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Abstract

Motivation: Protein subcellular localization prediction has been an important research topic in

computational biology over the last decade. Various automatic methods have been proposed to

predict locations for large scale protein datasets, where statistical machine learning algorithms are

widely used for model construction. A key step in these predictors is encoding the amino acid se-

quences into feature vectors. Many studies have shown that features extracted from biological do-

mains, such as gene ontology and functional domains, can be very useful for improving the predic-

tion accuracy. However, domain knowledge usually results in redundant features and high-

dimensional feature spaces, which may degenerate the performance of machine learning models.

Results: In this paper, we propose a new amino acid sequence-based human protein subcellular lo-

cation prediction approach Hum-mPLoc 3.0, which covers 12 human subcellular localizations. The

sequences are represented by multi-view complementary features, i.e. context vocabulary

annotation-based gene ontology (GO) terms, peptide-based functional domains, and residue-

based statistical features. To systematically reflect the structural hierarchy of the domain know-

ledge bases, we propose a novel feature representation protocol denoted as HCM (Hidden

Correlation Modeling), which will create more compact and discriminative feature vectors by mod-

eling the hidden correlations between annotation terms. Experimental results on four benchmark

datasets show that HCM improves prediction accuracy by 5–11% and F1 by 8–19% compared with

conventional GO-based methods. A large-scale application of Hum-mPLoc 3.0 on the whole human

proteome reveals proteins co-localization preferences in the cell.

Availability and Implementation: www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/
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1 Introduction

Protein subcellular localization is crucial for understanding protein

functions, regulation mechanisms and protein-protein interactions.

However, it is often laborious and costly to identify a protein’s cellu-

lar compartment using wet-lab experiments, thus in-silico prediction

tools are highly desired when working with large scale datasets of

proteins with unknown locations. According to our statistics on the

SWISS-PROT database (Boeckmann et al., 2003) released on

February 2016, only 10.4% of the 550 552 proteins have experi-

mentally verified localization annotations (Supplementary Fig. S1).

The vast number of proteins with unknown or uncertain locations

requires reliable and efficient prediction methods.

Many automatic localization prediction tools have been developed.

Popular online predictors include BaCelLo (Pierleoni et al., 2006),

YLoc (Briesemeister et al., 2010), MultiLoc (Höglund et al., 2006),

GOASVM (Wan et al., 2013), WoLF PSORT (Horton et al., 2007),

CellPLoc (Chou and Shen, 2010), HSLPred (Garg et al., 2005), etc.

These prediction algorithms and tools have provided great convenience

for wet-lab scientists from proteomics and related fields.

Protein subcellular localization information has been widely

used to assist disease gene discovery and drug target identification

(Bakheet and Doig, 2009; Lahti et al., 2012). For instance, the role

that the Hippo/YAP pathway played in the development of pediatric

hepatocellular carcinoma, was studied by examining the expression

and subcellular localization of protein YAP in tumors (LaQuaglia

et al., 2016). Drug targets have also been found to favor certain sub-

cellular localizations (Bakheet and Doig, 2009). An easy-to-use pre-

diction tool with high accuracy will be very helpful to these wet-lab

and clinical studies. Our previously released web server, Hum-

mPLoc 2.0, was specially designed for predicting human protein lo-

calizations. The number of times it is used per year has risen from

20 000 in 2010 to over 80 000 in 2015 (Supplementary Fig. S2).

This indicates the importance of a further enhancement of the pre-

diction power based on new technology and more refined annota-

tion databases, to provide better prediction services.

Generally, computational methods for the identification of pro-

tein subcellular localization can be grouped into two categories, i.e.

homolog search-based and machine learning-based approaches. The

homology search-based approach can be considered as a nearest

neighbor predictor, where the distance between two proteins is usu-

ally measured by their sequence identity. By searching the query pro-

tein against a large pool of annotated sequences, this method finds

the top K closest proteins, and transfers their annotations to the

query protein (Nair and Rost, 2002). This is a quite straight-

forward protocol, but its performance significantly depends on the

homology targets detected (Wan et al., 2013). Furthermore, the

twilight-zone phenomena (Gardy et al., 2003), i.e. the proteins that

share high sequence identity could have very different structures or

functions, would also result in exceptions of this protocol.

The machine learning-based predictors are a class of flexible

models in the protein subcellular location predictions. They require

the so-called training dataset to learn the classification rules by stat-

istical learning algorithms. Thus, the quality of the training data is

closely related to the quality of learned statistical rules. Benefitting

from more and more reliable annotations on subcellular localization

of protein databases, the classification model can be trained more

sufficiently through a collection of large-scale training data. The

other important issue in machine learning-based models is how to

encode protein sequences, since most algorithms require numerical

feature vectors as input. How to extract discriminative features

from raw protein sequences as well as associated prior knowledge is

crucial to the final performance. Existing machine learning tools for

predicting subcellular locations use various features as follows:

(i) The residue-based statistical characteristics, such as the k-

mer frequencies (Cedano et al., 1997; Emanuelsson et al.,

2000; Park and Kanehisa, 2003), pseudo-amino-acid com-

position (Chou and Shen, 2006; Shen and Chou, 2007a,

2008) and Position Specific Scoring Matrix (PSSM) (Chou

and Shen, 2007; Nanni et al., 2013; Pierleoni et al., 2006;

Xie et al., 2005);

(ii) The peptide-based features, such as sorting signals (usually

in the N-terminal) (Emanuelsson et al., 2000; Horton et al.,

2007; Psort, 1997; Petsalaki et al., 2006; Savojardo et al.,

2015; Small et al., 2004), functional domains (Chou and

Cai, 2002; Marchler-Bauer et al., 2005) and sequence motifs

(Scott et al., 2004);

(iii) The context vocabulary annotation-based features, such as

the Gene Ontology (GO) terms (Ashburner et al., 2000;

Chou and Cai, 2003).

