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Human Action Recognition from Various Data
Modalities: A Review

Zehua Sun, Jun Liu, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, and Gang Wang

Abstract—Human Action Recognition (HAR), aiming to understand human behaviors and then assign category labels, has a wide
range of applications, and thus has been attracting increasing attention in the field of computer vision. Generally, human actions can be
represented using various data modalities, such as RGB, skeleton, depth, infrared sequence, point cloud, event stream, audio,
acceleration, radar, and WiFi, etc., which encode different sources of useful yet distinct information and have various advantages and
application scenarios. Consequently, lots of existing works have attempted to investigate different types of approaches for HAR using
various modalities. In this paper, we give a comprehensive survey for HAR from the perspective of the input data modalities.
Specifically, we review both the hand-crafted feature-based and deep learning-based methods for single data modalities, and also
review the methods based on multiple modalities, including the fusion-based frameworks and the co-learning-based approaches. The
current benchmark datasets for HAR are also introduced. Finally, we discuss some potentially important research directions in this

area.

Index Terms—Action Recognition, Hand-crafted Feature, Deep Learning, Data Modality, Single modality, Multi-modality, Dataset.

1 INTRODUCTION

UMAN Action Recognition (HAR), i.e., understanding
H and recognizing the human actions, is crucial in plenty
of real-world applications. It can be used in visual surveil-
lance systems [1] to identify dangerous human activities,
and can also be used in autonomous navigation systems [2]
to understand human behaviors for safe operation alongside
humans. Besides, HAR is also important for video retrieval
[3], human-robot interaction [4], entertainment, and so on.

In the early days, most of the works focused on using
RGB (or gray-scale) videos as inputs for HAR [5], due to
their popularity in daily life. Recent years have witnessed
an emergence of works using other data modalities [0], [7],
(5], (91 [10], [11], [12], [13], [14], [15], including skeleton,
depth, infrared sequence, point cloud, event stream, audio,
acceleration, radar, and WiFi, etc., for HAR. This is mainly
thanks to the development of different kinds of accurate
and affordable sensors (such as Kinect), and the distinct
advantages of different data modalities for HAR in various
application scenarios.

Specifically, according to the visibility, data modalities
can be roughly divided into visual modalities and sen-
sor modalities. RGB, skeleton, depth, infrared sequence,
point cloud, and event stream are visually ‘intuitive’ for
representing human actions, and can be seen as visual
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modalities. Generally, visual modalities are very intuitive
and effective for HAR. Among them, RGB video data is the
most common data type for HAR, which has been widely
used in surveillance and monitoring systems. Skeleton data
encoding trajectories of human body joints, is succinct and
efficient for HAR when the action does not involve objects
or scene context. Depth and point cloud data record the 3D
structure and distance information, which is popularly used
for HAR in robot navigation and self-driving applications.
Besides, infrared sequence data can be utilized for HAR
in even dark environments, while event stream keeps the
foreground movement of the humans and avoids much
visual redundancy, and thus is also suitable for HAR. Mean-
while, audio, acceleration, radar, and WiFi, etc., are sensor
modalities, which though are not so visually ‘intuitive’, yet
can be used to recognize actions in some scenarios while
protecting the privacy of subjects. Among them, audio data
is suitable for locating actions in the temporal sequence,
while acceleration data can be utilized for fine-grained
HAR. For example, acceleration information can be used to
perform quantitative gait analysis [16]. Besides, as a sensor
modality, radar data can even be utilized for through-wall
HAR. More details of different modalities are discussed in
Section 3 of this review paper.

Single modality-based HAR has been extensively inves-
tigated in the past decades. Besides, since different modal-
ities have different strengths and limitations for HAR, an-
alyzing the fusion of multiple data modalities and trans-
ferring knowledge across modalities have also received
great attention recently, so as to enhance the accuracy and
robustness of HAR. More specifically, fusion means fusing
information of two or more modalities to recognize actions.
For example, audio data can serve as the complementary
information of visual modalities for HAR (e.g., ‘put plate’
versus ‘put bag’) [17]. Besides, some methods focused on
co-learning, i.e., transferring knowledge across different



modalities to strengthen the robustness of HAR models. For
example, in [18], both RGB and depth data were utilized
during training, while recognition can still be reliably per-
formed when only one modality is available during testing.

Considering the significance of using different single
modalities for HAR, and also leveraging their complemen-
tary characteristics for fusion and co-learning-based HAR,
in this paper, we review existing HAR methods from the
perspective of data modalities. In particular, we review
the hand-crafted feature-based and deep learning meth-
ods that use single modalities, including RGB, skeleton,
depth, infrared sequence, point cloud, event stream, audio,
acceleration, radar, WiFi, and other modalities, for HAR.
We also review the works using multiple modalities for
HAR, including the fusion methods and the co-learning
approaches. Benchmark datasets for HAR are also reviewed
in this paper. The taxonomy of this paper is shown in Figure
1.

