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Huge enhancement of backward second-harmonic generation with slow light in photonic crystals
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We study theoretically forward and backward second-harmonic generation in a two-dimensional photonic
crystal structure made of lithium niobate. The aim of this article is twofold: First, we propose a reliable modal
algorithm for describing the light propagation taking into account the vectorial character of the interacting fields
as well as the tensorial character of the nonlinearity and verify it by means of the nonlinear finite-difference
time-domain method. Second, we propose a photonic crystal where we obtain a giant efficiency increase for
backward second-harmonic generation with slow light.
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I. INTRODUCTION

Since the early days of nonlinear optics [1] efficient
second-harmonic generation (SHG) has been a subject of
continuous scientific interest. Soon the crucial role of the linear
phase mismatch between the interacting waves for the SHG
efficiency was revealed [2]. In general, the phase mismatch
in a three-wave mixing process ω1 + ω2 = ω3 is defined
through the wave vector difference �k = k3 − k1 − k2 of the
three interacting plane waves. If two of these waves coincide
and are indistiguishable (same frequency ω1 = ω2 = ω3/2
and same polarization or modal fields) this process is called
type I SHG, in contrast to type II SHG, where still these
two so-called fundamental harmonis (FHs) at ω1 = ω2 can
be distinguished (different polarization, different modes). It
was shown that for the degenerate case of type I SHG (only
two interacting waves) with plane waves in a bulk medium
optimal generation of a second-harmonic (SH) field from a
strong (pump) fundamental harmonic field is achieved, if the
phase matching condition ks = 2kf involving the wave vectors
of the two interacting waves (s. . . SH, f. . . FH) is fulfilled.
Then, the two wave vectors are obviously parallel, which
is called collinear propagation. Due to material dispersion,
in homogeneous media the phase matching condition for
collinear propagation is usually not fulfilled. However, the
anisotropy of the common nonlinear crystals can be utilized to
obtain phase matching between waves of different polarization
(ordinary, extraordinary in uniaxial crystals or more complex
for biaxial crystals) and for certain directions of propagation
relative to the crystal’s principal axes. These directions of
polarization and light propagation given by the phase matching
condition can substantially reduce the effective nonlinear
coefficient due to its tensorial character. However, for certain
crystals, e.g., lithium niobate (LiNbO3), the larger diagonal
nonlinear coefficient can be used when quasi-phase matching
(QPM) [2–4] is achieved by poling the nonlinear material with
a certain periodicity, usually given by the so-called coherence
length Lc which depends on the dispersion relations of the
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participating waves. The dielectric is still homogeneous as far
as its linear properties are concerned.

Usually, in SHG the generation of a forward traveling SH
wave (same direction as the FH) comes to mind, as this is
historically most widely applied and phase matching can be
achieved even in homogeneous crystals. More specifically,
in forward SHG, the directions of energy transport of the
interacting (plane) waves are in the same direction (angle
of up to 90◦). Backward parametric three wave interactions
utilizing strongly birefringent crystals were proposed early [5]
but experimental verification remained a challenge. Using
QPM with shorter poling periods or higher-order QPM [6–8],
the generation of a backward traveling SH wave is also experi-
mentally feasible [9,10]. In these backward three-wave mixing
schemes the dynamics of light propagation fundamentally
differs [6,8,11,12] from the forward case. One interesting
aspect releated to the peculiar dynamics of backward three-
wave interactions is the possibility of obtaining a mirrorless
optical parametric oscillator, as the idler wave is generated
in opposite direction to signal and pump waves leading
effectively to a reflection of the FH into SH [5,11,13]. The
same phenomenon is used for nonlinear localization [14].
Another interesting application of backward second-harmonic
generation (BSHG) is pulse shaping [15]. BSHG can lead to
self-pulsations in linearly resonant [16] and in nonresonant
configurations [17] for a continuous-wave input. However,
as poling of the nonlinear material at subwavelength scale to
obtain fundamental order QPM for BSHG is hardly achievable,
also the possibility of tailoring the properties of the linear
modes via periodic structuring to get phase matching is an
important option.

The possibility of achieving phase matching for forward
SHG via an one-dimensional (1D) periodic modulation of
the linear properties of the medium was proposed [18–20]
and experimentally verified [21] decades ago. Due to the
recent interest in the field of photonic crystals phase matching
via an 1D periodic dielectric modulation regained scientific
attention. In addition to providing phase matching, these
structured materials also allow for a novel means of further
increasing the conversion efficiency, relying on the small
group velocity (and consequently the large density of states)
near band edges [22–25] in finite-length 1D gratings and
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defects. The linear effects originating from the finiteness of the
periodic structure, as reflection at boundaries and transmission
resonances, which influence the nonlinear propagation [25]
are not considered in this work which will be dealing with
structures that are truly periodic and hence, infinite along
propagation direction regarding the linear properties.