Since GO terms contain high-level abstraction of domain know-

ledge, they often result in higher accuracy than the residue- or

peptide-based features when sufficient annotations are available.

However, the large-size of annotation data brings new algorithmic

challenges. For example, by using a Bernoulli event model for each

GO term, i.e. binary coding for presence/absence of a GO term, the

GO-based methods often result in an extremely high dimensional

feature space, in which tens of thousands of GO terms are included

(Blum et al., 2009; Shen and Chou, 2009). As the GO database is ex-

panded and updated regularly, the dimensionality will keep increas-

ing with our expanded knowledge about proteins. The high

dimensional feature vectors increase the complexity of the following

learning process and also influence the prediction performance con-

sidering the potential noise in the annotation database. It is interest-

ing to note that although the entire GO database is huge, each

protein actually contains only a few terms. According to our statis-

tics, proteins which have at least one GO term in the SWISS-PROT

database are annotated by 6 GO terms on average. This will give us

a sparse feature vector, which has thousands of dimensions but only

approximately 6 useful components. Different methods have been

proposed to handle such high-dimensional but very sparse feature

vectors. For instance, YLoc (Briesemeister et al., 2010) only selects

the GO terms and PROSITE patterns which are typical for particu-

lar subcellular locations. Thus, it reduces unnecessary features and

makes the results more interpretable, though it may suffer informa-

tion loss. The WegoLoc (Chi and Nam, 2012) assigns a weight for

each GO term and it can highlight the useful GO terms.

In this study, we encode feature vectors by GO correlation informa-

tion instead of using the presence or frequency of GO terms. It is well

known that GO terms are organized by a hierarchical structure in three

directed acyclic graphs (DAGs), i.e. biological process (BP), molecular

function (MF) and cellular component (CC). The terms are correlated

by paths consisting of different types of edges (i.e. relationships) in the

DAGs. Many methods that define the semantic similarity between GO

terms have been proposed, such as information content-based (Jiang

and Conrath, 1997; Lin, 1998; Resnik et al., 1999) and graph-based

methods (Wu et al., 2005; Wang et al., 2007; Zhang et al., 2006).

However, to the best of our knowledge, very few predictors of protein

subcellular localization take into account the correlation between GO

terms. This motivates us to incorporate the hidden correlation between

GO terms to get a better similarity measure between two high-

dimensional but sparse GO feature vectors. We propose a new proto-

col, called HCM (Hidden Correlation Modeling), to exploit the hidden

correlation between the annotation features of proteins. In order to
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deal with the lack of GO annotation for some query proteins due to the

incompleteness of the GO database, we also incorporate the statistical

residue features, as well as the peptide-based functional domain features

which are extracted from Conserved Domain Database (CDD). With

these new advantages in feature representation, we have constructed a

new predictor, called Hum-mPLoc 3.0, which is named after our previ-

ously developed predictor for human protein localization predictions,

but endowed with an entirely new feature representation.

2 Material and methods

2.1 Datasets
In this study, we mainly focus on human proteins, considering the

predictors specific to human proteins are still relatively few when

comparing to the rapidly increasing need for the targets annotations.

We constructed a new benchmark dataset for human proteins,

named HumB, by collecting all human proteins from SWISS-PROT

released on January 2012. To ensure high data quality, we excluded

the proteins that have no subcellular locations or have uncertain an-

notation with keywords like ‘by similarity’, ‘potential’ and ‘prob-

able’. Moreover, we used PISCES (Wang and Dunbrack, 2003) to

remove redundant sequences, with the identity cutoff of 25%, i.e. to

cluster similar sequences and get representative proteins automatic-

ally outputted by PISCES. Then we extracted their localization in-

formation from SWISS-PROT. In this study, we focused on 12

major compartments in human cells, including centrosome, cyto-

plasm, cytoskeleton, endoplasmic reticulum, endosome, extracellu-

lar, Golgi apparatus, lysosome, mitochondrion, nucleus, peroxisome

and plasma membrane. Finally, the benchmark dataset includes

3129 human proteins, 2306 of which have single subcellular loca-

tion and the rest are multi-locational proteins. Intuitively, each loca-

tion can be regarded as a class label, and a protein with more than

one location is a multi-labeled sample. HumB has a total of 4229

labels, and each protein has 1.35 labels on average.

Besides the benchmark set HumB, an independent test set named

HumT was also prepared for performance evaluation, from a May

2015 SWISS-PROT release. Proteins annotated with experimentally

verified subcellular locations in the release of January 2012 were

removed. In other words, HumT has no overlap with HumB.

Moreover, in order to reduce bias, sequence similarity between

HumB and HumT was limited to below 25%. To ensure the quality

of assessment, we only considered the protein locations supported

by experimental evidence, i.e. only the human proteins whose CC

field contains ‘ECO:269’ were collected (Evidence Codes Ontology,

ECO, is a controlled vocabulary of terms that describes the source

of the information and ECO:269 represents a type of experimental

evidence). Finally, HumT includes 379 human proteins and 541

labels. (Data distributions of HumB and HumT are shown in

Supplementary Table S1).

Although we mainly focus on the prediction of human protein

localization in this study, the HCM method can be extended to

other species. In order to compare with the existing cutting-edge pre-

diction tools (not limited to human protein predictors), we also

tested the HCM model on several other well-established datasets

published by other researchers, including animals proteins in the

BacelLo dataset (Pierleoni et al., 2006), animal proteins in the

Höglund dataset (Höglund et al., 2006) and the DBMLoc dataset

(Zhang et al., 2008). Note that to fairly compare with the methods

for other species, we re-trained the HCM model on these three data-

sets for model comparison. The details of these three sets are given

in the Supplementary Materials.

2.2 Methods
This study aims to develop a machine learning-based predictor for

subcellular localization of human proteins. Figure 1 shows the over-

all architecture of the new predictor, including two major parts, fea-

ture extraction and classifier construction. The feature vectors

produced by the new feature presentation protocol, HCM, cover

both residue statistics and biological prior knowledge. Details on

each type of feature are given in Sections 2.2.1, 2.2.2 and 2.2.3,

respectively.

