
GEOPHYSICAL RESEARCH LETTERS, VOL. 8, NO. 7, PAGES 729-732, JULY 1981 

HUGONIOT EQUATION OF STATE OF PERICLASE TO 200 GPa 

M. S. Vassiliou and Thomas J. Ahrens 

Seismological Laboratory 252-21 
California Institute of Technology 

Pasadena, CA 91125 
U.S.A. 

Abstract. New shock wave data on {100 t oriented single 
crystal periclase covering the pressure range from 160 to 200 
GPa suggest that Mg0 is described by a single Hugoniot up to 

200 GPa, with no displacive phase transitions of volume change 
greater than 1-1.5 per cent. For a third order finite strain fit, 

with K 0 constrained to its ultrasonically determined value of 
162.7 GPa, the implied K 0' of 4.27 + 0.24 is in agreement with 
ultrasonically determined value of 4.17 + 0.14. The new data 
indicate a somewhat steeper Hugoniot than that suggested by 

previously published shock wave results under 120 GPa. A pre- 
viously published result at 258 GPa shows more compression 
in the light of the present data than would be expected for 

Mg0 in the B1 structure, and may signal the onset of a phase 

transition, although we cannot confidently make this interpre- 

tation. If Mg0 forms an ideal solid solution with Fe0, our data 

does not support the occurrence of a significant transition in 
magnesiowustite at lower mantle pressures. 

1. Introduction 

Magnesium oxide is a substance of considerable geophysical 

interest. It has played an important role in our thinking con- 

cerning the composition of the earth's lower mantle, from the 

early mixed oxides model of Birch (1952) to the more recent 
ideas propounding an equilibrium between ferromagnesian 

perovskite and magnesiowustite (e.g. Liu, 1979). Because of 

this, as well as for other scientific and industrial reasons, 

periclase is an exceedingly well studied material. 
There is a conspicuous lack of published data, however, in 

the high pressure regime above 100 GPa. The shock wave results 

of Carter et al. (1971) and the static high pressure data of Mao 

and Bell (1979) cover the range up to 120 GPa; there is then a 
large gap until a solitary datum of Al'tshuler et al. (1965) at 
258 GPa. This is a large interval over which to extrapolate with 

confidence, and the Al'tshuler et al. datum was moreover 
obtained on an initially porous sample, making it more difficult 
to interpret. The pressure range above 120 GPa has been made 
all the more important by the discovery of a shock induced 
phase transition in wustite of volume change four per cent or 
greater (Jeanloz and Ahrens, 1980a); a similar transition in 
periclase at high pressure could have significant geophysical 
implications. We present here the results of three shock wave 
experiments on single crystal periclase, covering the pressure 
range from 160 to 200 GPa, relate these data to previous 
ultrasonic, shock wave, and thermodynamic measurements, and 
briefly discuss possible geophysical implications. 

2. Experimental 

Samples of synthetic single crystal periclase (source: Norton 
Co.), on the order of 3 mm. in thickness (Table 1) were mounted 
on tantalum driver plates and impacted by tantalum flyer 

plates launched by a two-stage light gas gun. The crystals were 
oriented such that the direction of impact was parallel to•100]. 
This orientation was more or less dictated by the physical 

nature of our samples; we note that a B1/B2 transition, which 
can be regarded as a shear transformation, might be observable 
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at a lower pressure using a(111] orientation (Demarest et al., 
1977; see Fritz et al., 1971, for evidence of this effect in NaC1). 

The experimental setup used here was essentially the same as 

that described in detail by Jeanloz and Ahrens (1977, 1980a). 
Briefly, shock velocity was measured by use of arrival and 

buffer mirrors, whose change in reflectivity was monitored with 
an image-converter streak camera. Streak records were analysed 

by visually measuring photographic prints, digitizing the arrivals 
and fitting them by least squares, and, where appropriate, by 

performing microphotometer scans on the negatives. The most 
serious errors are in the measurement of shock velocity. Two 
important sources of error here are fuzziness of arrivals caused 
by crosstalk in the image converter tube, and curvature of 
arrivals arising from projectile distortion at high velocities. The 

latter is presumably caused by the inertia of the tantalum flyer 

plate relative to its lexan casing (Bernier, 1977; Bernier and 
Valadon, 1979). Projectile bowing is accounted for by appro- 
priately fitting the curvature of the first arrival (Jeanloz and 
Ahrens, 1980a; Vassiliou and Ahrens, manuscript in preparation), 
rather than treating the streak record as a set of parallel lines. 

