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ABSTRACT Human action recognition techniques have gained significant attention among next-

generation technologies due to their specific features and high capability to inspect video sequences to

understand human actions. As a result, many fields have benefited from human action recognition tech-

niques. Deep learning techniques played a primary role in many approaches to human action recognition.

The new era of learning is spreading by transfer learning. Accordingly, this study’s main objective is to

propose a framework with three main phases for human action recognition. The phases are pre-training,

preprocessing, and recognition. This framework presents a set of novel techniques that are three-fold as

follows, (i) in the pre-training phase, a standard convolutional neural network is trained on a generic dataset

to adjust weights; (ii) to perform the recognition process, this pre-trained model is then applied to the target

dataset; and (iii) the recognition phase exploits convolutional neural network and long short-term memory to

apply five different architectures. Three architectures are stand-alone and single-stream, while the other two

are combinations between the first three in two-stream style. Experimental results show that the first three

architectures recorded accuracies of 83.24%, 90.72%, and 90.85%, respectively. The last two architectures

achieved accuracies of 93.48% and 94.87%, respectively. Moreover, The recorded results outperform other

state-of-the-art models in the same field.

INDEX TERMS Convolutional neural network (CNN), Human action recognition (HAR), Long short-term

memory (LSTM), Spatiotemporal info, Transfer learning (TL).

I. INTRODUCTION

U
NDERSTANDING human actions by inspecting video

sequences has become an essential research topic. Hu-

man Action Recognition (HAR) technology enables the com-

puter to achieve this level of understanding. HAR has a

high significance in a wide range of applications. Fields like

video surveillance [1], [2], virtual reality [3], [4], intelligent

human-computer interface [5], and identity recognition [6]

have benefited from HAR.

There are many approaches to categorize HAR techniques.

From the input perspective, HAR is categorized into two

types: (1) video-based HAR and (2) sensor-based HAR [7].

Video-based HAR takes videos or images as input to recog-

nize human activity or motion. Sensor-based HAR gets the

input from smart sensors such as accelerometers, gyroscopes,

and sound. There are hand-crafted directions [8], [9] ,and

deep learning methods [10] from the methodology perspec-

tive. The main difference between them is in feature learning.

Hand-crafted methods learn features manually, while deep

learning methods learn features automatically from videos.

Recently, deep learning techniques gained wide interest after

proving high-efficiency computer vision applications. Con-

volutional Neural Networks (CNN) was the first technique

used in HAR applications [11]. CNN’s superiority was due

to its high capabilities in image analysis [12].

Using deep learning in HAR has been widely studied, and

it involved several issues and challenges. Accordingly, vari-

ous systems and architectures have been proposed. Despite

the progress achieved in HAR, researchers stand short of

facing several issues and challenges. A single-stream CNN

structure models only a single type of information. It cannot

parse both spatial and temporal information, as shown in

Figure 1. A good popular solution for this issue was using

two-stream CNN architecture [13], [14]. The main idea was

to use two CNN networks for modeling spatial and temporal

information. The first network (stream) receives an RGB
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(Red-Green-Blue) image to model spatial information. The

second stream receives stacked Optical Flow (OF) images

[15] to model the temporal information. A score fusion

method combines the features extracted from both streams.

Another limitation of CNN recognition methods is that it

needs a large amount of training data. Although training data

is crucial for network weights optimization, it is not easy

to obtain a large amount of training data. The concept of

Transfer Learning (TL) provides an effective solution to this

problem.

Transfer learning is a machine learning approach that

focuses on extracting data from a similar domain to improve

learning ability or reduce the number of labeled samples

required in a target domain [16]–[18]. In transfer learning,

training and testing data do not need to be from the same

domain, and the target domain model does not need to

be trained from scratch, which can significantly reduce the

training data and training time in the target domain. The

concept behind transfer learning is illustrated graphically in

Figure 2.