Below we summarize the main contributions of this

paper:

o To the best of our knowledge, this is the first survey
paper that comprehensively reviews the HAR meth-
ods from the perspective of various data modalities,
including RGB, depth, skeleton, infrared sequence,
point cloud, event stream, audio, acceleration, radar,
and WiFj, etc.

e To the best of our knowledge, this is the first
survey paper that comprehensively covers multi-
modality-based HAR methods, and categorizes them
into two categories, namely, multi-modality fusion-
based methods and cross-modality co-learning-
based methods.

o This paper covers both the hand-crafted feature-
based and deep learning methods for HAR, espe-
cially the most recent and advanced progress of deep
learning on HAR.

o Comprehensive comparisons of existing methods
on several publicly available datasets are provided
(e.g.in Tables 2, 3, and 4), with brief summaries and
insightful discussions being presented.

The structure of this paper is as follows. Section 2
reviews the existing survey papers for HAR. Section 3
reviews HAR methods using single data modalities. Sec-
tion 4 reviews the works using multi-modality data for
HAR, including multi-modality fusion and cross-modality
co-learning methods. Section 5 lists benchmark datasets.
Section 6 discusses the potential future development of
HAR. Specifically, we compare different data modalities.
Then we review HAR works using RGB, depth, skeleton,
infrared sequences, point cloud, audio, acceleration, radar,
WiFi, and other modalities that are not classified in the
above categories.

2 RELATED WORKS

In this section, we briefly review the existing survey papers
on HAR. There have been plenty of general survey papers
for HAR [19], [20], [21], [22], [23], [24], [25), [26), [27].
Lun and Zhao [19] gave a survey of HAR using Microsoft
Kinect [28] with the template-based and algorithmic-based
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methods. Wang et al. [27] analyzed and compared ten
Kinect-based HAR algorithms. Zhang et al. [20] summarized
the benchmark RGB-Depth datasets, including single-view,
multi-view, and multi-person datasets. The works of [21],
[22] reviewed hand-crafted feature-based and deep learn-
ing methods for HAR in video sequences. Koohzadi and
Charkari [23] discussed the deep learning methods for HAR
in a comparative form. Kong et al. [24] gave a survey about
action recognition and prediction tasks. Wang et al. [25] gave
an overview of HAR methods using Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)
based on RGB-D data, and they grouped the methods into
the segmented sequence and continuous sequence-based
ones. Zhang et al. [26] presented a comprehensive survey of
human action analysis, including recognition, interaction,
and detection. Jegham et al. [29] studied the challenges
and corresponding characterization methods to address the
issues in HAR. Apart from the aforementioned surveys,
some other papers focused on reviewing existing methods
based on one specific data modality, as follows.

Surveys focusing on RGB-based HAR. Some survey papers
focused on discussing methods using the RGB modality for
HAR [5], [30], [31], [32], [33], [34]. Poppe [5] reviewed the
hand-crafted feature-based methods for video-based HAR.
Weiland et al. [31] mainly reviewed the methods of action
representation, segmentation, and recognition. In the work
of [32], the activity recognition methods were divided into
two categories: single-layered and hierarchical approaches.
The former is the recognition of gestures and actions with
sequential characteristics, while the latter represents high-
level activities. Video datasets were reviewed in [33]. Guo
and Lai [34] gave a survey about the recognition from still
images.

Surveys focusing on skeleton-based HAR. Some survey
papers reviewed methods that use the skeleton modality for
HAR [35], [36], [37], [38]. Presti and Cascia [36] reviewed
technologies and approaches for 3D skeleton-based action
classification. Han et al. [37] focused on space-time repre-
sentations of actions, and gave a categorization from four
perspectives, namely, information modality, representation
encoding, structure and topological transition, and feature
engineering. Recently, Ren et al. [35] gave a comprehensive
survey on 3D skeleton-based HAR using deep learning net-
works, especially CNNs, RNNs, and Graph Convolutional
Networks (GCNs).

Surveys focusing on depth-based HAR. Some surveys
reviewed methods on depth-based HAR [35], [39], [40], [41].
Chen et al. [39] gave a review of using depth imagery for
analyzing human activities. Approaches of depth-based and
skeleton-based HAR were reviewed in [40]. Aggarwal and
Xia [35] summarized the HAR methods using 3D data with
a focus on techniques using depth data.