Meanwhile, the enhancement of nonlinear effects via slow
light in two- and three-dimensional (3D) photonic crystals
(PhCs) was proposed [26–29]. An efficiency increase for direct
third-harmonic generation not known before was experimen-
tally achieved with slow light in a line defect waveguide in
a silicon PhC membrane with third-order nonlinearity [30].
With the advances in nanostructure technology a high-contrast
two-dimensional (2D) pattering on the submicrometer scale
of quadratically nonlinear materials became possible [31–33].
More than a decade ago, sum-frequency generation and phase
matching in a 2D photonic crystal were investigated using
a Green’s function approach [34] in the undepleted pump
approximation (UDPA). There, many more degrees of freedom
(structure and propagation direction) for achieving phase
matching exist. However, the approach presented cannot
properly reproduce the results for a homogeneous medium in
the UDPA and naturally fails if a substantial fraction of energy
is converted to the SH field. Furthermore, many nonlinear
phenomena rely on the backaction of the generated SH on
the FH, as temporal and spatial solitons or optical bistability
in resonators. These phenomena, essential for all-optical
routing and switching, cannot be described by UDPA. Later,
coupled equations of motion for slowly varying envelopes
were obtained using a multiscale analysis starting from the
wave equation for the electric field [35]. Here, enabled by
the peculiar dispersion relation of the PhC, three-wave mixing
employing a backward wave was investigated. The case of
non-phase matched interaction was not considered, however. A
modal description of forward and backward collinear second-
harmonic generation in PhCs including phase mismatch terms
was proposed and compared to results from nonlinear finite-
difference time-domain (FDTD) calculations for the forward
case in 2D PhCs recently [36], clearly illustrating the influence
of phase mismatch and material dispersion as well as the
efficiency enhancement via slow light. The enhancement of
SHG in PhC slabs was theoretically [37] and experimentally
[38] investigated by means of varying angle transmission
and reflection spectroscopy. There, however, the enhancement
essentially stems from the resonant cavity (the slab) and lattice
induced coupling to these states, whereas in the present article
we are interested in the propagation effects in the plane of
the classical SHG.

Phase matched (anti-)collinear BSHG was obtained almost
independently of the direction of propagation in a properly
designed 2D PhC [39]. However, the employed numerical
scheme based on a multiple-scattering method relies on the
UDPA. A coherence length larger than 1,200 µm for a large
range of propagation directions was proposed. As the goal
did not consist in enhancing the efficiency for one particular
direction but rather phase matching for any direction of light
propagation slow light was not utilized in this design. In a
new design including silver omnidirectional phase matched
BSHG was used to obtain a nonlinear metamaterial lens [40]
for focusing of the SH. Recently, a 2D PhC design was

theoretically proposed where SHG is phase matched over
a wide angular range in the subdiffractive region of the
dispersion relation, allowing for efficient interaction of narrow
beams [41].

A second application of 2D quadratically nonlinear PhCs
was the utilization of strong linear light localization at
point defects within the band gap of the crystal, where
generation of terahertz radiation via optical rectification [42],
SHG [43,44], and optical parametric oscillators [45,46] were
proposed theoretically.

In this article we propose a 2D PhC structure in LiNbO3

where phase matched forward as well as backward collinear
type I SHG is possible, however, at different wavelengths.
We are not interested in transverse spatial effects and, hence,
assume the beams to be sufficiently broad in the transverse
dimension. Previous investigations did not consider the power
efficiency of the conversion process but merely demonstrated
the possibility of achieving phase matching. From a modal
approach we derive explicit expressions relating the generated
SH power to the input FH power. We show that for properly
designed PhCs SHG efficiencies for forward and backward
SHG can be achieved exceeding those in a homogeneous phase
matched medium. We verify the dynamics obtained from our
modal approach with rigorous calculations employing the 2D
FDTD method.

In Sec. II we formulate the modal equations describing the
dynamics of the guided power, which is the most appropriate
description of experimental setups because one can directly
compare the results with those in different other systems, as,
e.g., with waveguide or plane wave geometries. In contrast
to many other proposals a primary goal of our work consists
in providing an explicit quantitative analysis of the nonlinear
process, based on the model theory. This is verified by rigorous
calculations. We introduce a nonlinear figure of merit that
allows a direct characterization of the strength of the nonlinear
interaction in this 2D PhC, independent of the pump power
or the propagation length. In the following section the PhC
structure is introduced and the phase matching curves are
discussed. Inspecting the field distribution we reveal that
forward SHG as well as BSHG are feasible. By using the
modal approach we discuss the efficiencies and propose an
improved design for highly efficient BSHG. In Sec. IV we
present results of the modeling with the nonlinear FDTD
method. We discuss the simulations with respect to numerical
stability and numerical dispersion. Finally, we conclude the
article.

II. MODAL DESCRIPTION OF COLLINEAR SHG

In the following we generalize the modal description of light
propagation in PhCs given in Ref. [36] toward the tensorial
character of nonlinear interactions and derive a figure of merit
(FOM) for their efficiency.

We are interested only in spatial and temporal effects
along the propagation direction, in the transverse direction
[⊥≡ (x, y)] we assume plane wave excitation according to
the shape of the (linear) normal modes of the PhC, which are
Bloch waves. Then all dynamics of the interaction will develop
in the propagation direction z. Ideally, this will be the direction
of energy transport of both participating Bloch waves. Again,
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in the Fourier domain we depart from the conjugated form
of Lorentz’ reciprocity theorem [47] to obtain evolution
equations for the envelopes. The theorem states that for two
electromagnetic fields (E1, H1) and (E2, H2) inducing the re-
spective dielectric polarizations P1 = ε0ε1(r, ω)E1(r, ω) and
P2 = ε0ε1(r, ω)E2(r, ω) + Pp(r, ω) and satisfying Maxwell’s
equations we have for nonabsorbing materials∫