There are three main scenarios of CNN transfer learning:

fixed feature extraction, fine-tuning and layers freezing, and

pre-trained models [19]. In the fixed feature extraction sce-

nario, a pre-trained final fully-connected layer is removed

from the CNN model, while both the input and feature

extraction layers retain their weights and structure and can

be considered a fixed feature extractor. In the l fine-tuning

and layers freezing scenario, the pre-trained model is retained

by fine-tuning the pre-trained network’s weights. The fine-

tuning process can be performed for all CNN network layers

or only for the network’s higher layers. There are many archi-

tectures are pertained for large datasets such as the ImageNet

dataset [12] including Xception [20], DenseNet [21], and

VGG16 [22], [23] and ...etc. These pre-trained architectures

are adopted to fine-tune each CNN network with a different

dataset in the last scenario. Transfer learning has several

benefits to improve CNN networks’ performance, including

speeding up the training process, improving the learning

process, improving network generalization, and improving

accessibility.

This paper proposes a Transfer Learning-based Human

Action Recognition (TL-HAR) framework. The TL-HAR

framework is based on a two-stream CNN architecture. The

TL-HAR architecture applies TL techniques to overcome the

previous limitations. This technique reduces the dependency

on a large number of target domain data. The notable contri-

butions of the current study can be summarized as follows:

• Provide a layered framework based on CNN architec-

ture for efficient HAR.

• Analyze the concept of transfer learning and its impact

on classification accuracy.

• Provide a stack of recognition architectures and analyze

their different performance metrics.

The rest of this paper is organized as follows: In Section

II, the related work is reviewed. The proposed framework is

described in Section III. Section IV presents the experimental

results. Finally, in Section V, the paper is concluded.

II. RELATED WORK

Recently, there has been extensive research on creating HAR

systems based on deep learning approaches. The related work

can be categorized into four main categories as follows:

(i) 3D-Convolution Networks, (ii) Fusion-based Networks,

(iii) Pooling-based Networks, and (iv) Multi-Stream-based

Networks. The next subsections demonstrate a detailed de-

scription of the previous efforts for each category. The key

challenges and issues for each category will also be de-

scribed.

A. 3D-CONVOLUTION NETWORKS

Ji et al. [24] have introduced a CNN-based 3D architec-

ture for multifunctional information channels generated from

adjacent video frames. They used 3D kernels to extract

spatial and temporal characteristics. Experimental findings

have shown its high-performance architecture rather than its

counterparts based on 2D frames.

The work done by Ji et al. [24] improved by Tran et al.

They included five 3D pooling layers, with a compact de-

scriptor called C3D, which averaged the outputs of the initial

fully connected network layer. However, they produced short

video clips and aggregated spatial and temporal information

via a late score fusion. This did not work if a long sequence

of actions, such as walking or swimming, took a few seconds

and took place in numerous video frames. The actions have

not been modeled in their entirely temporal form.

Varol et al. [25] introduced the long-term temporal convo-

lution (LTC) architecture to handle that problem. In a large

number of video frames, they used space-time convolutions.

The spatial resolution was reduced to track the complexity

of the networks. Unfortunately, extending spatial kernels to

3D Spatio-temporal derivative led to a dramatic increase in

the network parameters. They also examined the impact of

various low-level representations and demonstrated the im-

portance of accurate learning action models of high-quality

optical flow estimates. Their reported results were 92.70%
and 67.20% for UCF-101 and HMDB-51, respectively.

To this end, Sun et al. [26] proposed a deep, factional

spatial-temporal networks (FstCN). The main objective was

to factorize a 3D filter into a combination of 2D spatial

kernels on the lower network layers and 1D temporal kernels

on the upper network. The number of network parameters

to be studied has been significantly reduced, which leads to

mitigating high kernel complexity and a failure to train video

information. The UCF-101 and HMDB-51 tested FstCN. The

existing CNN methods were superior. Besides, it achieved

notable performance without using auxiliary training videos

to boost the overall performance.

B. FUSION-BASED NETWORKS

Karpathy et al. [11] proposed a slow fusion concept, where

higher layers get access to progressively more global infor-
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FIGURE 1: Illustration of the Two-Stream CNN Architecture.

FIGURE 2: Transfer Learning vs. Non-Transfer Learning Graphical Illustration.

mation in both spatial and temporal dimensions. Besides,

they evaluated four temporal fusion methods (single frame,

early, late, and slow fusion). They showed that slow fusion

had better performance rather than the other fusion methods.