Surveys focusing on sensor-based HAR. Some survey
papers reviewed methods on sensor-based HAR [41], [42],
[43], [44], [45], [46], [47], [48], [49]. Avdi et al. [42] introduced
five major steps for the HAR process using inertial sensors,
which include pre-processing, segmentation, feature extrac-
tion, dimensionality reduction, and classification. Chen et
al. [43] reviewed the approaches for sensor-based action
monitoring, modeling, and recognition, respectively. In the
work of [45], approaches based on mobile phones were
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Fig. 1. A taxonomy of human action recognition from various data modalities.

reviewed. The thrust of [41] was on depth cameras and
inertial sensors. Wang et al. [47] surveyed sensor-based
deep learning HAR methods. Besides, some other surveys
focused on acceleration [48], WiFi [46], and radar data [49]
as well.

Compared to the above survey papers, we comprehen-
sively review methods on HAR from the perspective of
various input data modalities, including RGB, depth, skele-
ton, infrared sequence, point cloud, event stream, audio,
acceleration, radar, and WiFi, etc., which makes our survey
unique. Specifically, we not only provide a comprehensive
review of HAR methods using single data modalities, but
also discuss HAR methods based on multiple modalities,
including the multi-modality fusion methods and the cross-
modality co-learning methods.

3 SINGLE MODALITY

Existing methods [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15] have exploited various data modalities for HAR. In this
section, we review HAR methods based on RGB, skeleton,
depth, infrared sequence, point cloud, event stream, audio,
acceleration, radar, WiFi, and other modalities. TABLE 1
gives action samples of different data modalities and sum-
marizes their corresponding advantages and disadvantages.

Specifically, we summarize both the hand-crafted
feature-based methods and deep learning methods using
single data modalities for HAR in this section. The hand-
crafted feature-based methods generally consist of two
steps, namely, feature extraction and action classification
with the features, while deep learning methods often inte-
grate feature learning and classification into one network,
which are quite effective for HAR and have become the
mainstream in this field.

3.1 RGB MODALITY

Human eyes are sensitive to three main wavelengths of
light, i.e., red, green, and blue (RGB) [59]. The combinations
of different amounts of the three basic colors result in
various colors. The RGB modality generally refers to the
images or videos (sequences of images) captured by RGB
cameras, which aim to recreate what human eyes see.

The RGB modality is easy to collect and contains rich
appearance information of the scene context. HAR using
the RGB modality has a wide range of applications such as
visual surveillance [60], autonomous navigation [61], sports
analysis [62], etc. However, HAR from the RGB modality
is challenging, due to the large variations of backgrounds,
viewpoints, scales of humans, and illumination conditions
existing in the RGB data. Besides, RGB videos generally



TABLE 1
Samples of different data modalities with corresponding pros and cons.

Example

Pros

Cons

. Hand-waving [50]

- Rich appearance information
- Easy to obtain and operate

- Wide applications

- Sensitive to view
- Sensitive to background
- Sensitive to illumination

- Complex computations

Looking at the watch [51]

Modality
RGB
Visual Modality
3D Skeleton
Depth

- 3D structure information of the subject
- Simple yet informative
- Insensitive to view

- Insensitive to background

- Lack of color and texture information
- Lack of detailed shape information

- Noisy

Mopping the floor [52]

Infrared Sequence

- 3D structure information
- Geometric shape information

- Workable in dark environments

- Lack of color and texture information

Point Cloud

- Workable in dark environments

- Lack of color and texture information

- Susceptible to sunlight

Event Stream

- 3D information
- Geometric information

- Insensitive to view

- Lack of color and texture information

- Sparse representation

- Avoiding visual redundancy
- High dynamic range

- No motion blur

- Asynchronous output
- Spatio-temporally sparse

- Relatively expensive device

Sensor Modality

Audio - Easily locating actions in temporal sequence | - Lack of rich information
- Recognize fine-grained actions
Acceleration ; - Need to carry devices
W = - Privacy protecting
Acceleration measurements for walking [57]
i - Can be used for through-wall HAR
Radar H - - - Relatively expensive device
s o - Privacy protecting
Sepctrogram for falling [58]
- No need to carry devices
by - Simplicity and convenience - Nois
WiFi J'Il“l‘m\""“'«k praly Yy

0 B B
pastat)

CSI waveform for falling [58]

- Privacy protecting

- Low cost

- Small range of the space




(c) Trajectories.

(b) STIPs.

(a) Space-time volumes.

Fig. 2. An illustration of three types of RGB-based hand-crafted fea-
tures for HAR, including (a) space-time volumes, (b) space-time interest
points (STIPs), and (c) trajectories. (a)-(c) are originally shown in [66],

(671, [68].

have a large data size, leading to high computational cost
when modeling the spatio-temporal context information.