∂V

dA · [E∗
1(r, ω) × H2 − H∗

1 × E2] = ıω

∫
V

d3r Pp · E∗
1 ,

(1)

where ∂V is the boundary of the (arbitrary) volume V . The
polarization P1 is assumed to be linear to facilitate the exact
solution of the (unperturbed) problem (ε1, E1, H1). For system
2 we allow for a nonlinear perturbative polarization Pp. In
particular, we use the modal field of the Bloch waves of the
fundamental and of the second harmonic

E1(r, ω) = ef,s
nf,skf,s

(r) exp
(
ıknf,s⊥ · r⊥

)
exp

[
ıknf,sz(ω)z

]
(2)

H1(r, ω) = hf,s
nf,skf,s

(r) exp
(
ıknf,s⊥ · r⊥

)
exp

[
ıknf,sz(ω)z

]
, (3)

where ef
nf kf

, hf
nf kf

, es
nsks

, and hs
nsks

denote the lattice-periodic
electric and magnetic Bloch amplitudes of the fundamental
(index f) and second-harmonic (index s) waves with cor-
responding Bloch vectors kf = (knf⊥, knfz), ks = (kns⊥, knsz)
in the respective bands with indices nf and ns. As we are
interested in type I SHG we assume that only one Bloch
mode contributes both to the FH and SH, respectively. Usually
this is satisfied if the different bands are well separated in
frequency or via different propagation direction. However,
in certain cases it may be necessary to include more modes
into the analysis. The dispersion relation ω = ωn(k) gives the
relation between Bloch vector and frequency. Later we will
require a transverse phase matching condition and a strictly
periodic transverse behavior resulting in constant transverse
Bloch vectors knf,s⊥. Then, we can use the inverted dispersion
relation kz(ω; k⊥) and drop the argument k⊥ as this quantity
is a fixed parameter. In this case the Bloch amplitudes can
be denoted by ef,s(r, ω), hf,s(r, ω) with an explicit frequency
dependence. However, we restrict the bandwidth of the
investigated processes to very narrow regions around ω0 and
2ω0 and, hence, assume that the frequency dependence of the
Bloch amplitudes can be neglected, whereas the dispersion of
the Bloch vector is kept.

Consequently, the ansatz for the perturbed problem
(ε1, E2, H2, Pp) in the time domain is(

E2(r, t)
H2(r, t)

)
= 1

2
a(z, t)

(
ef (r, ω0)
hf (r, ω0)

)
exp

(
ıknf⊥ · r⊥

)
exp

(
ık0

fzz
)

× exp(−ıω0t) + 1

2
b(z, t)

(
es(r, 2ω0)
hs(r, 2ω0)

)
× exp

(
ıkns⊥ · r⊥

)
exp

(
ık0

szz
)

× exp(−2ıω0t) + (∗) , (4)

Pp(r, t) = 1

2
[pf (r, t) exp

(
ıknf⊥ · r⊥

)
exp

(
ık0

fzz
)

exp(−ıω0t)

+ ps(r, t) exp
(
ıkns⊥ · r⊥

)
exp

(
ık0

szz
)

× exp(−2ıω0t)] + (∗) , (5)

where k0
fz = kfz(ω0) and k0

sz = ksz(2ω0) are the central Bloch
vectors, a and b the slowly varying envelopes of the fundamen-
tal and the second harmonic wave, respectively, and pf and ps

are the slowly (in t) varying nonlinear polarizations at ω0 and
2ω0, respectively. In the following a periodicity of the structure
in the z direction with period L is assumed. The volume V is
chosen to be the respective unit cell � centered at pertinent z.
This corresponds to a separation into a fast z dependence (fast
oscillations on the scale of PhC period, Bloch amplitudes),
which is spatially integrated over, and a slow z dependence,
which changes slowly over many periods and can be moved out
of the integrals. Inserting the Fourier transform of (4) into (1),
performing the integration along the boundaries in propagation
direction, and assuming sufficiently small changes over L in
propagation direction, we obtain by means of the rotating
wave approximation differential equations for the two field
envelopes coupled via the perturbative nonlinear polarization.
Accounting for Kleinman symmetry the two contributions of
the nonlinear polarization are

pf = 2ε0a
∗bd̂(−ω0; −ω0, 2ω0) : (e∗

f es)

× exp[ı
(
kns⊥ − 2knf⊥

) · r⊥] exp
[
ı
(
k0

sz − 2k0
fz

)
z
]

(6)

ps = ε0a
2d̂(−2ω0; ω0, ω0) : (efef )

× exp
[−ı

(
kns⊥ − 2knf⊥

) · r⊥
]

exp
[−ı

(
k0

sz − 2k0
fz

)
z
]
.