Their best Spatio-temporal networks displayed significant

performance improvements from 55.30% to 63.90%.

Feichtenhofer et al. [27] proposed the ConvNet architec-

ture for the Spatio-temporal fusion of video snippets. They

evaluated different ways of fusing both spatial and temporal

networks to get the best performance results. They proved

that the fusion at a convolution layer is better than fusion

at the softmax layer. They evaluated different fusion methods

such as Max, Concatenation, Bilinear, Sum, and Convolution.

Convolution fusion achieved better performance. Also, they

answered an important question about when to fuse the

networks. They showed that fusing such networks spatially

at the last convolutional layer is better than earlier and that,

additionally, fusing at the class prediction layer can boost

accuracy. Their approach got substantial parameter savings

while holding the same performance. Finally, they answered

another question, “How to fuse the two streams temporally?”.

They showed that using 3D pooling instead of 2D pooling

after the fusion layer enhances the overall performance.

C. POOLING BASED NETWORK

Bilen et al. [28] proposed to adopt rank pooling [29], they

introduced the concept of a dynamic image where the video

is encoded into one dynamic set of images. They used CNN

models directly on video data with fine-tuning. The end-

to-end learning methods with rank pooling have also been

proposed in [30]. Unfortunately, as the number of used

features to describe the input frames increased and the video

sequence’s complexity grew, a single dynamic image-level

was insufficient to have acceptable performance. Moreover,

the linear ranking employed capacity was limited, and the

rank pooling representation was not discriminative for the

task.

For this reason, Hierarchical rank pooling [31] was pro-

posed to support higher-order and non-linear representations

rather than the work done by Fernando [29], [30]. It con-

sisted of a network of rank pooling functions that captured

the dynamics of rich convolutional neural network features

within a video sequence. A high-capacity dynamic encoding

mechanism was obtained to achieve action recognition by

stacking non-linear feature functions and rank pooling over

one another. Cherian et al. introduced Generalized ranking

pooling [32] to improve the original method using a quadratic

ranking function that together brought a low input ranking

approach to the data and maintained their temporal order in a
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subspace.

D. MULTI-STREAM BASED NETWORKS

Simonyan et al. [13] proposed two types of networks, a

spatial stream and a temporal one. The spatial network was

submitted to raw video frames, while the temporal stream

input was provided as the optical flow fields. Then, the two

streams were fused using the SoftMax score. They trained

and evaluated their architecture on the UCF-101 and HMDB-

51 benchmarks.

By integrating improved trajectory, Wang et al. [33] ex-

tended two-stream networks. They have used trajectory-

constrained sampling and pooling to deeply encode features

that have been learned from deep CNN architecture. Wang et

al. [34] have extended their work by introducing a devised

network for temporal segments (TSN) using a sampling

scheme to extract short clips over a long video sequence

to include a long-range temporal structure using the two-

stream networks. The aggregate information has been ob-

tained through redundancies removing a segmental structure

from consecutive frames.

Zhang et al. [35] replaced the optical flow with the

compressed videos’ obtained motion vector to avoid extra

calculations. This led to the acceleration of the two-stream

structure. Their reported experimental results showed a com-

parable recognition performance.

Singh and Vishwakarma [36] proposed a hybrid model for

automating human activity recognition. The Inception-v3 ar-

chitecture was chosen. They also processed the RGB frames

with the Bi-LSTM model. To deal with view variations and

occlusions in images, they used the principle of compact

single dynamic motion image (DMI) instead of optical flow.

To reduce the complexity of their model, they only used RGB

frames to learn the features.

Singh et al. [37] proposed a two-stream model for ac-

tivity recognition that combined residual- CNN with Trans-

fer Learning. They used sum fusion, max fusion, weighted

average, and weighted product fusion, among other fusion

techniques. To build the two-stream model, they merged 2D

and 3D residual networks. They used the standard UCF101

HMDB-51 benchmark dataset to test the performance of their

architectures.