In this subsection, we review methods using the RGB
modality for HAR. Specifically, since videos contain tempo-
ral dynamics of human motions that are crucial for HAR,
most of the existing methods used videos for HAR [33],
while only a few works focused on using static images [63],
[64], [65]. Consequently, here we focus on RGB video-based
HAR methods, and review both the hand-crafted feature-
based and deep learning works using RGB videos.

3.1.1 Hand-crafted Feature-Based Methods

Generally, the first step of hand-crafted feature-based meth-
ods is to perform feature extraction. Then the extracted fea-
tures are used for action classification. As shown in Figure
2, the hand-crafted feature-based methods can be mainly
divided into three categories according to the types of the
extracted features, i.e., space-time volume-based methods,
space-time interest point-based methods, and trajectory-
based methods. The space-time volumes belong to holistic
representations, i.e., global representations of human body
shapes, structures, and motions. The other two types of
features are local representations that describe the local
regions. Below we review methods based on these three
types of features.

Space-Time Volume-Based Methods. As shown in Fig-
ure 2(a), the space-time 3D volume is generated from an
action video sequence, which contains the information of the
spatial human body and temporal dynamics. The general
idea of space-time volume-based methods is to construct
a 3D space-time template and then use the template to
perform matching.

Bobick and Davis [69] proposed a Motion Energy Image
(MEI) and a Motion History Image (MHI) as action rep-
resentations based on silhouettes and images with human
regions obtained by background subtraction. Then they
developed a method that matches temporal templates for
HAR. The MEI and MHI represent where and how motion
is moving, respectively. The limitation is that the MEI and
MHI are sensitive to view variations. Weinland et al. [70]
proposed a Motion History Volumes (MHV), which is a
viewpoint-free representation and is more robust to view-
point variations. The MHYV is a great advancement of the
holistic representation. Gorelick and Blank et al. [66] utilized
properties of the solution to the Poisson equation to extract
space-time features. Yilmaz et al. [71] introduced a space-
time volume that is a sequence of 2D contour. Each 2D
contour is generated by projecting the outer boundary of
an object in the image plane. Ali [72] and Efros et al. [73]
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utilized optical flow rather than the silhouettes to extract
motion information for HAR.

The aforementioned space-time volumes are holistic rep-
resentations, and the holistic methods, i.e., methods based
on the space-time volumes, were popular for a long time.
These methods are characterized by intuitive and straight-
forward representations, but often lack local details. Besides,
they are often not robust to various lighting and complex
scenes. In addition, the representations used by them are
generally high-dimensional, leading to high computational
costs. Consequently, researchers have made efforts in de-
signing local representations to handle the issues in the
holistic representations.

Space-Time Interest Point (STIP)-Based Methods. The
STIPs are local representations, where the main idea is to
treat a video as a 3D function, and then map the video into a
1D space through a mapping function. The points with local
maximum values in the 1D space are the points of interest.
The interesting points (See Figure 2(b)) generally refer to the
positions that have the most dramatic changes in spatial and
temporal dimensions [74].

Generally, there are four steps in STIP-based HAR ap-
proaches, namely, STIPs detection, feature extraction, vocab-
ulary building, and classification [74]. In these methods, the
detectors include dense [75] and sparse [67], [76] feature-
based detectors. Descriptors such as 3D SIFT [77], HOG3D
[78], local trinary patterns [79] were used for feature extrac-
tion. For vocabulary building, one of the popular methods is
the Bag-of-words (BoW) [80], [81] based framework. Com-
mon classifiers are Support Vector Machine (SVM), prob-
abilistic Latent Semantic Analysis (pLSA), Latent Dirichlet
Allocation (LDA), Nearest Neighbour Classifier (NNC), etc.

One of the earliest work of STIP-based methods was
motivated by the Harris corner detector [82], which ex-
tended spatial interest points into the 3D spatio-temporal
dimensions [67]. One disadvantage of this method is the
lack of stable interest points as spatio-temporal corners are
rare. To address this issue, Dollar et al. [76] applied the
Gabor filter in the spatial and temporal dimensions. Wong
and Cipolla [83] first narrowed the scope of an image to
a small set of subspace images, and then detected interest
points from the scope, rather than detecting in the entire
image. In [84], a few sparse methods and dense sampling
methods were compared, where dense sampling was found
to be able to outperform many other detectors. As some
irrelevant features often affect the result, Liu et al. [85]
utilized motion cues to prune the irrelevant features.

The main advantage of the aforementioned STIP-based
methods is that the pre-processing step such as segmenta-
tion of the background is often not required. These local
features are scale and rotation invariant, yet are sensitive to
the variations of camera positions and views. Besides, the
STIP-based methods are not capable of effectively capturing
long-term temporal information, so later on, how to track
these interest points became one of the important research
directions in hand-crafted feature-based HAR.

