update algorithm to be applied after each
block is:

Update after having read Pt:

for i ←− 1 to n

add frequency of si within Pt to f(si)
subtract frequency of si within Pt−k from f(si)

for i ←− 1 to n− 1
if f(si) > f(si+1) swap(si, si+1)

Build Huffman tree for sequence (f(s1), f(s2), . . . , f(sn)) using two queues

The gain of using only a single iteration of possible swaps is not only in processing
time. It also allows a more moderate adaptation to changing character distributions
in the case of the appearance of some very untypical data packets. Only if the changed
frequencies persist also in several subsequent packets, will the Huffman tree gradually
change its form to reflect the new distributions. On the other hand, if the packets are
homogeneous, the procedure will zoom in on the optimal order after a small number
of steps.

To simulate the above packet transmission algorithm, we took the English and
French texts mentioned earlier, and partitioned them into sequences of blocks, each
representing a packet. For simplicity, the block size has been kept fixed. The tests
were run with single character and bigram alphabets. The following methods were
compared:

1. Blocked – Block encoding: each block uses the Huffman tree built for the cumula-
tive frequencies of all the preceding blocks to encode its characters.

2. Bubble – Using one bubble-sort iteration: each block uses the cumulative frequen-
cies of all previous blocks as before, but after each block, only a single bubble-sort
iteration is performed on the frequencies instead of sorting them completely. Huff-
man’s algorithm is then applied on the non-sorted sequence of weights.

3. Bubble-For-k – Forgetful variant of Bubble: each block uses the cumulative fre-
quencies not of all, but only the k previous blocks (k ≥ 0). The frequencies of
blocks that appear more than k blocks earlier are thus not counted for building
the Huffman tree of the current block. This allows a better adaptation in case
of heterogeneous blocks, at the price of slower convergence in the case of a more
uniform behavior of the character distributions within the blocks.
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For the last case we considered both Bub-For-1 and Bub-For-5, using the frequen-
cies of the preceding block only and of the last five blocks, respectively. The first
block was encoded with a fixed length code using the full single character or bigram
alphabet. After each block read, the statistics were updated and a new code was
generated according to the methods above. The recorded time is that of the average
code construction time per block, not including the actual encoding of the block.

Single characters
Block

Blocked Bubble
Bubble Bubble

size For-1 For-5

English

200 4.112 5.532 5.697 5.607
Compression 2000 4.114 5.532 5.553 5.541

10000 4.123 5.533 5.536 5.533
200 0.13 0.06 0.06 0.06

Time 2000 0.63 0.44 0.27 0.27
10000 2.56 1.32 1.13 1.26

French

200 4.699 6.020 5.901 5.875
Compression 2000 4.700 6.020 5.877 5.825

10000 4.705 6.022 5.834 5.865
200 0.27 0.09 0.09 0.11

Time 2000 0.49 0.30 0.30 0.31
10000 1.47 1.26 1.28 1.28

Table 2: Dynamic compression of data packets using single characters

Single characters
Block

Blocked Bubble
Bubble Bubble

size For-1 For-5

English

2000 3.805 5.061 5.061 5.061
Compression 10000 3.805 5.061 5.061 5.062

20000 3.806 5.062 5.062 5.062
2000 30.1 7.3 9.0 11.6

Time 10000 34.9 9.2 10.8 13.4
20000 37.4 11.1 12.9 15.2

French

2000 4.109 6.343 6.345 6.345
Compression 10000 4.109 6.342 6.344 6.344

20000 4.108 6.342 6.345 6.342
2000 286.2 9.9 11.3 14.0

Time 10000 286.6 11.1 12.9 16.1
20000 290.4 13.4 15.1 17.6

Table 3: Dynamic compression of data packets using bigrams

Table 2 brings the results for the single character alphabets and Table 3 the
corresponding values for the bigram alphabets. The block sizes used were 200, 2000
and 10000 for the single characters and 2000, 10000 and 20000 for the bigrams.
The compression figures are given in bits per character and the time is measured in
milliseconds.