Chakraborty et al. [38] presented a two-stream network for

human activity recognition. They employed transfer learning

as they used many architectures such as DenseNet201, Incep-

tionResNetV2, MobileNetV2, Xception, and InceptionV3

CNNs pre-trained on the ImageNet dataset for feature extrac-

tion. They used LSTM to model the temporal dynamics. They

achieved 92% accuracy on the UCF-101 dataset.

III. THE TRANSFER LEARNING-BASED HUMAN ACTION

RECOGNITION (TL-HAR) FRAMEWORK

This section provides a detailed description of the pro-

posed Transfer learning-based Human Action Recognition

(TL-HAR) framework. The TL-HAR framework consists

of three main phases: pre-training, Data pre-processing and

augmentation, and Recognition, as shown in Figure 3. The

pre-trained features are extracted in the pre-training phase,

then transfer to the recognition phase to adjust the network

weights. Input data is acquired and pre-processed before

entering the recognition phase. The TL-HAR framework and

the different phases are discussed in detail in the following

subsections.

A. PRE-TRAINING AND TRANSFER LEARNING

The concept of transfer learning depends on pre-training a

network on a generic dataset for feature extraction. After-

ward, network weights are adjusted for the classification task.

Formally, a model M is trained on a dataset D1. Parameters

are adjusted to be prepared for training M as a refinement

stage on the target dataset D2. The last step is fine-tuning,

on which M is trained on D2. In this case, knowledge is

transferred from D1 to D2.

In the proposed TL-HAR framework, three deep CNN

architectures are adopted as feature extractors and classifiers.

These architectures are: Xception [20], DenseNet [21], and

VGG16 [22], [23]. The models are pre-trained on the Ima-

geNet dataset [12]. It is a very large-scale dataset of over 15
million labeled high-resolution images with roughly 22, 000
categories.

B. DATA PRE-PROCESSING AND AUGMENTATION

Most of the existing deep architectures in action recogni-

tion operate on a single frame [13], [14] or stack of con-

secutive frames at a fixed sampling rate [25], [27], [39].

Accordingly, these structures cannot incorporate long-range

temporal information of videos into action models’ learning

process [40]. They also suffer in both the computational and

modeling aspects. From the computational point of view,

the cost of ConvNet training increased as it requires a large

number of frames to capture the long-range actions. Varol

et al. [25] used 100 frames for samples, and Yue-Hei et al.

[39] used 120 frames. On the modeling side, the temporal

coverage is limited by a fixed sampling interval. This limited

coverage led to failure in visual content capturing over the

whole video. The need to observe the entire video is crucial

yet limited by computational costs.

The segmentation step in the proposed TL-HAR frame-

work provides a sparse temporal sampling technique to cover

the whole video. A small number of sampled frames are

used to model the temporal structures in the video. This

number is fixed regardless of the duration of the videos.

The segmentation technique ensures fixed computational cost

with long-range temporal coverage.

Algorithm 1 outlines the steps for generating both the RGB

and OF frames.

Formally, given a video V with total m frames F , V is

divided into n equal duration portions P as shown in Figure

4, where V and n are given as inputs to the Algorithm. One

frame is sampled from each portion, resulting in n sampled

frames T . To ensure the equal distance between sampled

frames, a step parameter s is calculated as s =
⌈

m
n

⌉

. Target
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FIGURE 3: The Transfer Learning-based Human Action Recognition (TL-HAR) Framework

Algorithm 1: Video Pre-processing for Generating

both the RGB and OF Frames

Input: V, t, n // Video file, Initial step,

Number of Portions

Output: T,O // Sampled frames, OF-frames

1 m← get_number_of_frames(V)

2 P← divide_into_portions(V)

3 s←
⌈

m
n

⌉

4 foreach i ∈ n do

5 Ti ← get_frame(V, s× (i− 1) + t)
6 T ← push_to_list(T, Ti)
7 O ← push_to_list(O, TV L1(Ti))
8 end

9 return T,O

frames are sampled from each portion starting with a specific

number t and with step s such that:

Locationi = s× (i− 1) + t (1)

where i = 1, 2, .., n and 0 ≤ t < s.