Particle velocity is obtained by impedance matching (McQueen 

et al., 1970), and the data are transformed to pressure-density 
space via the Rankine-Hugoniot relations. The error analysis is 
similar to that described by Jackson and Ahrens (1979). Formal 

errors in density (the largest error) are generally between 1 and 
1.5 per cent. 

3. Results and Discussion 

The results of the three experiments are tabulated in Table 2, 

and plotted in Figs. I and 2 along with shock wave data from 
other investigators. Examining Fig. 1, we see that the present 

results are quite consistent with those of Carter et al_ (1971), 
obtained at Los Alamos Scientific Laboratory (LASL). At least 
squares fit of the form 

U s = C O + sup (1) 

to the LASL points only yields C O = 6.61 + 0.06 km./sec., 
s=1.36+ 0.03; to the LASL points and the present data, it yields 
respectively 6.61 + 0.05, 1.36 + 0.02. These lines, which are 

very similar, are drawn as curve 1. We note that C O here is 
somewhat lower than the value of 6.74 which would be ex- 

pected from the ultrasonically determined value of K 0 = 
162.7 + 0.2 GPa (Jackson and Niesler, 1981). (This value is 
compatible with other recent measurements, for example the 
value of 162.1 + 1.7 obtained by Bonczar and Graham, 1981; 
see also Spetzler, 1970). As Carter et al. (1971) noted, this 
discrepancy is in the wrong direction to be explainable by 
rigidity effects. They proposed a phase change from the B1 

to the B2 structure below 20 GPa as a possible explanation, 
but this is not consistent with the later static results of Mao 

and Bell (1979);we have no alternative explanation. One more 
point to note in Fig. I is that the present data imply less of a 
curvature in the Us-Up Hugoniot than might be expected from 
the LASL data alone (cf. curves 2 and 3, quadratic fits to all 
data in the figure and to LASL data only, respectively). 

Fig. 2 shows a variety of equation-of-state curves in pressure- 
density space. All are third order Eulerian (Birch-Murnaghan) 
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Table 1. Experimental Conditions 

Shot # Flyer/ Buffer Impact 
Driver Material Velocity, 

km./sec. 

Bulk Archim. Sample Buffer 

Density, Density, Thckns., Thckns., 
g./cc. g./cc. mm. mm. 

LGG070 Ta FQ 1 5.585 
(0.05) 2 

LGG102 Ta FQ 6.01 

(0.01) 

LGG072 Ta FQ 6.48 

(0.06) 

3.553 3.580 2.940 1.900 

(0.003) (0.003) (0.0025) (0.0025) 

3.569 3.582 3.114 1.936 

(0.003) (0.003) (0.0025) (0.0025) 

3.554 3.585 3.499 1.863 

(0.003) (0.003) (0.0025) (0.0025) 

Fused Quartz 
Standard error 

finite strain fits, according to the formulation of Davies (1973). 
Although higher order expansions might be physically more 
realistic at high pressures, it is not generally possible in practice 

to determine the parameters meaningfully for such fits. As we 

shall see, even the third order case is difficult to fit stably when 

K 0 is not constrained by ultrasonics. We have performed two 
types of equation-of-state inversions: first, a two parameter 

inversion for K 0 and K 0 ' (see Appendix); and second, a simple 
constrained inversion for the single parameter K 0 ', where in 
this case we have constrained K 0 to be equal to Jackson and 
Niesler's (1981) value. Results for the parameters in several 
cases of interest are summarised in Table 3. The errors given are 
formal standard errors of estimate. Only some of the fits are 

plotted in Fig. 2, partly because many of them approximately 
coincide. As Table 3. shows, the unconstrained inversions yield 

a relatively large variation in parameter values according to 

which points are fit. The two parameter Birch-Murnaghan in- 
version is somewhat less stable than the inversion for the param- 

eters in the shock wave equation of state (eq. 1). The constrained 

fits are rather more uniform. All yield K 0' values consistent 
with those derived from ultrasonics: Jackson and Niesler's 

(1981) value for K 0' is 4.17 -+ 0.14. All in all, data from this 
study seem fairly compatible with those of Carter et al., but 

they do imply a certain steepening in the Hugoniot at higher 

pressure (compare curves I and 2 with curve 3). We might note 
that Bukowinski (personal communication) has done theoretical 
work suggesting a steeper Hugoniot than the LASL curve at 

high pressures. 