Trajectory-Based Methods. The trajectory (See Figure
2(c)) is a kind of features tracked over a period of time.
Trajectory-based methods generally utilize the tracking path
of key points or the human skeletons to represent actions in
long-term duration.



Wang et al. proposed Dense Trajectories (DT) [86] and
improved Dense Trajectories (iDT) [68] for HAR, which are
classic and representative trajectory-based algorithms. The
main steps of the DT algorithm [86] are to use the optical
flow to obtain the trajectory in the video sequence, and then
extract Histograms of Optic Flow (HOF) [87], Histograms
of Oriented Gradient (HOG) [88], and Motion Boundary
Histograms (MBH) [89] features, which are encoded using
the Bag of Features (BoF) method [87]. Finally, the encoded
features are used to train the SVM classifier for action
classification. The iDT algorithm [68] is an improved version
of the DT algorithm. Compared to the DT algorithm, the iDT
uses L1 normalization to perform feature regularization, and
then uses Fisher Vector (FV) to perform feature encoding. In
addition, the iDT uses Speeded Up Robust Features (SURF)
[90] key-points and dense optical flow to match feature
points between frames to eliminate or mitigate the effects
of the camera location variations.

Researchers have also made efforts in further improving
the accuracy and effectiveness of the iDT algorithm [91],
[92], [93]. Based on iDT, Peng et al. [92] proposed Stacked
Fisher Vectors (SFV), i.e., a representation with multi-layer
nested Fisher vector encoding, for HAR. They first per-
formed Fisher vector encoding in dense sub-volumes based
on low-level features, and then compressed FVs to low
dimension and performed another FV encoding. Wang et
al. [93] removed the background trajectories, and warped
optical flow with an estimated homography approximating
the camera motion to improve the accuracy.

3.1.2 Deep Learning Methods

The hand-crafted feature-based methods have shown some
promising results for HAR, but they are often not reliable for
handling large and challenging datasets. Recent years have
seen an increasing number of deep learning methods for
HAR. The representative works can be mainly divided into
three categories, i.e., two-stream CNN-based, Long Short-
Term Memory (LSTM)-based, and 3D CNN-based methods.
TABLE 2 compares the performance of the RGB-based deep
learning methods on the UCF101 [94], HMDB51 [50], and
Kinectis-400 [95] benchmark datasets.

Two-Stream CNN-Based Methods. As the name sug-
gests, the two-stream CNN network contains two CNN
branches, taking different input features extracted from the
RGB video for HAR, and the final result is obtained through
a fusion strategy, as shown in Figure 3(a).

Karpathy et al. [97] studied how to extend the con-
nectivity of CNN in the time domain to make full use of
local spatio-temporal information and proposed a multi-
resolution CNN architecture. The input frames are fed into
two separate streams, namely, a context stream modeling
low-resolution images and a fovea stream processing high-
resolution center crops. Simonyan and Zisserman [98] pro-
posed a two-stream CNN architecture that consists of a
spatial network and a temporal network. Specifically, given
the RGB video, the individual frame of the video and multi-
frame optical flow calculated from the video are respectively
inputted into the spatial stream CNN and the temporal
stream CNN. The outputs of the two streams are then fused
to generate the final recognition result.
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(a) Schema of two-stream CNN-based methods.
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(b) Schema of LSTM-based methods.

(c) Schema of 2D convolution. (d) Schema of 3D convolution.

Fig. 3. An illustration of RGB-based deep learning methods. (a) and (b)
illustrate the frameworks of two-stream CNN-based and LSTM-based
methods. (c) and (d) illustrate the 2D and 3D convolution operations. (c)
and (d) are originally shown in [96].

Plenty of studies endeavored to make an extension
and improvement for two-stream CNN. Wang et al. [101]
proposed a Trajectory-pooled Deep-convolutional Descrip-
tor (TDD) to represent videos, incorporating the merits of
both hand-crafted features and deep-learned features. In
particular, they extracted multi-scale convolutional feature
maps using the two-stream network, and TDD descriptors
were then calculated by trajectory-constrained sampling
and pooling. To model the long-range temporal structure,
Wang et al. [106] proposed a novel framework for HAR,
termed as Temporal Segment Network (TSN). TSN involves
the idea of sparse temporal sampling and video-level super-
vision, where one short snippet is randomly selected from
several divided segments of the input video, and the class
scores of different snippets are fused to obtain the video-
level prediction. [114], [151] made some improvements to
TSN as well. Cheron et al. [99] proposed a Pose-based CNN
(P-CNN) descriptor that aggregates motion and appearance
information along the tracks of the human body. Wang et
al. [103] designed a Siamese network to model actions as
a transformation that changes the environmental state (pre-
condition) before the action to the state (effect) after the ac-
tion, where precondition and effect are the inputs to the two-
stream network. For example, the precondition of kicking a
ball is that the player runs towards the ball, and the effect is
that the ball flies away. Wang et al. [104] introduced seman-
tics cues (e.g., scenes, persons, and objects), and proposed
a two-stream Semantic Region-based CNNs (SR-CNNs). In
[113], the appearance and motion pathways were fed into a
two-stream architecture coupled with injected identity map-
ping kernels for learning long-term relationships. Diba et al.
[115] embedded Temporal Linear Encoding (TLE) as a new
layer inside of CNNs to capture the appearance and motion
throughout entire videos, and the scores for the two CNNs
were combined by averaging, i.e., this method encodes the
aggregated information into a global feature representation
for end-to-end learning. Zhu et al. [116] introduced a novel