The set of sampled frames T represents the new raw RGB

frames fed to the CNN’s spatial stream. It is also used to

generate OF frames fed to the temporal stream of the CNN.

Ma et al. [41] showed that extracting OF images using TV-

L1 [42] is better than using Brox [43]. TV-L1 is used to

generate OF frames for each frame Ti in the set T . Ten two-

channel OF frames are stacked into a new frame with 20-

channels. This method is similar to the method used in [34],

[40], [44]–[46]. Frames are normalized using the min-max

normalization to guarantee same-size frames (255). This step

FIGURE 4: Graphical Illustration of the Video Pre-

processing Algorithm

is important for the fusion process; ignoring it may cause

overfitting.

The performance of CNN decreases with small datasets

due to overfitting. Overfitting means that, while training,

the network performs very well, then the performance drops

on test data. The common solution is applying the data

augmentation technique [12], [47]. It helps in increasing the

dataset by applying geometric and color transformations to

the sampled frames. In this regard, the dataset is increased by

shearing, flipping, width and height shifting, rotation, zoom-

ing, and brightness changing. Figure 5 presents a graphical

illustration of the data augmentation alternatives.

C. RECOGNITION

Deep learning techniques play a principal role in this phase.

Techniques such as CNN and Long Short-Term Memory

(LSTM) [48] are the cornerstone of this phase. Using deeper

ConvNets improves the performance of the two-stream

method [34], [39], [41]. Using pre-trained models effectively
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FIGURE 5: Graphical Illustration of the Data Augmentation

Alternatives.

helps ConvNet learn and extract basic image features, which

works well on datasets that do not have enough training

samples. This phase presents five different alternative archi-

tectures to obtain the most benefit from these techniques. The

five architectures’ design is obtained after a set of trials in

changing the hierarchy, layers types, layers sizes, and overall

complexity.

The first two architectures are spatial and temporal single-

streamed models, respectively. The third architecture incor-

porates the first two in a two-stream network model. The

fourth architecture presents the TL concept in a spatial single-

stream model. The final architecture utilizes the same model

as the third, thus taking TL into account as in the fourth.

1) First Architecture: Spatial-CNN-LSTM

The first architecture depends mainly on spatial frames in

a stacked manner. The input layer accepts a ten-stacked-

spatial-frames input and passes it to the following layers. The

time domain is added through the time distribution layer. The

input layer is connected to five consequent Time Distributed

Blocks (TDB). Figure 6 shows the structure of a TDB. Each

TDB block consists of two convolutional layers, two batch

normalization layers [49], two activation layers, and a max-

pooling layer. The convolutional layers use the L2 regulariza-

tion method [50] with a value of 0.001 and Glorot Uniform

weight initializer. The max-pooling layers use (3×3) strides.

The stride controls how the kernel convolves around the

given input.

FIGURE 6: Time Distributed Block (TDB) Internal Structure

The convolutional layers of the five TDBs have kernels

of sizes 32, 64, 128, 256, and 512. After that, a flatten and

LSTM layers are added. The LSTM layer has a size of 256
and a dropout with a ratio of 0.5. Dropout [51] with a ratio

of 0.5 is applied after each dense layer. Dropout is sitting

the output of hidden neurons with a certain probability to

zero [52], [53]. The dropped-out neurons do not contribute

to the forward pass nor the backpropagation. The dropout

probability used is 0.5, which leads to maximum regulation.

The number of UCF-101 dataset categories is 101 (as

described in the experiments section), and hence a last dense

layer of 101 neurons is added as the output layer. The batch

size is 32, and the number of epochs is 12. The architecture

uses AdaMax for the optimization process. In the training,

testing, and validation processes, all available ten-stacked-

spatial-frames are extracted from each video. The frame

shape is (100 × 100) in the colored (RGB) mode. Figure 7

shows the structure design of the first architecture.

FIGURE 7: First Architecture: Spatial-CNN-LSTM

2) Second Architecture: Temporal-CNN-LSTM

The second architecture depends mainly on the temporal

frames in a stacked manner. The input layer accepts a twenty-

stacked-temporal-frames input and passes it to the following

layers. The twenty constructing frames are combined from

ten Us and V s temporal frames. The Us and V s temporal

frames are extracted from the TVL1 function. The time

domain is added using the time distribution layer. The input

layer is connected to five TDBs with the same structure as in

Figure 6.