(7)

Here we adopted the notation of Ref. [48] with the contracted d̂

tensor and the six-component second-order column vector of
the fields (e1e2) giving the polarization vector Kε0d̂ : (e1e2)
where K = 1 for degenerate waves e1 and e2 and K = 2
otherwise. Inserting (6) and (7) into the differential equations
we obtain after some approximations (see Ref. [36])

ı
∂a

∂z
+ ı

vgf

∂a

∂t
+ba∗ exp(ı�kz)

ω0ε0

2LP̃f

∫
�

d3r × e∗
f · [d̂(r,−ω0;

− ω0, 2ω0) : (e∗
f es)] exp(−ıG0 · r)=0 , (8)

ı
∂b

∂z
+ ı

vgs

∂b

∂t
+a2 exp(−ı�kz)

ω0ε0

2LP̃s

∫
�

d3r × e∗
s · [d̂(r,−2ω0;

ω0, ω0) : (efef )] exp(ıG0 · r)=0 , (9)

where vgf,s = c/ngf,s = 1/(∂kf,sz/∂ω)ω0 are the group veloc-
ities (GV) in the z direction and P̃f,s = 0.5 Re

∫
dA(enf,s ×

h∗
nf,s

)z is the modal Poynting vector flux per unit cell in
propagation direction for the unperturbed system and does not
depend on z [49]. These equations are valid only [36] if there
exists one reciprocal lattice vector G0 such that ks⊥ − 2kf⊥ +
G0⊥ = 0 and the phase mismatch in propagation direction
�k = k0

sz − 2k0
fz + G0z is small, i. e., if |�k| � 2π/L. Here

we allow also for BSHG, i. e., we allow for a negative sign
σ = sgn(vgs) of the SH GV, where consequently [50] also
sgn(P̃s) = σ .

As known from Ref. [48], for materials with Kleinman
symmetry and for a real d̂ tensor, the following relation holds

e∗
f · [d̂(r,−ω0; −ω0, 2ω0) : (e∗

f es)]

= es · [d̂(r,−2ω0; ω0, ω0) : (e∗
f e∗

f )], (10)
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giving one single effective nonlinear coefficient for both
equations:

ı
∂a

∂z
+ ı

vgf

∂a

∂t
+ ba∗ exp(ı�kz)

ω0ε0κ

2LP̃f
= 0 , (11)

ı
∂b

∂z
+ ı

vgs

∂b

∂t
+ a2 exp(−ı�kz)

ω0ε0κ
∗

2LP̃s
= 0 . (12)

Here κ = ∫
�

d3re∗
f · [d̂(r,−ω0; −ω0, 2ω0) : (e∗

f es)] exp
(−ıG0 · r). Utilizing the equivalence of energy and group
velocity [50] and normalizing the fields with respect
to their respective powers via a = (P0/P̃f )1/2A, b =
(P0/|P̃s|)1/2 exp(−ıϕ0)B, where P0 is an arbitrary fixed
normalization power and ϕ0 the phase of κ [i. e., κ =
|κ| exp(ıϕ0)], we obtain

ı
∂A

∂z
+ ı

vgf

∂A

∂t
+ γBA∗ exp(ı�kz) = 0 , (13)

ıσ
∂B

∂z
+ ı

|vgs|
∂B

∂t
+ γA2 exp(−ı�kz) = 0 , (14)

with

γ =
√

2P0

ε0c3
ω0

√
n2

gfngs

ε2
nfεnsAn

. (15)

Here εnf,s is the dielectric constant of the nonlinear material
at the FH and SH frequencies, respectively, and is introduced
just for comparison with the case of an unstructured material.
An is the effective nonlinearity including the overlap of the
fields and the tensorial character of the nonlinear coefficient:

An

= 1

L

ε−2
nf ε−1

ns

(∫
�

d3rεf (r)|ef|2
)2 ∫

�
d3rεs(r)|es|2∣∣∫

�
d3re∗

s · [d̂(r,−2ω0; ω0, ω0) : (efef )] exp(ıG0 · r)
∣∣2 .

(16)

Equation (13) and (14) are the same as the well-known
equations describing SHG with plane waves in a homogeneous
medium [2] with an additional slow time dependence.

In our physical power scaling of the equations we obtain
for the transported powers per transverse unit cell Pf (z) =
P0|A(z)|2 and Ps(z) = P0|B(z)|2 for FH and SH, respectively.
Here it should be kept in mind that for σ = −1 the SH power
is directed backward, resulting in a negative Poynting vector
flux. One conserved quantity is Pf (z) + σPs(z). In the extended
zone scheme of the dispersion relation in k space, where k is
not restricted to the first Brillouin zone, we have G0 = 0 and
extended zone Bloch vectors ke

f,s with �k = k0e
sz − 2k0e

fz and
ke

s⊥ − 2ke
f⊥ = 0 are obtained instead.

In the limit of the interaction of linearly polarized plane
waves in a homogeneous material we simply obtain

γ =
√

2P0

ε0c3
ω0

1√
εnf

√
εnsAn,hom

, (17)

An,hom = A⊥|deff|−2 (18)

with the unit cell cross section A⊥ and the effective non-
linear coefficient deff [48]. Here, obviously the intensities
are If,s = Pf,s/A⊥. Applying this modal approach to a bulk
medium using antiparallel plane waves and by introducing

an artificial virtual period L = 2π/|k0
sz − 2k0

fz| gives the
equations for phase matched (�k = 0) BSHG, which is in
contradiction to previous investigations. Closer inspection,
however, reveals that the nonlinear coefficient vanishes in this
case. One possibility of optimal overlap at simultaneous phase
matching for BSHG would be using a (homogeneous on the
wavelength scale) left-handed material (LHM) [51–54] with
the appropriate material dispersion, as LHMs are intrinsically
dispersive.