TABLE 2
Performance comparison of RGB-based deep learning methods for HAR on the UCF101, HMDB51, and Kinectis-400 benchmark datasets. For
simplicity, the ‘%’ after the value is omitted. The symbol ‘-’ indicates that the result is unavailable.

Dataset
Method Reference  Year UCFI01 HMDB5I Kinetics-200
Multiresolution CNN [97] 2014 65.4 - -
Two-stream CNN+SVM [98] 2014 88.0 59.4 -
P-CNN [99] 2015 - - -
Very deep two-stream [100] 2015 914 - -
TDD+iDT [T0T] 2015 91.5 65.9 -
EMV+RGB-CNN [102] 2016 86.4 - -
Siamese Network [T03] 2016 924 63.4 -
SR-CNNs [104] 2016 92.6 - -
Feichtenhofer et al. [105] 2016 93.5 69.2 -
TSN [106] 2016 94.2 69.4 -
ST-ResNet* +iDT [107] 2016 94.6 70.3 -
Girdhar et al. [108] 2017 - 522 -
Two-stream CNN-Based | STPP [109] 2017 92.6 70.5 -
AdaScan+iDT+C3D [TT0] 2017 93.2 66.9 -
ActionVLAD+iDT [TT1] 2017 93.6 69.8 -
ST-VLMPF [T12] 2017 94.3 731 -
Feichtenhofer et al. [113] 2017 94.9 722 -
DOVF+MIFS [T74] 2017 95.3 75.0 -
TLE: Bilinear [175] 2017 95.6 71.1 -
Hidden Two-stream CNN+I3D [116] 2018 97.1 78.7 -
SlowFast [T17] 2019 - - 79.8
TSN+SoSR+ToSR [118] 2019 92.1 68.3 -
D3-LND [119] 2019 92.8 67.8 -
Chen et al. [120] 2019 944 67.2 -
LSF CNN [121] 2020 94.8 70.2 -
3D CNN+LSTM [122] 2012 - - -
Soft Attention Model [123] 2015 - 41.3 -
LRCNs [6] 2015 82.9 - -
Composite LSTM Model [124] 2015 84.3 (RGB+flow) 44.0 (RGB) -
Yue et al. [125] 2015 88.6 - -
Wu et al. [126] 2015 91.3 - -
scLSTM [127] 2016 84.0 55.1 -
LSTM-Based DB-LSTM [128] 2017 91.2 87.6 -
L?STM [129] 2017 93.6 66.2 -
Ge etal. [130] 2019 92.8 67.1 -
Multi-task C3D+LSTM [131] 2019 93.4 68.9 -
CNN+TR-LSTM [132] 2019 - 63.8 -
STS-ALSTM [133] 2020 927 644 B
C?LSTM [134] 2020 92.8 61.3 -
ResCNN-DBLSTM [135] 2020 94.8 - -
Jietal [136] 2012 - - -
F,.CN [137] 2015 88.1 59.1 -
C3D+iDT+SVM [96] 2015 90.4 - -
LTC+iDT [138] 2017 92.7 67.2 -
T3D+TSN [139] 2017 93.2 63.5 62.6 (T3D)
Two-Stream 13D [140] 2017 93.4 66.4 787
Two-Stream I3D, Kinetics pre-training [140] 2017 97.9 80.2 -
P3D ResNet+iDT [1471] 2017 93.7 - -
3D CNN-Based ARTNet with TSN [T47] 2018 943 70.9 787
Two-stream MiCT-Net [143] 2018 94.7 70.5 -
ECO_En [T44] 2018 94.8 724 76.3
STC-ResNext 101 (64 frames) [145] 2018 96.5 749 68.7 (32 frames)
R(2+1)D-TwoStream [T46] 2018 97.3 787 754
Asymmetric 3D-CNN [147] 2019 92.6 65.4 -
3D CNN Ensemble+iDT [148] 2020 92.7 69.1 -
STDA-ResNeXt-101 [149] 2020 95.5 72.7 -
D3D Ensemble [150] 2020 97.6 80.5 76.5 (D3D+S3D-G)