The convolutional layers of the five TDBs have kernels of

sizes 32, 64, 128, 256, and 512. After the flatten layer, an

LSTM layer with size 256 and a dropout with a ratio of 0.5 is

used. A dense layer with 101 neurons is added as the output

layer. The batch size is set to 4, and the number of epochs

is 152. The architecture uses AdaMax for the optimization

process [54]. In training, testing, and validation processes,

twenty stacked-temporal frames are extracted from each

video. The frame shape is (100× 100) in the colored (RGB)

mode. Figure 8 shows the structural design of the second

architecture.

FIGURE 8: Second Architecture: Temporal-CNN-LSTM

3) Third Architecture: Two-Stream-Spatial-Temporal

This architecture applies the two-stream model (spatial and

temporal streams). The spatial-stream applies the Spatial-

CNN-LSTM architecture. This stream’s input is a stack

6 VOLUME 4, 2016
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of chronologically ordered RGB-frames that have to pass

through a time distribution layer. This layer has a great role in

detecting movements, actions, and directions. This detection

has a great impact on the action recognition process. The

temporal-stream applies the Temporal-CNN-LSTM architec-

ture. The input of this stream is a stack of temporal frames.

These frames also pass through a time distribution layer. A

global average-pooling layer is added after each architecture.

Global average pooling avoids overfitting and sums up the

spatial information [55]. The average is taken after the two

average layers. The frame shape is (100×100) in the colored

(RGB) mode. Figure 9 shows the structural design of the third

architecture.

FIGURE 9: Third Architecture: Two-Stream-Temporal-

Spatial

4) Fourth Architecture: TL-CNN-LSTM

In this architecture, the influence of the TL concept is in-

vestigated. The input layer receives the RGB frames and

forwards them to the pre-trained network. Using TL, a

model is trained on a large fully-labeled dataset to adjust

the network weights. Subsequently, the architecture employs

the pre-trained model. In this context, three state-of-the-art

models (Xception, DenseNet, and VGG16) are pre-trained

on the ImageNet dataset. Afterward, the model is set to be

non-retrainable. Figure 10 shows the structural design of the

fourth architecture.

FIGURE 10: Fourth Architecture: TL-CNN-LSTM.

The architecture starts with the time distribution layer to

add the time domain. Two LSTM layers follow the time

distribution layer. After these layers, three dense layers with

a dropout of 0.5 come with several neurons 1024, 512, and

64, respectively. A dense layer of 101 neurons is added as the

output layer. The batch size is 8, and the number of epochs

is 128. The dense layers use the Glorot Uniform weight

initializer [56]. It allows network weights to be initialized

so that neuron activation does not start in saturated or dead

regions. This leads to faster convergence and higher accuracy.

The architecture uses NAdam for the optimization process

[57]. In the training, testing, and validation processes, ten

three-stacked-spatial frames are extracted from each video.

The frame shape is resized to be (100 × 100) in the colored

(RGB) mode.

5) Fifth Architecture: Two-Stream-TL-Temporal

This architecture also applies the two-stream model. The

spatial-stream applies the TL-CNN-LSTM architecture. This

architecture pre-trains the model on the ImageNet dataset

before receiving the RGB-frames. These frames pass through

a time distribution layer. The Temporal-CNN-LSTM archi-

tecture is used in the temporal-stream, just as it is in the

third architecture. A global average-pooling layer is added

after each architecture. The average is taken after the two

average layers. The frame shape is (100×100) in the colored

(RGB) mode. With the adoption of TL, this architecture is a

more enhanced version of the third. This update is expected

to improve overall performance results. Figure 11 shows the

structural design of the fifth architecture.

FIGURE 11: Fifth Architecture: Two-Stream-TL-Temporal

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Several experiments are conducted to ensure the efficiency

and effectiveness of the proposed framework. The perfor-

mance of these experiments is described by significant mea-

sures used in existing research.