For the stationary (∂A/∂t = ∂B/∂t = 0), forward (σ = 1)
phase matched (�k = 0) case without SH input and with
A(0) = A0 we get the solution [2] A(z) = A0 sech(γ |A0|z),
B(z) = ıA2

0 tanh(γ |A0|z)/|A0|. For a fundamental power input
Pf (0) = P0, i. e., |A0| = 1, we obtain for the actual powers per
unit cell

Pf(z) = P0 sech2(γ z) , (19)

Ps(z) = P0 tanh2(γ z) , (20)

where γ ∝ √
P0 as given in Eq. (15).

For the stationary backward (σ = −1) phase matched case
the analysis was performed considerably later [6]. Here the
boundary conditions for the FH and SH are different, as
the SH is propagating (energy transport) in the negative
z direction. Therefore, we have to fix the length of the
nonlinear medium and to impose at this exit boundary the
condition that there is no SH input from that direction. In
the following l is the length of the nonlinear part of the PhC.
The linear properties continue (infinitely) after that length as
otherwise this interface would lead to linear reflections. The so-
lution for the amplitudes is now A(z) = Al sec[γ |Al|(z − l)],
B(z) = −ıA2

l tan[γ |Al|(z − l)]/|Al|. Here, Al = A(l) is the
FH amplitude at the end of the nonlinear medium and is
connected to the amplitude at the FH input facet A0 = A(0)
via the transcendental equation Al = A0 cos(γ l|Al|). For any
value of γ l there is always a solution of this equation
that satisfies γ l|Al| < π/2 leading to |A(z)| and |B(z)|
monotonically decreasing with z in the nonlinear region.
Additional solutions appearing for γ l|A0| larger than the
critical value of 6.202395 . . . lead to intermediate singularities
of sec[γ |Al|(z − l)] and tan[γ |Al|(z − l)] upon propagation
and, hence, are unphysical. For a FH input power of P0, i.e.,
|A0| = 1, the powers of the waves per unit cell are given by

Pf (z) = P0|Al|2 sec2[γ |Al|(z − l)] , (21)

Ps(z) = P0|Al|2 tan2[γ |Al|(z − l)] , (22)

where |Al| is obtained from |Al| = cos(γ |Al|l).
For large phase mismatch |�k| � γ |A0| and because due to

|A(0)| = 1 and B(0) = 0 also the prerequisite |A(0)| � |B(0)|
is fulfilled, we may resort to the UDPA [2] (Pf(z) = P0 =
const.) to obtain the solutions

Ps(z) = P0γ
2 ×

{
z2 sinc2

(
�k
2 z

)
forward SHG

(z − l)2 sinc2
[

�k
2 (z − l)

]
BSHG.

(23)

Large values of |Al| for large normalized phase mismatch
�kl lead to an instability of the solution [17]. In the following
we work in the regime of small pump values.

For characterizing the strength of the nonlinear interaction
in the PhC we compare the SHG efficiencies defined by
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η = Ps(z)/P 2
f (0)z2 in the UDPA, which is also valid for

�k = 0 for small propagation distances z. Because in the
backward case the SH grows from l into negative direction, z

has to be replaced by (z − l) in this expression. We find

η = 2
ω2

0

ε0c3εf
√

εs

⎧⎨
⎩

d2
eff

A⊥
bulk

n2
gfngs

εf
√

εs

1
An

PhC.
(24)

We define the nonlinear FOM as ratio of the PhC efficiency
and the bulk efficiency (at the same pump frequency ω0) to
obtain

FOM = n2
gfngs

εf
√

εs

d−2
eff,bulkA⊥

An
. (25)

For the bulk case we assumed here that phase and group
velocities do not differ substantially as we consider only
weakly dispersive materials. If QPM is used in the bulk case
the FOM has to be multiplied by a factor of (π/2)2. Obviously,
An corresponds to an effective area, incorporating the d̂ tensor
already. Usually, the second factor of the right-hand side of
Eq. (25) will be always smaller than unity as the PhC comprises
also air. However, the first factor can overcompensate this
effect and even dramatically enhance the FOM when the group
velocities of the interacting Bloch waves become substantially
smaller than the phase velocities in the bulk medium, as it
happens, e.g., close to band edges. This effect will be verified
in the following sections.

III. PHASE MATCHING FOR FORWARD AND
BACKWARD SHG

Currently, 2D PhC membranes of LiNbO3 are expected to
represent a novel experimental platform for nonlinear experi-
ments [33]. Here the membrane provides the vertical guidance,
whereas the in-plane dynamics is essentially governed by
the 2D PhC structure. Therefore in the following we restrict
ourselves to a true 2D system, where y is the invariant direction
of the system perpendicular to the plane of periodicity. We
use a hexagonal lattice of circular air holes with hole radius
r and lattice pitch a and neglect material dispersion and
anisotropy. However, although the dispersion provided by the
periodic structure is much stronger the material dispersion
and anisotropy have finally to be taken into account for the
proper designs of experiments. This can be mimicked via a
small correction of the hole radius as was shown in Ref. [36].
This should be kept in mind for obtaining proper designs for
experiments. We choose an (isotropic) dielectric constant of
LiNbO3 of ε = 2.15882 corresponding to the extraordinary
wave of the in reality isotropic material at a wavelength of
1 µm and room temperature [55]. A ratio r/a = 0.3 is used
and the dispersion relation of the PhC is calculated solving
Maxwell’s equations with periodic boundary conditions by
preconditioned conjugate-gradient minimization of the block
Rayleigh quotient in a plane wave basis, using a freely available
software package [56]. We focus on TE-polarized light first.