2.2.1 Residue-based statistical features

The statistical properties of residues are the building blocks in the

feature vectors of a subcellular location predictor, especially when

annotation data is not available. Here, the residue-based features in-

clude the 20-D amino acid composition (AAC) and evolutional in-

formation represented by the Position Specific Scoring Matrix

(PSSM). The matrix, SPSSM (Eq. (1)) for each protein sequence, is

constructed by using PSI-BLAST to search SWISS-PROT with an E-

value cutoff of 0.001 (Altschul et al., 1997),

SPSSM¼

S1;1 S1;2 � � � S1;20

S2;1 S2;2 � � � S2;20

� � � � � � . .
.

� � �

SL;1 SL;2 � � � SL;20

2
6666664

3
7777775
; (1)

where Si,j represents the probabilistic score that the jth (1� j�20)

amino acids occurring at the ith (1� i�L) position of the sequence,

and L represents the length of the protein sequence.

In order to condense the matrix into a feature vector with fixed

length, each column is averaged into a single value. Note that resi-

dues at different positions of the sequence usually have various mu-

tation rates, thus each row is first normalized to reduce potential

bias. The z-score normalization is adopted here (Eq. (2)),

S0
i;j ¼

Si;j � 1
N

PN
k¼1

Si;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�1

PN
u¼1

Si;u � 1
N

PN
k¼1

Si;k

 !2
vuut

; (2)

where S0
i;j represents the normalized score and N represents the num-

ber of different amino acids, i.e. N is equal to 20. Then for each col-

umn, an average score is calculated as Eq. (3),

S0
j ¼

1

L

XL

i¼1

S0
i;j: (3)

After these two operations, the SPSSM is transformed into a 20-D

vector in Eq. (4),

SPSSM ¼ S0
1 ; S

0
2 ; S

0
3 ; . . . ; S0

20

h i
: (4)

Then, AAC and the normalized PSSM vector are combined into

a 40-D vector, which catches not only amino acid frequency infor-

mation of the protein itself, but also the residue statistics from its

functional related homologs. Furthermore, considering that localiza-

tion information is often implied in the N-terminal and C-terminal

of amino acid sequences (Pierleoni et al., 2006), we extracted se-

quence features of multiple segments from both terminals, specific-

ally, the first 10, 20, . . ., 60 residues of N-terminal, and the last 10,

20, . . ., 100 residues of C-terminal. For each segment, a 40-D vector

is created using the method described above (AACþPSSM). By
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concatenating all these 40-D vectors (for the full sequence and 16

segments), the total dimensionality becomes 680 (40�17), which

may contain some redundant information. Thus, the Correlation-

based Feature Selection (Hall and Smith, 1999) (CFS) method is

adopted to select the important features and finally leads to a 43-D

feature vector.

2.2.2 Nearest neighbor-guided GO annotation correlation features

The feature extraction procedure consists of three parts as shown in

Figure 2. Before exploiting the correlation information, we need a

matrix of pairwise GO similarities. Considering it is very costly to

construct such a matrix with tens of thousands of terms in GO data-

base, we only use GO terms annotated for human proteins searched

in SWISS-PROT. The GO annotation contains both experimentally

supported and computationally inferred GO terms. Here, only the

first type is considered to ensure the quality of annotations, which

includes 10083 BP, 3322 MF and 1332 CC terms. By using an im-

proved information content-based measure (Yang et al., 2012), the

three similarity matrices are constructed for BP, MF and CC,

respectively.

In Figure 2(b), it can be observed that, instead of using proteins’

own GO terms, we retrieve the representative GO terms for each

protein from its homologous proteins. This is based on the consider-

ation that many proteins have no or scarce GO annotation (Shen

and Chou, 2009). Mei (2012) and Wan et al. (2013) adopted the

same strategy in their studies. Specifically, the homologs, i.e. the

proteins which have more than 50% sequence identity and 60%

positives with the query protein, are searched by BLAST in SWISS-

PROT. The GO terms are extracted from both SWISS-PROT and

InterPro database (Zdobnov and Apweiler, 2001).

Given the correlation matrices of GO terms and representative

GO terms for each protein, the GO features are produced according

to the following two steps.

1. Search nearest neighbors for query proteins

Intuitively, a query protein would have a high probability of hav-

ing the same subcellular locations as its most similar proteins ac-

cording to their GO annotation. Here we identify the query

protein’s nearest neighbors in the training set based on the similarity

measured by semantic correlation between GO terms. Specifically,

the similarity between the query protein and the kth training protein

is defined as the square root of the sum of squared correlation be-

tween each GO term of the query protein and the GO terms set of

the training protein, K, as shown in Eq. (5),

Simk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Corðxi;KÞ2
s

; (5)

where n is the number of representative GO terms of the query pro-

tein and xiis its ith representative component, and K is the GO terms

set of the kth training protein. Corðxi;KÞ is defined in Eq. (6),

Corðxi;KÞ ¼ max
1� i�m

Corðxi; yjÞ; (6)

where yjs are GO terms, K¼ {y1,y2,. . ., ym}, and Corðxi; yjÞ is an com-

ponent in the correlation matrices of GO terms.

According to the similarity measurement (Eq. (5)), the query pro-

tein’s nearest neighbors in the training set can be identified. Since

BP, MF and CC are three respective DAGs in GO database, they

may play different roles in measuring the similarity between gene

products. Therefore, we divided the representative GO terms of

each protein into 7 groups, i.e. BP, MF, CC, BP&MF, MF&CC,

BP&CC and BP&MF&CC. Similarity scores are computed and the

top 10 nearest neighbors are selected in each of the 7 groups.