The experiments are performed on a Toshiba Qosmio X70-

A device with Windows 10 operating system, Intel Core i7

processor, 32 GB RAM, and Nividia GTX with 4 GB GPU

graphics card. Python 3 was the used programming language.
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The used packages were TensorFlow 2.1, NumPy v.2.1.0

[58], Matplotlib v.3.2.1 [59], and OpenCV v.4.2.0 [60].

A. DATASETS

All the conducted experiments are performed on the UCF-

101 dataset [61]. It consists of 13, 320 videos of 101 human

action categories. These 101 categories can be divided into

five types: (1) Human-Human interaction, (2) Human-Object

interaction, (3) Body-motion only, (4) Playing musical instru-

ments, and (5) Sports. All videos are realistic and collected

from YouTube. In the pre-trained part of the framework (i.e.,

the first architecture), ImageNet is used. Videos are not equal

in size nor duration (i.e., each video has a different time

duration and hence a different number of frames).

The videos are divided into three portions: training, val-

idation, and testing with a ratio of 70%, 15%, and 15%,

respectively. Since the number of videos in each category

of the UCF-101 dataset is not equal, each category is split

into this ratio. This approach ensures that every category is

represented in each of the three portions. The actual numbers

of videos for training, validation, and testing portions are

“10, 109”, “2, 525”, and “686”, respectively. Figure 12 shows

samples from the UFC-101 dataset.

FIGURE 12: Samples from the UCF-101 Dataset.

B. PERFORMANCE METRICS

The experiments evaluate several performance metrics, in-

cluding Accuracy, Recall, Precision, F1-score, and Loss [62].

Among these metrics, accuracy has the most attention. It is

the fraction of predictions the model classified correct to all

the predictions of the model as in equation 2,

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

where TP refers to true positive, TN is true negative,

FP is false positive, and FN is false negatives. Recall is

the fraction of actual positive predictions classified correctly,

often referred to as sensitivity or true positive rate as in

equation 3,

Recall =
TP

TP + FN
(3)

Precision is the fraction of positive predictions to the total

predicted positive samples, as in equation 4,

Precision =
TP

TP + FP
(4)

F1-score combines both the precision and recall into a

single parameter. It is twice the ratio between the multipli-

cation to the summation of precision and recall metrics as in

equation 5,

F1score =
2 ∗ TP

2 ∗ TP + FP + FN
(5)

Loss is the number indicating how bad the model classifi-

cation was. It is the distance between the true values of the

problem and the values predicted by the model as in equation

6,

l(y, p) =
M
∑

c=1

yo,c. log po,c (6)

C. PRE-TRAINING THE MODELS

In the fourth architecture, three models are pre-trained on

the ImageNet dataset and examined. The first experiment is

determining the best model with higher performance metrics.

Table 1 shows the measured parameters for each used model.

TABLE 1: The Experiments’ Performance Metrics Results.

Model Accuracy Recall Precision F1 Score Loss

Xception 90.25% 88.90% 92.09% 0.905 0.674

DenseNet 83.29% 79.96% 88.36% 0.839 0.837

VGG16 93.48% 93.25% 94.33% 0.938 1.476

Although the VGG16 model has the highest loss readings,

it has the highest records in all other parameters. VGG16 is

chosen as the target domain for TL in the first architecture.

Figure 13 shows a graphical representation of the reported

results.

FIGURE 13: Graphical Representation of the Reported Per-

formance Metrics Results in Table 1.

D. EXPERIMENTS RESULTS

As mentioned earlier, for all architectures, the dataset is

split into 70% for training, 15% for validation, and 15% for

testing. ReLU and SoftMax are used, as the hidden activation
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function and output activation function respectively. Table

2 shows the values of the measured parameters. All values

are calculated on the overall dataset after the training and

validation processes.

TABLE 2: The Experiments’ Performance Metrics Results

for VGG-16.