In this light, the 258 GPa datum of Al'tshuler et al. (1965) 
raises some interesting possibilities. Viewed superficially, it may 

seem quite consistent with the lower pressure results. We must 

remember, however, that this datum represents an experiment 
conducted on an initially porous sample. Al'tshuler et al.'s 
reported initial density is 3.425 g./cc., thus a porosity of 4.4 per 

cent. To view this datum more meaningfully, then, we must 

apply some correction for the irreversible heating incurred by 
an initially porous sample under shock. This phenomenon is 

discussed in detail by Zel'dovich and Raizer (1967). We may 
apply Al'tshuler et al.'s equation (1): 

Pc = Pp(h-- (P/P0))/(h-- (P/Pc)) 

h = 1 + (2/T) 

(2) 

where Pc is crystal pressure; Pp is porous pressure; p,pc, and P0 
are respectively dynamic density, initial crystal density, and 
initial porous density; and T is the high pressure Gruneisen 

parameter. T must somehow be obtained from TO, the zero 
pressure value, assuming some form for the volume dependence. 

An empirical relationship of the form 

T(p)=To(PO/p) n (3) 

is often used (Jeanloz, 1979). Carter et al. (1971) present 
porous data, as well as the single crystal data shown in Figs. 

I and 2; hence, some information does exist on the volume 

dependence of T in Mg0. There is considerable scatter in their 

data, but n=l in eq. 3 is consistent with their results. The 
vertical bar in Fig. 2 shows a range for the corrected positions 

of Al'tshuler et al.'s datum for zero pressure Gruneisen param- 

eters from 1.0 to 1.5, and n=l. (Available data suggests a best 

value of about 1.3 for T 0 (Touloukian et al., 1977)). 
Al'tshuler et al.'s corrected datum appears to indicate more 

compression than would be expected for Mg0 in the B1 struc- 
ture. It is denser by about three per cent than the predicted 

value according to curve 1, and about two percent compared 

with the predicted value from curve 2, these curves being 
respectively the unconstrained and constrained fits to all data 

Table 2. Results 

Standard Errors in Parentheses 

Hugoniot State 

Shot # Shock Particle Pressure 

Velocity Velocity GPa 
km./sec. km./sec. 

Density 
g•/cc. 

LGG070 11.70 3.842 159.7 5.29 

(0.17) (0. 04) (2•3) (0.05) 

LGG102 12.33 4.11 180.7 5.35 

(0.27) (0.02) (3.0) (0.07) 

LGG072 12.64 4.44 199.3 5.48 

(0.15) (0.05) (2.7) (0.05) 

Release State 

Shock Particle Pressure Density 
Velocity Velocity GPa g./cc. 

km./sec. km./sec. 

9.49 5.28 110.4 4.33 

(0.14) (0.09) (3.5) (0.17) 

9.75 5.45 117.1 4.65 

(0.25) (0.16) (6.4) (0.21) 

10.39 5.85 133.8 4.70 

(0.13) (0.08) (3.4) (0.14) 
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Figure 1. Shock wave data for Mg0. Curve A -- Linear fit to all data in 
figure; coincides approximately with linear fit to LASL data only 
(Carter et al., 1971) (eq. (1) of text if.). Curve B = Quadratic fit to all 
data in figure. Curve C = Quadratic fit to LASL data only. 