2. Generate probabilistic information

In this step, feature vectors are represented by probabilistic infor-

mation. Let proa denotes the probability of the query protein being

in the location a. Initially, proa is defined as the ratio between the

sum of similarities with the nearest neighbors localized at a and the

Fig. 2. Flowchart of GO-based feature extraction

Fig. 1. Flowchart of the new predictor Hum-mPLoc 3.0
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sum of similarities with all the 10 nearest neighbors, as shown in

Eq. (7),

proa ¼
P

j2INa
simjP

i2IN
simi

; (7)

where IN is the index set of all the nearest neighbors of the query

protein (jINj ¼10), and INa is the index set of the nearest neighbors

which are located at a (INa�IN). However, due to the incomplete-

ness of GO annotation, some proteins may have no or few neighbors

in the training set. Therefore, we tackle this problem with a smooth-

ing technique by adding a Bayesian prior shown in Eq. (8). The prior

is equal to the proportion of proteins locating at a, which gives us:

proa ¼
P

j2INa
simj þ numa

numP
i2IN

simi þ 1
; (8)

where numa and num are the numbers of proteins locating at a and

the total number of proteins in the training set, respectively.

For each of the 7 GO groups, a 12-D vector was calculated con-

sisting of the probabilistic information for 12 locations. Finally, a

feature vector with 84-D was generated. In order to produce the

probabilistic information for training proteins, a 10-fold cross valid-

ation was conducted.

2.2.3 Nearest neighbor-guided functional domain correlation

features

Besides the statistical properties of single residues, conserved pep-

tides are also helpful to identify subcellular localization. We use the

Conserved Domain Database (CDD) (v3.12) from ftp://ftp.ncbi.nih.

gov/pub/mmdb/cdd/, and produce CDD-based features and their

hidden correlations are also modeled.

The first step, again, is to construct a correlation matrix. For all the

3129 human proteins in HumB, CDD terms are searched by RPS-

BLAST with an E-value cutoff of 0.001, and we only use the Superfamily

information as CDD features, resulting in 2313 CDD terms in total.

Unlike the GO terms, CDD terms have no semantic structure.

Here we adopt a symmetrical uncertainty method (Hall, 1999) to

construct the pairwise correlation matrix for CDD features. Firstly,

a 3129�2313-D binary matrix is constructed. The element at the

ith row and jth column represents whether the ith protein contains

the jth CDD term. Then two quantities of entropy are defined. The

first one, H(fi
cdd), is the entropy of the ith CDD feature (Eq. (9)),

Hðf cdd
i Þ ¼ �

X
m2f0;1g

pðf cdd
i ¼ mÞ � log pðf cdd

i ¼ mÞ; (9)

where p(fi
cdd¼1) denotes the probability of the ith term being pre-

sent in the training set. For example, the CDD term, cl21453, occurs

51 times in the training set, so the probability of this CDD features

is 0.0163 (51/3129). The second one, H(fj
cdd, fi

cdd) is the differential

entropy of the ith feature and jth feature (Eq. (10)),

Hðf cdd
i ; f cdd

j Þ

¼ �
X

n2f0;1g

X
m2f0;1g

pðf cdd
i ¼ m & f cdd

j ¼ nÞ

�log pðf cdd
i ¼ m & f cdd

j ¼ nÞ:

(10)

The correlation between two CDD terms is defined in Eq. (11),

Scdd
i;j ¼

2� ðHðf cdd
i Þ þHðf cdd

j Þ �Hðf cdd
i ; f cdd

j ÞÞ
Hðf cdd

i Þ þHðf cdd
j Þ

: (11)

The following steps are the same as GO feature extraction, i.e.

step 1: use PRS-BLAST to extract CDD terms for query proteins;

step 2: compute similarities of query proteins with training proteins

based on the matrix ½Scdd
i;j �2313�2313; step 3: find top 10 nearest neigh-

bors from the training set, and step 4: generate probabilistic infor-

mation as a 12-D feature vector corresponding to the 12 locations

studied in this study.

Finally, the residue-based features, GO and CDD features are

combined into a 139 (43þ12�7þ12) dimensional feature vector.

2.2.4 Multi-label classification

For the classification system, there are 12 class labels corresponding

to 12 subcellular locations. We used support vector machines

(Cortes and Vapnik, 1995) as classifiers, and adopted the binary

relevance strategy (Boutell et al., 2004) to construct 12 binary classi-

fiers. Parameters c and C were optimized via 10-fold cross

validation.

In the test phase, the output for each test sample is a 12-D score

vector. Each dimension of the vector represents the confidence of

being in a certain subcellular location. The subcellular locations

whose corresponding scores are positive are assigned to the test pro-

teins, i.e. the threshold score is 0. If all the scores are negative, the

subcellular location with the maximal score in the vector will be

assigned.

2.2.5 Evaluation criteria

In this study, we used customized ACC and F1 to evaluate the multi-

label classification performance (Briesemeister et al., 2010).

Different from conventional accuracy and F1 definition, the ACC is

the average of individual accuracies for all test samples, and F1 is the

average of F1 values of all locations. (Equations are in

Supplementary Materials).

3 Experimental results

3.1 Comparison of different feature coding methods
In order to assess the performance of HCM, we compared it with

four other feature extraction methods, namely SEQþGO7,

SEQþGO1, SEQþGO0 and SEQ. Details are given below.

• SEQþGO7: Residue and GO features, i.e. HCM without CDD

features.
• SEQþGO1: The same as SEQþGO7, except that GO terms from

BP, MF and CC are used as a whole set, while HCM and

SEQþGO7 consider 7 groups of GO terms.
• SEQþGO0: Residue and conventional GO features. The GO fea-

tures are binary values, i.e. 1 for presence and 0 for absence. In

order to avoid a high-dimensional feature space and conduct a

fair comparison, the binary values are also converted to probabil-

istic information. The similarity between a query protein and the

kth protein in training set is defined as

simk ¼ 1� hitk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
numquery � numk
p

, where hitk denotes the num-

ber of common GO features of these two proteins, numquery and

numk are the numbers of GO terms of the query protein and the

kth protein, respectively. Similarly, the top 10 nearest neighbors

are used to calculate the probability information as the features.
• SEQ: residue features only, i.e. the first part of HCM.