CNN architecture named hidden two-stream networks to
implicitly capture the motion information between adjacent
frames to capture the temporal relationships. Feichtenhofer
et al. [117] designed a special two-stream network termed
as SlowFast network, where one stream is a Slow pathway
operating at the low frame rate, the other is a Fast pathway
operating at the high frame rate. The Slow pathway is to
capture spatial semantics, while the Fast pathway is to cap-
ture the fast-changing motion but with fewer spatial details.
Besides, plenty of studies introduced attention mechanisms
based on two-stream networks to obtain better recognition
results [108]. Recently, some researches also utilized hybrid
network architectures involving two-stream architectures

and other networks such as LSTM [121], [152], [153] and
GCN [154] for HAR. Other two-stream CNN-based methods
include [119], [120].

One important problem in the two-stream architectures
is how to combine the information of the two streams to
obtain optimal recognition results. Researchers have studied
different fusion methods to address this problem [97], [105],
[106], [111], [112]. Feichtenhofer et al. [105] studied several
ways of fusion, and found it effective to fuse at the last
convolution layer of the network for saving parameters
without loss of accuracy. Girdhar et al. [111] proposed
an end-to-end trainable two-stream network involving the
ActionVLAD (a spatio-temporal extension of the NetVLAD



[155] aggregation layer) pooling layer, through which the
features are pooled across space and time. They experi-
mented with ActionVLAD using concatenation, early, and
late fusion strategies, where the late fusion performs the
best. Residual connections have also been investigated,
showing good performance [107].

There are also some works addressing other problems
in the two-stream CNN architectures. Zhang et al. [102]
utilized the motion vector to replace the computationally
expensive optical flow information. Then they transferred
the knowledge trained with optical flow CNN to motion
vector CNN to make up for the low accuracy. Wang et al.
[100] found that many two-stream CNNs were relatively
shallow, and then they presented very deep two-stream
CNNs to address this problem. They pointed out that the
deeper network and larger amount of data generally yielded
better results of recognition. Considering that many frames
of the video sequences are irrelevant or useless for HAR,
Kar et al. [110] proposed an adaptive temporal pooling
method, i.e., AdaScan, which learns to pool discriminative
and informative frames using a single temporal scan of the
video. This method helps remove useless frames. Most CNN
architectures require inputs to be fixed-sized and fixed-
length. Considering that this is not flexible for HAR, Wang
[109] introduced an end-to-end framework that is capable
of taking videos of arbitrary sizes and lengths as inputs. To
address the problem of HAR using videos at low spatial
resolutions, Zhang et al. [118] studied the super-resolution
problem of video for HAR.

Two-stream CNNs learn spatial and temporal informa-
tion of the input in two separate networks, and then fuse
them to get the final results. Such a method makes up for
the shortcomings of traditional 2D CNNs in handling video
data, and thus achieves high recognition accuracy. However,
this type of architecture is not very powerful for long-term
dependency modeling, i.e., it has limitations in modeling
temporal context information, while LSTM can make up for
it.

LSTM-Based Methods. LSTM-based methods utilize
LSTMs to process sequences of ordered video frames for
long-term HAR. As shown in Figure 3(b), LSTM-based
methods usually use the LSTM with other networks to
combine advantages of different networks.

Baccouche et al. [122] trained a 3D CNN followed by
an LSTM model with a classifier for HAR. Ng et al. [125]
extracted frame-level features from a pre-trained CNN, and
then input these features along with optical flow features
into a pooling framework or LSTM for training to obtain the
final classification results. Donahue et al. [6] proposed Long-
term Recurrent Convolutional Networks (LRCNSs), consist-
ing of CNNs and LSTMs to process variable-length visual
inputs in spatial and temporal dimensions, where the CNNs
extract visual features from each time-step of the input, and
the LSTMs process the sequence of features to generate the
output sequence. In [124], an encoder LSTM was utilized
to map an input sequence into a fixed-length representation
which was decoded through decoder LSTMs to perform the
tasks of reconstructing the input sequences or predicting the
future sequences. Wu et al. [126] proposed a hybrid frame-
work that contains a CNN to extract spatial and short-term
motion features, and an LSTM to learn longer-term temporal
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cues. Besides, Majd and Safabakhsh [134] proposed C2LSTM
that incorporates the two basic operators of convolution and
cross-correlation, to cover the motion and spatial features
while extracting the temporal dependencies. There are also
some other works focusing on further improving the LSTM-
based HAR network design [129], [131], [156], [157]. As a
variant of LSTM, the Bidirectional LSTM, is also popular in
HAR [128], [135].