under 200 GPa. Ordinarily, we might consider this a significant 
deviation, and a possible indicator of a transition to a denser 
phase. In this case, however, great caution must be exercised 
before such an interpretation is made. We do not know the 
experimental error associated with Al'tshuler et al.'s datum. We 
note, also, that Al'tshuler et al.'s point deviates insignificantly 
from curve 4, which represents the highest density error bound 
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Figure 2. Pressure-Density Hugoniot equations of state (Table 3.) Open 
circle -- Al'tshuler et al. (1965) datum for 4.4 per cent porous Mg0. 
Open rectangle = Reasonable range of pressures when Al'tshuler et al. 
datum is corrected for porosity. Curve 1 -- Unconstrained 3 rd order fit 
to LASL data plus present data, Curve 2 -- Constrained fit to same, 
Curve 3 -- Constrained fit to LASL data only, Curve 4 = Highest density 
error bound to curve 2. 

Table 3. Equation of State 

Parameters 

(standard errors in parentheses) 

Unconstrained Constrained, K 0 =162.7 GPa 

Data Included K0, GPa K 0' K 0' 

LASL only 165.7 4.1 4.19 

(3.7) (0.12) (0.16) 

LASL plus 149.2 4.8 4.27 

present data (3.7) (0.13) (0.24) 

All, including 169.8 4.03 4.23 

Al'tshuler (5.27) (0.12) (0.29) 
et al. • 

Corrected for porosity using pT=1.32p 0 

to the constrained fit. One interpretation, then, is that even 

without error bars, Al'tshuler et al.'s datum lies marginally 

within the scatter of the lower pressure points. 

In any case, one fairly certain and important conclusion is 

that up to 200 GPa there is no phase transition in Mg0 involving 

a density change greater than 1.5 per cent or so. Though a phase 

change may be occurring with a volume change so small as to 

be undetectable by this method (systematics tell us that this is 

possible with certain transitions, e.g. B1 to B2 (Jamieson, 1977)), 
we can state with some confidence that there is no transition 

comparable to that observed in wustite. We note in this con- 

nection that the release data are consistent with this result; 

they all lie to the left of the Hugoniot in Fig. 2 and do not 

display the anomalous behavior sometimes associated with phase 

transitions (cf. the release data for Ca0 of Jeanloz and Ahrens, 
1980a; Ahrens and Watt, unpublished results). By itself, the 
absence of a large transition in Mg0 below 200 GPa tends to 

imply that contrary to the initial suspicions of Jeanloz and 

Ahrens (1980a), the wustite phase change is probably not 
directly important to the lower mantle, where pressures are less 

than about 130 GPa. If Mg0 forms an ideal solid solution with 

Fe0, a significant phase change in (MgxFel.x) 0, with x• 0.6, 
in equilibrium with lower mantle composition (Mg, Fe)Si03 
(Yagi et al., 1979), is not supported by the present data. If the 
Fe0 transition is a simple structural one, this may simply be 

because the volume change decreases smoothly across the solid 

solution series towards Mg0. Also possible, however, is that we 

are dealing with a phenomenon quite localized to the iron rich 

end. The nature of the Fe0 transition is still uncertain, and 

recent static pressure data (Zou et al., 1980) indicate that it 
may be a far more complex process than originally proposed 

(e.g. the B1 -- B2 hypothesis of Jeanloz and Ahrens, 1980a). 

4. Summary of Conclusions 

(1.) New shock wave data on Mg0 suggest that this material 
is described by a single Hugoniot up to 200 GPa, with no 
displacive phase transitions of volume change greater than 1-1.5 
per cent. 

(2.) For a third order finite strain fit, with K 0 constrained to 
its ultrasonically determined value of 162.7 GPa, the implied K 0' 
of 4.27 i 0.24 is in agreement with the ultrasonically determined 
value of 4.17 i 0.14. 