All of the above methods are tested on the aforementioned four

datasets. For BaCelLo, Höglund and HumB, prediction accuracies

were evaluated by using their reported test sets. The DBMLoc data

has no separated test set, thus the accuracy was obtained via nested

5-fold cross-validation. The results are shown in Figure 3.
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Generally, both ACC and F1 are monotonically increasing from

SEQ to HCM. The method containing only residue features is ap-

parently not capable of providing reliable predictions. Especially for

HumT, the accuracy is below 50%. Compared with SEQþGO0,

SEQþGO1 performs better on all four datasets, with an increase of

2–5% for ACC and 2–13% on F1. As for SEQþGO7, it achieves

better performance than SEQþGO1. This may be due to two rea-

sons. One is that the computation of GO set similarity on the whole

set does not fully utilize the correlation between different categories

of GO terms. The other reason is that reusing GO sets strengthens

the impact of GO correlation-based features, making the GO infor-

mation dominate the feature vector, which is beneficial for the clas-

sification in most cases. The last method, HCM, obtains a slight

improvement over SEQþGO7 by adding CDD features. In sum-

mary, all three types of features in the proposed HCM method con-

tribute to the discrimination of protein locations.

3.2 Prediction performance is affected by GO similarity

definition and annotation coverage
In this section, three different variants of GO-based protein similar-

ity definitions are assessed, and we also discuss the impact of GO

annotation coverage on performance.

3.2.1 Strategies for computing the similarity between proteins

There are multiple ways to obtain a measure of similarity between

two genes according to the similarities of their GO terms, such as

the maximum (MAX) and best match average (BMA) approaches

(Yu et al., 2010). MAX chooses the maximum similarity of two GO

terms from two genes. It only considers the most similar pair of GO

terms, but fails to cover the overall similarity of two GO sets, thus it

may be incapable of dealing with multi-locational proteins. For in-

stance, protein of P42772 is annotated by GO:0005737 and

GO:0005634, which suggests two locations, cytoplasm and nucleus,

while the MAX strategy only leads to one location of nucleus. The

BMA strategy first gets the maximum similarity for each GO term in

one set to all GO terms in the other set, and then calculates an over-

all average value of these maximum values. BMA treats each GO

term with equal weight, but since GO terms have different informa-

tion content, the GO terms with more information content should

have higher weights.

In the HCM pipeline of this study, the method (Yang et al.,

2012) that we used to calculate pairwise GO similarity tends to out-

put high values for GO pairs located at bottom of the DAGs, where

the bottom GOs will have high information content. In other words,

the similarity value itself can be used as a weight. Thus, we adopted

the Euclidean distance-based metric to measure the similarity be-

tween proteins. For instance, the homologous proteins Q5T6F0 and

Q6PEY1 both contain and only one GO term, GO:0005515 (protein

binding), which is a very general molecular function term with low

information content. In this case, although these two genes have

exactly the same GO sets, they will not be assigned a high similarity

value when using this method.

We thus compared our metric implemented in HCM with MAX

and BMA on the new HumT test set, where only the GO similarity

calculation is different while all other steps are kept the same. The

results show that HCM has the highest ACC and F1. As for ACC,

HCM is 1% higher than BMA and 3% higher than MAX. Also,

HCM predicts the most proteins with all correct labels among the

three methods (Supplementary Fig. S3). These results suggest the im-

portance of defining the similarity between two GO sets because

each protein corresponds to a set of GO terms. Our experimental re-

sults also indicate that the similarity definition which considers the

DAG hierarchical structure of GO knowledge base is a better choice

in this study.

3.2.2 Impact of GO annotation coverage

Although GO-based features have been widely demonstrated to

have a positive impact on protein subcellular localization prediction,

Fig. 3. Prediction accuracies of different types of features for four datasets
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previous studies have also shown that due to the incompleteness of

the GO database, not all the proteins can be represented by the GO

features and the performance will be affected by the GO feature

coverage (Shen and Chou, 2009). To systematically investigate the

impact of coverage on the performance, we tested several potential

conditions of GO feature collection.

First, we conducted experiments to assess the performance with

and without CC terms (Supplementary Fig. S4). The results show

that without any CC terms, the BP and MF terms can improve both

ACC and F1 by 6.3% compared with the model using only the

residue-based features. Moreover, using all the three types of GO

terms can improve ACC by 8.6% and F1 by 10.3% compared with

using CC alone. These results indicate that BP and MF terms also

contribute an important role in the identification of subcellular lo-

calization. Similar observations had been reported in previous stud-

ies. For example, Wan et al. found that over half of the most

essential GO terms for subcellular localization come from the MF

and BP categories (Wan et al., 2015).

Second, we noticed that current annotations are affiliated with

evidence codes in the GO database. There are two types of evidence

codes assigned by curators, namely the experimental evidence codes

and the computational analysis evidence codes. In the previous ex-

periments, in order to ensure the reliability of annotation data, we

only used the GO terms with experimental evidence. In order to test

the effect of the source of GO terms, we also implemented another

version using all available GO terms assigned by curators, including

both experiment-supported and computationally inferred ones. By

using all GO annotations, the GO feature coverage of proteins will

be increased accordingly. Take the proteins in the HumT set as an

example, the percentage of proteins with GO feature representations

increases from 60.7% to 93.4% (by adding computationally

inferred GOs, but excluding the test proteins’ own GOs).

Interestingly, the ACC and F1 also further increased by 5% and

18%, respectively (Supplementary Fig. S5). These results suggest

that the performance is closely related with the GO feature cover-

age, and current computational tools can also infer reliable GO an-

notations, which provide an important supplement for the

incomplete experimental GO annotations. Since the existing pre-

dictors tend to use all the available GO terms for model construc-

tion, we adopted the same strategy for comparing results in the

following experiments.