Architecture Accuracy Recall Precision F1 Score Loss

First 83.24% 81.24% 89.40% 0.894 1.766

Second 90.72% 88.62% 94.14% 0.909 0.617

Third 90.85% 88.89% 94.23% 0.914 0.607

Fourth 93.48% 93.25% 94.33% 0.938 1.476

Fifth 94.87% 93.09% 97.09% 0.950 0.463

The first proposed architecture achieved an overall accu-

racy of 83.24%, a recall of 81.24%, a precision of 89.40%,

and an F1 score of 0.894. The second proposed architecture

achieved an overall accuracy of 90.72%, a recall of 88.62%,

a precision of 94.14%, and an F1 score of 0.894. The third ar-

chitecture has slightly higher performance metrics’ values. It

achieved 90.85% accuracy, 88.89% recall, 94.23% precision,

and F1 score of 0.914. The impact of using the two-stream

model is clear as the performance metrics increased in the

third architecture.

The fourth proposed architecture achieved an overall accu-

racy of 93.48%, a recall of 93.25%, a precision of 94.33%,

and an F1 score of 0.938. Despite the fact that it is a single-

stream model, it outperforms the previous architectures, in-

cluding the two-stream model. This is obviously due to the

impact of TL on performance enhancement.

Finally, the fifth architecture achieved the best perfor-

mance among the other architectures. It achieved 94.87%
accuracy, 93.09% recall, 97.09% precision, and F1 score

value of 0.95. This architecture benefits from both the two-

stream model and the TL concept. It is clear that the use

of TL improves the performance of the recognition and

classification processes.

Table 3 shows a comparison between the results of both the

proposed architectures and the other state-of-the-art models.

The models are ordered according to the year of publication.

The recorded results show that most of the proposed architec-

tures outperform the state-of-the-art models. Furthermore, it

is clear that the fifth architecture, Two-Stream-TL-Temporal

outperforms all other models. Figure 14 shows a graphical

representation of the reported results in ascending order.

V. CONCLUSION

This paper proposed a TL-HAR framework based on trans-

fer learning techniques. TL-HAR consists of three main

phases, namely, pre-training, preprocessing, and recognition.

In the pre-training, three models are trained on a generic

dataset to adjust network weights. This pre-trained network

is used to recognize human activities in a realistic dataset.

In preprocessing, a certain number of frames are extracted

from the whole video. The segmentation technique ensures

TABLE 3: Performance Comparison with the State-of-the-

Art Models.

Model Year Accuracy

Simonyan and Zisserman [13] 2014 88.00%

Zhu et al. [63] 2016 93.10%

Ullah et al. [64] 2017 91.21%

Chen et al. [65] 2017 93.70%

Luo et al. [66] 2019 90.60%

Dai et al. [67] 2019 92.20%

Cao and Xu [68] 2019 93.60%

de Almeida Maia et al. [69] 2020 93.91%

Jaouedi et al. [70] 2020 89.30%

Bo et al. [71] 2020 89.80%

Huang et al. [72] 2020 92.70%

Wang et al. [73] 2020 90.30%

First Architecture (Ours) 2021 83.24%

Second Architecture (Ours) 2021 90.72%

Third Architecture (Ours) 2021 90.85%

Fourth Architecture (Ours) 2021 93.48%

Fifth Architecture (Ours) 2021 94.87%

fixed computational cost with long-range temporal coverage.

The extracted frames are used to feed spatial-streams in the

proposed architectures. TV-L1 is used to generate OF frames.

Stacked OF frames are used to feed the temporal-streams in

the proposed architectures. Data augmentation techniques are

applied to the training and validation of the model.

The recognition phase proposes five different architec-

tures. The first two architectures are spatial and temporal

single-streamed models, respectively. The third architecture

incorporates the first two in a two-stream network model. The

fourth architecture presents the TL concept in a spatial single-

stream model. The final architecture utilizes the same model

as the third, thus taking TL into account as in the fourth.

Different experiments are performed such that: (1) VGG16

outperforms Xception and DenseNet as it achieved 93.48%
accuracy, (2) VGG16 is selected to be tested on the five

architectures, and (3) The fifth proposed architecture has the

highest accuracy value (94.87%).

Experimental results show that the combined architectures

achieved higher accuracy than the self-paced architectures.

The first architecture, which benefits from transfer learning

techniques, achieved better results than other architectures.

The superiority of the proposed architectures is clear through

the comparison with state-of-the-art models.
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