(3.) The new data suggest a somewhat steeper Hugoniot than 
do existing data under 120 GPa. A 258 GPa datum obtained by 
Al'tshuler et al. (1965) shows, when corrected for initial 
porosity, more compression by roughly two per cent than 
might be expected for Mg0 in the B1 structure on the basis of 
our data and the data of Carter et al. (1971). This may signal 

the onset of a phase transition, but we cannot confidently make 

this interpretation. 
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Appendix References 

Finding the optimum K 0 and K 0' from Hugoniot data can, 
with certain assumptions, be reduced to a simple two-parameter 
least squares problem. In the Birch-Murnaghan case (see Davies, 
1973), if we put 

x=(p/pc)l/3 
(A1) 

•1 = (3/4)(4- K0' ) 

the Hugoniot where there is no initial porosity is given by 

pH=(Es_(Ps/PT)+ETR) [(1/2)(1/Pcl_l/p)_l/pT } --1 (A2) 

with the isentropic pressure and energy Ps and E s respectively 
given by 

Ps = (3/2)K0(x7--x5) [1 + (1--x2)•l ] (A3) 

E s = (9/2)(Ko/Pc)((l+•l)(X4/4--x2/2+l/4) 
(A4) 

--•1 (x6/6--x4/4 + 1/12)} 

This is for the general case where we may have a phase transi- 

tion; all quantities refer to the high pressure phase except p cl, 
the low pressure phase initial density. ETR is the transition 
energy. 

Generally there is not enough sensitivity in a pressure-density 
Hugoniot data set to invert for all the unknowns, even in the 
third order case. We must reduce the number of unknowns by 

fixing T O and assuming a volume dependence for T. In the 
case of Mg0, as discussed in the text, available data suggest 

pT = 1.32p 0. In any case, physically reasonable variations in 
T do not have a significant effect on the calculated P-p 

Hugoniot. 

Jeanloz and Ahrens (1980b) transform (A3) to a form 

Y(X,ETR ,Pcl ,P) = K0 + (K0•I)X(x) (A5) 

where Y and X are complicated functions, and solve for 

K 0 and (K0•i) by least squares. In this study we use a 
slightly different, perhaps more standard, approach. Taking 

K00 and }10 as initial guesses for the parameters, we compute PH 0 
from (A2.). We then write 

PH--PH ø = (0PH/0K0)AK o + (0PH/O}i)A} 1 (A6) 

where the partial derivatives are found analytically from (A1)-- 

(A4), and 

AK 0 = K 0 -- K00 
(A7) 

A•I = •1 -- •10 

We solve for AK 0 and A• 1 by least squares, obtain new guesses 
for the parameters, and iterate until convergence is obtained. 

Acknowledgements. We would like to acknowledge the in- 
valuable laboratory expertise of E. Gelle, M. Long, and J. Long, 
without whom this study would have had much more trouble 

materialising. Ian Jackson, Peter Bell, and E. Graham graciously 

provided us with pre-publication copies of their work. Discus• 
sions with Raymond Jeanloz, Don Anderson, and Hiroo 
Kanamori were most helpful. This research was supported by 
the Earth Sciences Section, National Science Foundation, grant 
#EAR79-06766. 

(Contribution # 3594, Division of Geological and Planetary 
Sciences, California Institute of Technology) 

Al'tshuler, L.V., R.F. Trunin, & G.V. Simakov, Shock Wave Compression 

of Periclase and Quartz, and the Composition of the Earth's Lower 
Mantle, Izv. Acad. Sci. USSR, Phys. Sol. Earth, 657-660, 1965. 

Bernier, H., Forme de la Face Avant -Initialement Plane- d'Un Projectile 

Lance par un Canon a Gaz Leger, Proc. 28 q'rI Mtg. Aeroballistic Range 
Association, 1977. 

Bernier, H., and M. Valadon, Deformation d'un Projectile Soumis a une 
Acceleration Importante, Proc. 30 TH Mtg. Aeroballistic Range Associa- 
tion, 1979. 

Birch, F., Elasticity and Constitution of the Earth's Interior, J. Geophys. 
Res. 57, 227-286, 1952. 

Bonczar, L.J., and E.K. Graham, The Pressure and Temperature Dependence 
of the Elastic Properties of Polycrystal Magnesiowustite, Accepted for 
publication, J. Geophys. Res., 1981. 