A. Efficiency enhancement of forward SHG

From the conventional band structure diagram, where the
dispersion relation along high-symmetry lines is depicted
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FIG. 1. (Color online) TE band structure diagram for the PhC
with r/a = 0.3 and ε = 2.15882. The gray ellipses mark the regions
used for phase matching in the forward (F) and backward (B) cases.

(see Fig. 1) we can identify the TE photonic bandgap. For
visualization of the phase matching condition �k = 0, which
is equivalent to 2ωnf (k

e
s/2) = ωns (k

e
s), the functions ωnf (k

e
s/2)

and ωns (k
e
s) are plotted in the extended zone scheme in the

isofrequency diagram in Fig. 2 together with the collinear
phase matching curve 2ωnf (k

e
s/2) = ωns (k

e
s). The frequencies

are given in terms of the normalized frequency u = ωa/2πc =
a/λ.

It can be seen that for any direction of the (extended zone)
Bloch vectors phase matching can be achieved. However, for
meaningful operation in reality the directions of the energy
flow (corresponding to the group velocity directions, see
Ref. [50]) of both waves should only slightly differ. Then here,
the two high-symmetry directions M und K are obviously

kz

k x

M

KK

ΓΓ

Γ

K

M

FIG. 2. Isofrequency curves for the hexagonal PhC lattice with
r/a = 0.3 and TE-polarized light. Band 1 (solid curves) is scaled
by a factor of 2 [i.e., ω1(k/2)], the short-dashed curves correspond
to (the unscaled) band 2. The long-dashed curve represents perfect
phase matching for collinear propagation, the black dots mark the
points of collinear phase matching in (two of six) equivalent M
directions at uf = 0.28353, the diamond symbols mark the points
of phase matching for BSHG in two equivalent K directions at
uf = 0.20491. For BSHG kx and kz are exchanged.
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ideal. A closer inspection of Fig. 2 reveals phase matched
forward SHG in M direction (at uf = 0.28353) and phase
matched BSHG in K direction (at uf = 0.20491).

In the forward case the FH field distribution still resembles
a plane wave, with a strong standing-wave character, though,
with the transverse electric field component efx being the
major component. Also the SH field is mainly polarized
in the transverse direction. Hence, in order to utilize the
largest and diagonal d̂ tensor component d33 we orient the
nonlinear crystal’s c axis along x in the laboratory frame.
Simultaneously the remaining much smaller components of
the nonlinear tensor may be neglected. Then we obtain
from (16) An = Aeff/|d33|2 with the effective area for this
second-order interaction. In the 2D system the respective
effective width amounts to Aeff = 3.7a, which means a 3.7-
fold smaller field overlap compared to the bulk case. On the
other hand, the group indices are ngf = 3.8 and ngs = 5.2,
leading in total to a nonlinear FOM of 2. However, this
FOM corresponds to the case of perfect phase matching in
a plane wave configuration utilizing likewise the large d33

coefficient which is unrealistic. It can only be exploited in
QPM geometries, which leads then to a FOM of 4.9.

In the backward case (propagation in K direction) the
situation is slightly different. The FH fields resemble even
more a traveling plane wave, as the point of phase matching
is far away even from the fundamental Bragg resonances (see
Fig. 1). The second-harmonic fields, however, have a standing
wavelike pattern in the transverse direction. In particular, due
to its symmetry the transverse component leads to an exactly
vanishing nonlinear effective coefficient. The longitudinal
component still gives a nonvanishing contribution of Aeff =
1350a, which is very large. This value is associated with the
tensor component d33, and with the group indices ngf = 1.8
and ngs = −6.1, resulting in FOM = 0.0015. Exploiting the
transverse component of the fundamental field, however, one
obtains a much smaller effective width of Aeff = 18a, asso-
ciated with d31. In fact, here the nondiagonal coefficient d31

generating a polarization component in propagation direction
from the transverse electric field component ex provides a
doubled contribution to the effective nonlinear coefficient,
although d33 ≈ 6d31.

B. Giant backward SHG enhancement by slow light

The nonlinear FOM of 0.0015 in the investigated 2D PhC
is still larger than for most other approaches but means a
low efficiency compared to the forward case. Therefore in the
following we want to improve the FOM. Obviously, there are
two possibilities. First, increasing the field overlap and, hence,
decreasing the effective area and, second, using slow light for
both waves. In our hexagonal structure with TE polarization
we could not identify regions with field distributions without
transverse knots and good overlap which at the same time allow
for phase matching with a backward wave. One reason may be
the photonic bandgap, which tends to shift the higher-order
bands (2 · · · 6) to even higher frequencies. This way, the
usual (1D-like) Bragg resonances at the high-symmetry points
, M, and K, which in a simple 1D picture correspond to
two standing waves separated by a small gap induced by
the 1D periodicity are also shifted up more. This allows
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FIG. 3. (Color online) Band diagram for the hexagonal PhC
lattice with r/a = 0.35 and TM-polarized light. The gray ellipses
mark the regions used for phase matching for backward SHG.

a phase matched combination of the first band with only
the second band (the lower egde of the small stop gap at
the  point), which is usually a forward wave, due to the
restriction ke

s = 2ke
f . The only possible phase matching is

then to modes with transverse knots, as shown earlier here.
Consequently, we investigate the TM polarization now, as there
is no photonic bandgap. Thus the 2D periodicity could even
shift the resonances to smaller frequencies and allow for phase
matching to the backward wave that still resembles a plane
wave. We find phase matching for r/a = 0.35 at uf = 0.29544
(see Figs. 3 and 4) with the group indices ngf = 4 (first band)
and ngs = −4.9 (fourth band).