Finally, as shown above, even when we use all the available GO

information, there are still some proteins which cannot be repre-

sented by any GO features, including 6.6% (25 protein samples) of

the HumT dataset. Among 20 197 human proteins in SWISS-PROT

database, 1041 (5.2%) proteins cannot be represented in the GO

feature space. For these proteins, one common strategy is to use

other features as a complement. For example, the functional domain

CDD features and the residue-based statistical features (denoted as

SEQ) are adopted in this paper. We thus further examined the per-

formance difference in cases with and without effective GO features

in the HumT set. For the 354 proteins in HumT which can be repre-

sented with GO features, the ACC and F1 are 63.4% and 64.7% re-

spectively. For the remaining 25 proteins (in 7 locations), their ACC

and F1 are 64.0% and 49.7% (Supplementary Table S6). Since they

do not have GO features, we use a Bayesian prior as a complement

when creating probabilistic information (Eq. (8)) together with the

CDD and SEQ features. When only using the SEQþCDD features,

the ACC and F1 of the 25 proteins will further decrease to 62.0%

and 46.6%, respectively. These results suggest that GO features are

important for localization prediction, especially for the minor

classes (subcellular locations with relatively fewer samples). For in-

stance, the F1 score is improved by approximately 16% when incor-

porating the GO features compared to the models without GO

features.

3.3 Comparison with state-of-the-art predictors
Table 1 compares Hum-mPLoc 3.0 with four existing subcellular lo-

cation prediction methods specialized for human proteins,

including YLOCþ (Briesemeister et al., 2010) (YLocþ can only pre-

dict 9 locations), iLoc-Hum (Chou et al., 2012), WegoLoc (Chi and

Nam, 2012) and mLASSO-Hum (Wan et al., 2015). During the ex-

periments, we directly submitted the proteins in the HumT

dataset to the above online servers and got prediction responses. It’s

worth noting that the HumB and HumT datasets used to construct

and test Hum-mPLoc 3.0 do not have any overlap as we stated be-

fore, but we did not remove the potential overlap between submitted

HumT set and the training sets of the other four tools, in order to

evaluate the performance on the same set. For a baseline compari-

son, we also listed the performance of a model denoted as

SEQþCDD, which does not use the GO features in Hum-mPLoc

3.0 in Table 1.

As can be seen from this table, compared to iLoc-Human, the

ACCs are 0.63 (Hum-mPLoc 3.0) versus 0.41 (iLoc-Human), and F1

values are 0.65 versus 0.32, respectively. When comparing to

WegoLoc, the ACC of Hum-mPLoc 3.0 is better by 0.13 (0.63 ver-

sus 0.50) and F1 is better by 0.21 (0.65 versus 0.44). When compar-

ing to mLASSO-Hum, the ACCs are comparable (0.63 versus 0.65),

while the F1 of Hum-mPLoc 3.0 is 9% better (0.65 versus 0.56). The

reason may be that Hum-mPLoc 3.0 works better on minor classes,

like lysosome and peroxisome, thus resulting in a high averaged F1.

Hum-mPLoc 3.0 obtains the highest F1 value on 6 of the 12 loca-

tions, and mLASSO-Hum performs the best on 5 locations. It is also

worth mentioning that the mLASSO-Hum method searches the clos-

est protein with GO subcellular location annotation from the data-

base for the query protein, and we found that 216 (57% of the

HumT dataset) sequences submitted to mLASSO-Hum may be pre-

dicted by using the GO terms from the submitted proteins them-

selves, based on the responses of the server (E-value¼0.0). The

reason may be that many proteins in the HumT dataset have been

covered by the training database used in mLASSO-Hum.

Interestingly, although the SEQþCDD model does not incorporate

the GO terms, it works no worse than YLocþor iLoc-Human,

which contains GO features. This suggests that the functional do-

mains also play a substantial role in predicting protein subcellular

locations.

In order to further test the generalization and application ability

of the HCM driven predictor on other species, we tested our proto-

col on three other well established datasets including proteins from

animal, plant and eukaryote. We re-trained three HCM-driven mod-

els on these three datasets, and used the same test sets or nested 5-

fold cross validations as by the other existing predictors we are com-

paring to. Table 2 shows the comparison of the HCM driven pre-

dictor with some state-of-the-art predictors, including YLoc

(Briesemeister et al., 2010), MultiLoc (Höglund et al., 2006) and

BaCeILo’s method (Pierleoni et al., 2006). As shown in the table,

the new method has substantially improved ACC and F1 for all 3

datasets. For the two mono-locational datasets, BacelLo and

Höglund, the ACCs of the new method are 7% higher than the

best ACCs obtained by other predictors, respectively. For the
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multi-locational dataset DBMLoc, the improvement is more sig-

nificant, where the ACC and F1 are 23% and 16% greater com-

pared with YLocþ.

The performance improvement compared with other predictors

may be mainly because the proposed HCM method can catch the

hidden correlations, thus making the samples cluster in a more con-

densed space, and it uses the renewed annotation database. For ex-

ample, YLoc adopts conventional binary coding to express GO

features, and to avoid high dimensionality, it only considers the

annotation-based features which are directly related with protein lo-

calization to certain compartments. However, the annotation terms

without any indication of localization may also help, such as the BP

and MF terms, as we showed before in Section 3.2. Besides, the an-

notation databases have been updated rapidly, and our method uses

the latest version of gene ontology and conserved domain databases,

which have more coverage than the old versions used by previous

predictors.

3.4 Large-scale prediction on the whole human

proteome
We applied Hum-mPLoc 3.0 to all 20197 human proteins in SWISS-

PROT released on Feb., 2015 (Supplementary Fig. S6 shows the per-

centages of their localization annotation). Supplementary Figure S7

shows two pie charts of the distributions for 12 subcellular locations.