Carter, W.J., S.P. Marsh, J.N. Fritz, and R.G. McQueen, The Equation of 
State of Selected Materials for High Pressure Reference, in Accurate 
Characterisation of the High Pressure Environment, ed. E.C. Lloyd, 

Nat. Bur. Standards Pub. 326, 147-158, 1971. 
Davies, G.F., Quasi-Harmonic Finite Strain Equations of State of Solids, 

J. Phys. Chem. Solids 34, 1417-1429, 1973. 
Demarest, H.H., R. Ota, and O.L. Anderson, Prediction of High Pressure 

Phase Transitions by Elastic Constant Data, in High Pressure Research: 

Applications in Geophysics, Eds. M.H. Manghnani and S. Akimoto, 
Academic Press, NY, 281-301. 

Fritz, J.N., S.P. Marsh, W.J. Carter, and R,G. McQueen, The Hugoniot 

Equation of State of Sodium Chloride in the Sodium Chloride Struc- 

ture, in Accurate Characterisation of the High Pressure Environment, 
ed. E.C. Lloyd, Nat. Bur. Standards Pub. 326, 201-208, 1971. 

Jackson, I., and T.J. Ahrens, Shock Wave Compression of Single Crystal 

Forsterite, J. Geophys. Res. 84, 3039-3048, 1979. 

Jackson, I. and H. Niesler, The Elasticity of Periclase to 3 GPa and Some 

Geophysical Implications, submitted to U.S.-Japan Seminar on High 

Pressure Research: Applications in Geophysics, eds. S. Akimoto and 
M.H. Manghnani, 1981. 

Jamieson, J.C., Phase Transitions in Rutile-Type Structures, in High Pres- 

sure Research: Applications in Geophysics, Eds. M.H. Manghnani and 

S. Akimoto, Academic Press, NY, 209-218, 1977. 
Jeanloz, R., Properties of Iron at High Pressures and the State of the Core, 

J. Geophys. Res. 84, 6059-6069, 1979. 
Jeanloz, R. and T.J. Ahrens, Pyroxenes and Olivines: Structural Implica- 

tions of Shock Wave Data for High Pressure Phases, in High Pressure 
Research, Eds. M.H. Manghnani and S. Akimoto, Academic Press, NY, 
1977. 

Jeanloz, R., and T.J. Ahrens, Equations of State of Fe0 and Ca0, Geophys. 
J. R. Astr. Soc. 62, 505-528, 1980a. 

Jeanloz, R., and T.J. Ahrens, Anorthite: Thermal Equation of State to 

High Pressures, Geophys. Jour. R. Astr. Soc. 62, 529-549, 1980b. 
Liu, L.G., Phase Transformations and the Constitution of the Deep Mantle, 

in The Earth: Its Origin, Structure, and Evolution, Ed. M.W. McElhinny, 

Academic Press, London, 177-202, 1979. 

Mao, H.K., and P.M. Bell, Equations of State of Mg0 and e Fe Under 
Static Pressure Conditions, J. Geoph. Res. 84, 4533-4536,1979. 

McQueen, R.G., S.P. Marsh, T.W. Taylor, S.N. Fritz, and J.W. Carter, 
The Equation of State of Solids from Shock Wave Studies, in High 

Velocity Impact Phenomena, Ed. R. Kinslow, 294-419, Academic Press, 

NY, 1970. 

Spetzler, H., Equation of State of Polycrystalline and Single Crystal Mg0 
to 8 Kilobars and 800 øK, J. Geoph. Res. 75 2073-2087, 1970. 

Touloukian, Y.S., R. IC Kirby, R.E. Taylor and T.Y.R. Lee, Thermal Ex- 

pansion, Nonmetallic Solids, IFI/Plenum, NY, 288ff, 1977. 
Yagi, T., P.M. Bell, and H.K. Mao, Phase Relations in the System Mg0- 

Fe0-Si0: Between 150 and 200 kbar at 1000 øC, Carnegie Inst. Wash. 
Ybk. 78, 614-618, 1979. 

Zel'dovich, Y.B., and Raizer, Y.P., Physics of Shock Waves and High 

Temperature Hydrodynamic Phenomena v. 2, Academic Press, NY, 1967. 
Zou, G., H.K. Mao, P.M. Bell, and D. Virgo, High Pressure Experiments 

on the Iron Oxide Wustite (Fel. x 0), Carnegie Inst. Wash. Ybk. 79, 
374-376, 1980. 

(Received April 21, 1981; 
accepted May 14, 1981.) 