As ey is the only electric field component in a TM
configuration it is optimal to orient the LiNbO3c axis along
the y direction (perpendicular to the plane of periodicity). We
obtain from the fields a good overlap with Aeff = 5a and finally

kz

k x

M

KK

ΓΓ

FIG. 4. Isofrequency curves for the same structure as in Fig. 3.
Band 1 (solid curves) is scaled by a factor of 2 [i.e., ω1(k/2)],
the short-dashed curves correspond to (the unscaled) band 4. The
long-dashed curve represents perfect phase matching for collinear
propagation, the diamond symbols mark the points of collinear phase
matching for BSHG in M direction at uf = 0.29544.
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FOM = 1.5 (QPM FOM of 3.8) which is only slightly smaller
than for the TE forward case.

IV. PROPAGATION SIMULATIONS WITH THE
NONLINEAR FINITE-DIFFERENCE TIME-DOMAIN

METHOD

The advances in the performance of computer hardware
enabled for direct numerical treatment of microsized pho-
tonic components. We model the system using the FDTD
method [57], where Maxwell’s equations are discretized in
time and space without further approximation. This treat-
ment ensures that all effects of light propagation, e.g.,
field discontinuity at high-contrast dielectric interfaces, are
properly accounted for. Moreover, the limits of frequently
used approximations, e.g., the UDPA [34,39,40] can be
identified. The quadratically nonlinear polarization of LiNbO3

in the time domain used here [cf. Eqs. (6) and (7)] is
given by

Pnl(r, t) = 2ε0d33(−2ω0; ω0, ω0)E2
x,y,z(r, t)nx,y,z , (26)

where Ex,y,z is the (real) x, y, z component of the electric
field in the time domain, depending on whether we are
treating the TE forward (x), TE backward (z), or TM
(y) case. nx,y,z is the corresponding unit direction vector.
Equation (26) expresses an instantaneous nonlinear response
to the exciting electric field. Only the tensor component d33

(oriented along x, y, z in the laboratory frame) is taken into
account and the others are neglected. For reasons of numerical
stability, the nonlinear term is treated implicitly in the usually
explicit FDTD scheme. However, due to the simpler form
of Eq. (26) we solve the nonlinear equations analytically
instead of using an iterative algorithm [58]. As in the previous
section in the following we neglect material dispersion
and anisotropy of LiNbO3, although their incorporation is
not a fundamental problem. However, taking the material
dispersion into account would increase the computing time
considerably.

As the phase mismatch is essentially determined by the
phase evolution of the linear modes it is important to accurately
model the phase over the whole propagation length, i.e.,
the discretization dependent numerical dispersion should be
substantially lower than the “true” physical dispersion over
the PhC length [59]. Here we aim at propagation lengths
of up to 700 lattice periods corresponding to a length of
the order of 1 mm with pump frequencies in the near
infrared. From careful examination of SHG in a homogeneous
medium we found a spatial discretization of �x = λf/424
to be sufficient for the investigated propagation lengths.
The time step was taken to be �t = �x/2c, relatively
close to the (Courant) criterion for numerical stability [57]
in order not to introduce too much additional numerical
dispersion.

We use periodic boundary conditions in the direction
perpendicular to the propagation direction to reduce numerical
efforts. Consequently, for propagation in M direction the
transverse size of the computational domain is a and the
periodicity along z is

√
3a, corresponding to the conventional

(rectangular) elementary cell of the hexagonal lattice. In
propagation direction the computing window was terminated
by perfectly matched layer boundaries [57]. As excitation a
plane wave of adjustable intensity and frequency was used at
one end, in a short unstructured region before the PhC facet
in the case of forward SHG, thus approximating wide beams
by Bloch waves. Otherwise the PhC was continued into the
boundaries to lower reflections of backward propagating light.
After a steady state was reached discrete Fourier transforms at
the FH and SH frequency were applied to the fields at every grid
point, giving the corresponding (complex) fields in the Fourier
domain. From this, all interesting quantities, as the Poynting
vector or flux along propagation direction, can be obtained.
To obtain the time-averaged Poynting vector flux of FH and
SH waves, corresponding to the directed power, we integrate
the real part of the z component of the complex Poynting
vector over the cross section (along x) at every z. To be able to
compare the efficiencies for different frequency detunings the
input power at the very beginning of the PhC was kept constant
for all calculations. A constant sum (or difference) of FH and
SH powers along propagation confirms energy conservation
and that almost no energy is transferred to other frequency
harmonics. For a meaningful comparison of the efficiencies of
different configurations with different transverse unit cell size
we actually give the power per transverse unit cell normalized
to the cross-section area of this unit cell, corresponding to
the average intensity of the light and to the conventional,
transversely constant, intensity of a plane wave. Moreover, as
the SHG efficiency explicitly depends on the pump frequency
(γ ∝ ω0), we have to compare the values along propagation
in the three different systems for the same frequency, resulting
in different lattice periods a1, a2, and a3, where case 1 is
the TE forward SHG, case 2 is the TE BSHG, and 3 the
TM BSHG.