One is from the set of human proteins with experimentally verified lo-

cations, and the other is from our predicted results on the whole

human proteome. Intuitively, the two distributions are very similar, e.

g. cytoplasm 29.7% versus 24.2%, nucleus 25.1% versus 24.1%, and

plasma membrane 16.8% versus 16.6%. In the predicted results of

the total 20197 proteins, we found that 16717 proteins have only one

location (82.8%), 3104 proteins have two locations (15.4%), 335

proteins have three locations (1.7%), and 41 proteins have four loca-

tions (0.2%). Interestingly, by examining the co-localization patterns,

we found that the most frequently co-occurred pairs are nucleus and

cytoplasm (1718 times), followed by cytoskeleton and cytoplasm (869

times). The detailed times of co-occurrence for each pair of locations

are listed in Supplementary Table S7. We performed hierarchical clus-

tering on this matrix, and depict a heat map and a cluster dendrogram

in Supplementary Figure S8. From the hierarchical tree, several clus-

ters can be observed:< centrosome, cytoskeleton, cytoplasm, nu-

cleus>,<extracellular, plasma membrane>,<ER, endosome, Golgi

apparatus>, indicating an interesting relation and organization of the

cellular compartments. We further checked frequent triples and quad-

ruples of locations. Top ranked triples include:<centrosome, cyto-

skeleton, cytoplasm> (155),<cytoskeleton, cytoplasm, nucleus> (39),

and<ER, endosome, Golgi apparatus> (32). The most frequent quad-

ruple is<ER, endosome, Golgi apparatus, plasma membrane>, which

takes up 35 of the 41 proteins that co-localize at 4 compartments.

These combinations are consistent with the clusters yielded by the

hierarchical tree in Supplementary Figure S8. These large-scale predic-

tion results are also available at the Hum-mPLoc 3.0 website (www.

csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/).

Table 1. Comparison of human protein subcellular location predictors on HumT dataseta

Location YLocþb iLoc-Humanc WegoLocd mLASSO-Hume SEQþCDDf Hum-mPLoc 3.0g

pre rec F1 pre rec F1 pre rec F1 pre rec F1 Pre rec F1 pre rec F1

Centrosome – – – 0 0 0 0.75 0.14 0.23 0.59 0.59 0.59 0 0 0 0.75 0.55 0.63

Cytoplasm 0.55 0.85 0.67 0.5 0.54 0.52 0.69 0.53 0.6 0.93 0.51 0.66 0.63 0.65 0.64 0.76 0.73 0.74

Cytoskeleton – – – 0 0 0 0.32 0.34 0.33 0.9 0.22 0.35 1 0.07 0.14 0.8 0.68 0.74

ER 0.71 0.12 0.21 0 0 0 0. 73 0.2 0.31 0.74 0.49 0.59 0.9 0.22 0.35 0.83 0.37 0.51

Endosome – – – 0 0 0 0. 25 0.07 0.11 0.38 0.2 0.26 0 0 0 0.58 0.47 0.52

Extracellular 0.39 0.85 0.54 0.62 0.62 0.62 0.67 0.77 0.71 0.16 0.69 0.26 0.32 0.54 0.4 0.5 0.46 0.48

Golgi apparatus 0.1 0.05 0.07 0.6 0.3 0.4 0.6 0.15 0.24 0.72 0.65 0.68 0.29 0.1 0.15 0.69 0.45 0.55

Lysosome 0 0 0 0.5 0.13 0.2 0.2 0.13 0.15 0.55 0.75 0.63 0.5 0.13 0.2 0.71 0.63 0.67

Mitochondrion 0.65 0.43 0.52 0.95 0.33 0.49 0.79 0.73 0.76 0.83 0.88 0.85 0.78 0.53 0.63 0.78 0.75 0.76

Nucleus 0.41 0.57 0.48 0.54 0.7 0.61 0.65 0.64 0.64 0.85 0.7 0.76 0.47 0.74 0.57 0.75 0.71 0.73

Peroxisome 0.07 0.5 0.13 1 0.5 0.67 0.5 1 0.67 0.29 1 0.44 0 0 0 1 1 1

Plasma membrane 0.41 0.44 0.42 0.42 0.33 0.37 0.44 0.53 0.48 0.58 0.56 0.57 0.52 0.27 0.36 0.65 0.44 0.52

ACC 0.45 0.41 0.50 0.65 0.47 0.63

F1 0.34 0.32 0.44 0.56 0.29 0.65

aER: Endoplasmic reticulum. pre denotes precision, and rec denotes recall.
bhttp://abi.inf.uni-tuebingen.de/Services/YLoc/webloc.cgi.
chttp://www.jci-bioinfo.cn/iLoc-Hum.
dhttp://www.btool.org/WegoLoc ((the multiplex threshold was set to 1, which is the best on HumT dataset after trying different values.).
ehttp://bioinfo.eie.polyu.edu.hk/mLASSOHumServer, where 216 of the 379 submitted proteins were predicted using their own GO terms according to the re-

sponse of the server.
fSEQþCDD uses only sequence and CDD features, without GO features.
gQuery proteins’ own GO terms have been removed.