As can be seen, there is a significant loss, on our data, in compression efficiency,
when using non-sorted frequencies. The block size seems not to have an impact on
the compression. For the bigrams, there is also no difference between the forgetful
variants and that using all the preceding data blocks, but for the smaller single
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character alphabets, the compression using only the information of the few last blocks
is marginally better on the French text, and worse on the English one. This can be
explained by the different nature of the texts: The English Bible is one homogeneous
entity, and its partition into blocks is purely artificial. We may thus expect that using
more global statistics will yield better compression performance. The French text, on
the other hand, consists of many independent queries and their answers, covering
a very large variety of topics. Using the distribution of one block to compress a
subsequent one may thus not always yield good results, so a variant which is able to
“forget” a part of what it has seen, may be advantageous in this case.

The loss in compression is compensated by savings in sorting time. These savings
are more pronounced for the larger bigram alphabets, but also noticeable for the
character alphabets. The time is increasing with the size of the blocks, because a
larger block gives more possibilities for a larger variability of the frequencies. The
exception here is for the bigrams of the French text: the alphabet in this case is so
large, that the block size has only a minor impact on the processing time. On the other
hand, it is in this case that the savings using partial order are the most significant.

4 Relevance of partial sort to other compression schemes

We check in this section whether the idea of not fully sorting the frequencies could
be applicable to other compression methods.

4.1 Arithmetic coding

In fact, for both encoding and decoding using an arithmetic coder [11], the weights
need not be in any specific order, as long as encoder and decoder agree upon the
same. This has the advantage for the dynamic variant, that the same order of the
elements can be used at each step, for example that induced by the lexicographic
order of the elements to be encoded. Partial ordering is thus not relevant here.

4.2 256-ary Huffman codes, (s, c)-dense codes, Fibonacci codes

All these codes can be partitioned into blocks of several codewords having all the
same length. For 256-ary Huffman, the codeword lengths are multiples of bytes, so
that even for very large alphabets, it is very rare to get codewords longer than 3 or
4 bytes; the same is true for (s, c)-dense codes. It follows that, almost always, all the
codewords can be partitioned into 3 or 4 groups, so a full sort is not even necessary.
It suffices to partition the weights into these classes, as suggested above, just that the
sizes of the blocks of the partition are not equal, but rather derived from the specific
code.

For Fibonacci codes [5,8], there are Fn codewords of length n + 2, where Fi are
Fibonacci numbers, and this set is fixed, just as for (s, c)-codes. The number of blocks
here is larger, but even for an alphabet of one million characters, there are no more
than 29 blocks, and the partition can be done in 5 iterations.

4.3 Burrows-Wheeler Transform (BWT)

At first sight, partially sorting seems to be relevant to BWT [3], as the method
works on a string of length n and applies all the n cyclic rotations on it, yielding an
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n× n matrix which is then lexicographically sorted by rows. The first column of the
sorted matrix is thus sorted, but BWT stores the last column of the matrix, which
together with a pointer to the index of the original string in the matrix lets the file
to be recovered. The last column is usually not sorted, but it often is very close to
be sorted, which is why it is more compressible than the original string. The BWT
uses a move-to-front strategy to exploit this nearly sorted nature of the string to be
compressed.

One could think that since the last column is anyway only nearly sorted, then if the
initial lexicographic sort of the matrix rows is only partially done, the whole damage
would be that the last row will be even less sorted, so we would trade compression
efficiency for time savings. However, the reversibility of BWT is based on the fact
that the first column is sorted, so a partial sort would invalidate the whole method
and not just reduce its performance.

5 Conclusion

We have dealt with the simple idea of not fully sorting the weights used by Huffman’s
algorithm, expecting some time savings in applications where the sort is a significant
part of the encoding process. This may include large alphabets, or using several
alphabets like in dynamic applications, or when encoding according to a first order
Markov chain. The tests showed that by using partial sorts, the execution time can
be reduced at the cost of some loss in compression efficiency.
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