In Fig. 5 the dependence of the FH and SH average
intensities on z for phase matched forward SHG with r/a =
0.3 and for plane waves in a nondispersive bulk medium, which
is phase matched automatically, is displayed.

The aperiodic tanh2(z) behavior of the SH can be identified.
However, in the PhC the SH intensity grows much faster.
From these two curves a FOM of 2.3 is obtained which
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FIG. 5. FH and SH average intensities for phase matched SHG in
the PhC with r/a = 0.3, for the phase matched bulk at uf = 0.28369
and for TM BSHG in the PhC with r/a = 0.35. The same units were
used for all power values.
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FIG. 6. Average FH and SH intensities for phase matched
BSHG with TE-polarized light in the PhC structure of Fig. 1
for propagation in the K direction (solid lines) and for phase
matched SHG in the bulk (dashed lines). The same intensity
units were used as in Fig. 5. The SH is shown on a logarithmic
scale.

is in excellent agreement with the value obtained from the
modal method. Also, for the detuned pump frequencies, the
oscillation periods for different signs and magnitudes of
the resulting phase mismatch are in perfect agreement with
the modal method [36].

Next, we investigate the BSHG for the very same structure
with the same orientation of d33 but for propagation in K
direction and at different frequencies. In Fig. 6 we can see
the dependence of the average FH and SH intensities on
propagation distance. The dramatically decreased efficiency
with a FOM of only 0.0017 can clearly be seen. This again is
in very good agreement with the value obtained from the modal
approach. For this FH power at this propagation distance even
the UDPA is valid. For appropriately (25 times) increased FH
input average intensity we observe a noticeable depletion of
the pump.

Finally, in the TM structure we again obtain a similarly
high conversion efficiency as for the forward case (see Fig. 5)
as predicted from the modal approach. To be able to compare
the powers and to directly obtain the FOM from the graph,
the FH power at the exit z = l was adjusted to match the
input powers of the forward calculations. We can also see the
oscillations for the phase mismatched case shown in Fig. 7.
One difference to the forward case is the strongly reduced
frequency bandwidth of the phase matching conditions. We
estimate a bandwidth smaller by a factor of more than 10. The
reduction is clear from the modal description [12]. As two
dispersion relations with opposite slope (opposite signs of the
group velocity) cross, |�k| increases rapidly for small changes
of the frequency. This is in contrast to the forward case.
Essentially, in a first-order approximation, the phase matching
frequency bandwidth is inversely proportional to the difference
of the inverse group velocities [12]. In the slow light regime
close to the band edge, however, this is a crude approximation,
as the dispersion curve cannot be well approximated by a linear
behavior.

A weak forward-propagating SH field can be identified.
It becomes manifest in a constant but nonzero SH output
at the end of the crystal and in a shift of the behavior
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FIG. 7. (Color online) Average directed SH intensities for BSHG
with TM polarized in the PhC structure of Fig. 3 for propagation in the
M direction for different pump frequencies. Line 4 corresponds to
the frequency of phase matching. The same intensity units were used
as in Fig. 5. The vertical dashed line marks the end of the nonlinear
material.

∝ − sin2[π (z − l)/2Lc] of the Poynting vector flux to slightly
positive values where it should be 0. This is caused by
reflections of the backward generated SH at the input interface
where the PhC starts. Therefore, this effect is more pronounced
for oscillation periods (corresponding to 2Lc = 2π/|�k|, and
hence, depending on the phase mismatch) where a backward
power maximum hits this interface and is largest for the phase
matched case but vanishes if a minimum coincides with the
front interface. The reflections are relatively large due to the
interface between modes of so different group velocities (slow
and normal light). However, due to the very large phase mis-
match to the forward propagating FH wave these forward SH
waves virtually do not contribute to the nonlinear interaction.
Comparing the backward growth at the end of the crystal with
the phase matched bulk we obtain in FOM of 1.8, which again
is in very good agreement with the value proposed by the modal
method.

The efficiency in the phase matched case can be even further
increased by shifting the point of phase match still further into
direction of the high symmetry points  and M by increasing
the hole radius. This effect, however, is much less pronounced
than in the TE forward case.

V. CONCLUSIONS

We have investigated both forward and backward type I
SHG of wide beams in 2D PhCs. We propose a structure
where forward SHG and BSHG are phase matched. The
introduced nonlinear FOM allows for an easy comparison of
the efficiency with the phase matched bulk case. Using slow
light Bloch modes for the FH and SH waves we have obtained
a greatly enhanced SHG efficiency. For fixed input power per
transverse unit cell (corresponding to the beam intensity) the
slow light leads to much larger field amplitudes and, hence,
largely enhances the strength of the nonlinear interaction. For
forward SHG in an ideal structure an enhancement of more
than 60 can be obtained (see Ref. [36]). We have suggested
a design for BSHG that allows an enhancement compared
to the QPM bulk case of almost 3, which is very high for a
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backward configuration. With the current state of the art in
nanotechnology, PhCs are promising candidates for achieving
larger SHG efficiencies than with QPM for the backward case.
The quantitative analysis based on a modal approach is in
excellent agreement with results obtained from the nonlinear
FDTD.
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