Table 2. Comparison of seven predictors on three datasetsa

ACC/F1

BaCeILo Höglund DBMLoc

YLoc-LowRes 0.79/0.75 – –

YLoc-HighRes 0.74/0.69 0.56/0.34 –

YLocþ 0.58/0.67 0.53/0.37 0.64/0.68

MultiLoc2-LowRes 0.73/0.76 – –

MultiLoc2-HighRes 0.68/0.71 0.57/0.41 –

BaCelLo 0.64/0.66 – –

HCM-driven predictor 0.86/0.84 0.64/0.59 0.87/0.84

aYLocþ and HCM-driven predictor can deal with multiple-locational pro-

teins; Results of BaCelLo, YLoc and MultiLoc were extracted from (Pierleoni

et al., 2006; Briesemeister et al., 2010; Höglund et al., 2006), respectively.
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4 Discussion

4.1 Pitfall of GO features
Our results as well as other studies have shown that GO features are

important for the protein subcellular localization prediction due to

the fact that they represent a high-level knowledge of proteins. Two

problems have limited their high efficacy in the real-world model

construction: (i) the incompleteness of GO annotation database and

(ii) the very sparse characteristics of GO feature vector. For instance,

of the current whole human proteome, 5.2% proteins (1041/20197)

have no GO features and 25.7% proteins (5181/20197) are associ-

ated with less than 5 GO terms (more than 14000 terms are

observed in the database). Our results show that the HCM model

proposed in this paper can efficiently deal with the high-dimensional

and sparse feature learning problem in a much lower feature space.

At the same time, our results also show that incorporating the CDD

and SEQ features also plays an indispensable role for the prediction

task, especially when the annotation data is incomplete or unreli-

able. The human protein NPIP, for example, can only be represented

by one GO term in this study, GO:0005505, which cannot give

many informative clues for the prediction. Thus, the CDD and SEQ

features play the leading role for predicting its subcellular locations

in the model. Another example is protein MTO1, with the following

GO terms: GO:0044822, GO:0008033, GO:0050660 and

GO:0002098. By using these GO terms, a prediction result of cyto-

plasm is obtained, but with low confidence, which is in fact a wrong

answer; while CDDþ SEQ-based features correctly predict that the

protein is located in the mitochondrion with high confidence. These

examples suggest that functional domain and residue-based features

are very essential in the prediction of protein subcellular localiza-

tion, and can function against bias induced by incomplete and sparse

GO annotation data.

4.2 Usage of cross-species GO terms
In this study, we convert the similarity between two GO sets to the

similarity between their annotated proteins, and find nearest neigh-

bors for each query protein. The neighbors are searched in a cross-

species manner, i.e. the neighbors include proteins from other spe-

cies. We conducted an experiment on the HumT dataset using only

human proteins as neighbors. The results show an obvious drop in

accuracy, with a 8% drop in ACC and 14% drop in F1

(Supplementary Fig. S5). This indicates that the homologs in differ-

ent species also share some useful common attributes. Take FRY_

HUMAN for an example, we found GO:0005737 from its homolo-

gous protein FRY_DROME and this GO term helps inferring the

correct subcellular location, which is the cytoplasm, indicating an

interesting cross-species knowledge transfer.

4.3 Subcellular locations coverage and future

development
Driven by the new feature presentation protocol of HCM, Hum-

mPLoc 3.0 has achieved notable improvement compared with the

previous version Hum-mPLoc 2.0. On the independent HumT data-

set, both ACC and F1 increase around 10%. The major updates in-

clude: (i) taking into consideration feature correlation and the

hierarchical structure of GO terms; (ii) extracting residue features

from different segments of N- and C-terminals and (iii) use of the

latest versions of gene ontology, conserved domain database and

SWISS-PROT database.

One of the important future directions of current Hum-mPLoc

3.0 is how to further improve its prediction coverage and depth. The

current server covers 12 human major subcellular locations, and if a

protein in fact locates outside the covered 12 location classes, the

output from Hum-mPLoc 3.0 server may not make any sense. To

quantitatively measure the coverage of these 12 subcellular locations

in the known human proteome, we collected all the 8389 human

proteins with experimentally verified subcellular localizations from

the SWISS-PROT database. Among them, approximately 8.3% are

annotated by membrane proteins with keywords like ‘membrane’,

‘single-pass type i membrane protein’, ‘multi-pass membrane pro-

tein’, but are not plasma membrane (GO:0005886) proteins. This

group of proteins is undergoing a clear assignment to detailed cellu-

lar compartments. We further found that 90.4% proteins fall within

the 12 locations of this study. We did find that the remaining 1.3%

proteins annotated with ‘cell junction’, ‘flagellum’ and ‘cell projec-

tion’, etc. Due to there being too few samples in these locations, we

did not incorporate them into the current Hum-mPLoc 3.0 server. In

addition, we checked a specialized subcellular localization database,

LOCATE, that houses mouse and human proteins with annotations

extracted from databases and literatures (Sprenger, et al., 2008).

Among the 34728 human protein entries in LOCATE, about 1.1%

proteins fall out of the range of the 12 locations, which is consistent

with the statistics in the SWISS-PROT database. As the number of

proteins in these uncovered locations increases, we will keep updat-

ing our model accordingly.

Another future direction for updating the Hum-mPLoc 3.0 is to

incorporate the sub-subcellular location prediction modules. Some

cell compartments can be further grouped into functional units. For

instance, the nucleus can be further classified as nuclear speckle, nu-

cleolus, nuclear matrix, etc (Shen and Chou, 2007b). We plan to

add sub-subcellular location prediction modules into our Hum-

mPLoc 3.0 to strengthen its prediction depth.

5 Conclusion

Identification of protein subcellular localization is crucial for under-

standing protein function. Benefiting from the rapid accumulation

of various annotation data, the predictors using domain knowledge

for protein subcellular localization have significantly enhanced their

accuracies. However, the prediction results are not always good, es-

pecially when the query protein lacks enough annotation data.

Moreover, most methods directly regard each knowledge term’s

presence status or frequency as a feature, but neglect the structural

properties of the knowledge base or relationship between terms.

Therefore, domain knowledge has not been utilized sufficiently, and

often the generated feature representation has very high dimension-

ality, which will result in low efficacy. In this study, we exploit the

hidden correlations between each pair of annotation terms from the

gene ontology and conserved domain database, and proposed the

HCM feature extraction method. HCM provides a new strategy for

more efficiently realizing the domain knowledge-based feature rep-

resentation. Hum-mPLoc 3.0, which is constructed on the HCM

pipeline, has shown promising performance for human protein sub-

cellular location prediction.
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