The introduction of the attention mechanisms also helps
to better capture the long-term temporal dependency of
videos [123], [127], [130], [133]. Sharma et al. [123] added
recurrent soft attention to multi-layered RNNs with LSTM
units, showing good results. Considering that RNN and
LSTM models are computationally expensive when dealing
with high dimensional input data, Pan et al. [132] proposed
a TR-LSTM, utilizing the low-rank tensor ring decomposi-
tion to reformulate the input-to-hidden transformation to
reduce computational cost.

Generally, LSTM-based methods are hybrid networks
based on LSTM and other existing models. The capability
of LSTM in modeling long short-term temporal context
information also makes it widely used for HAR with other
data modalities, such as the skeleton modality introduced in
Section 3.2.

3D CNN-Based Methods. Plenty of researchers ex-
tended 2D CNNs into 3D spatio-temporal structures for
HAR. Compared to 2D CNN:s, there is an additional dimen-
sion in 3D CNN to model temporal information, such that
3D convolution enables the network to simultaneously learn
both spatial and temporal features for HAR. Figure 3(c)
and 3(d) illustrate the 2D and 3D convolution operations,
respectively.

Ji et al. [136] developed a novel 3D CNN model to
perform 3D convolution from contiguous frames to extract
features in both spatial and temporal dimensions, which
obtained superior performance for HAR. Tran et al. [96]
proposed C3D, consisting of 8 convolutional, 5 max-pooling,
2 fully connected, and 1 softmax layers, and all the 3D
convolutional kernels are 3 x 3 x 3 with stride 1 in spatial and
temporal dimensions. The features extracted by the C3D are
generic, compact, efficient, and simple. However, the C3D
network is relatively shallow and is not very suitable for
processing long-term data sequence. To this end, [140], [141]
proposed deeper networks to further improve the capability
of 3D CNNs. Carreira and Zisserman [140] introduced a
new two-stream Inflated 3D ConvNet (I3D) by adding the
time dimension based on 2D CNN inflation. In their work,
they compared I3D with four extra different architectures,
namely, LSTM with CNNs, 3D CNNs, two-stream networks,
and 3D-fused two-stream networks. Compared to the for-
mer 3D CNNs, I3D has fewer parameters and can use the
pre-trained networks. Qiu et al. [141] utilized 1 x 3 x 3
convolutional filters on spatial domain plus 3 x 1 x 1 convo-
lution constructing temporal connections between contigu-
ous frames to simulate 3 x 3 x 3 convolutions, and they
proposed a Pseudo 3D Residual Network (P3D ResNet) for
HAR. Varol et al. [138] proposed a Long-term Time Convo-
lution (LTC) framework that increases the time range of the
representation at the cost of reducing the spatial resolution
to model long-term sequences. Diba et al. [145] introduced a
new block, Spatio-Temporal Channel Correlation (STC), em-



bedded in some architectures such as ResNext and ResNet,
which can model the correlations between channels of a 3D
CNN with respect to temporal and spatial features. Besides,
Li et al. [149] introduced a spatio-temporal deformable CNN
module with the attention mechanism to capture long-
range and long-distance dependencies of videos. Inspired
by transfer learning, Stroud et al. [150] proposed a Distilled
3D Network (D3D), consisting of a student network and a
teacher network, where the student network is trained from
RGB videos and also distilling knowledge from the teacher
network trained from optical flow sequences. Besides, 2D
and 3D CNNs are fused for HAR in [158].

Training 3D CNNs requires a high complexity of calcu-
lations and a large amount of data when the network is
very deep. Plenty of works focused on reducing the com-
putational cost of training 3D CNNs. Some studies found
that factorizing 3D convolution could not only decrease
the computational cost [137], but also significantly gain
accuracy [146]. Sun et al. [137] proposed a factorized spatio-
temporal CNN (F,CN), factorizing the 3D convolution
learning to learn 2D spatial convolutional layers followed
by 1D temporal convolutional layers. Diba et al. [139]
extended the DenseNet [159] architecture with 3D filters
and pooling kernels, named Temporal 3D ConvNet (T3D),
where the temporal transition layer can model variable
temporal convolution kernel depths. Specifically, T3D can
densely and efficiently capture the appearance and temporal
information at short, middle, and long-range terms. As T3D
contains more trainable parameters than DenseNet, transfer
learning is also considered to decrease the computational
cost. Multi-scale temporal convolutions are also utilized to
reduce the complexity of 3D convolutions [160]. Yang et al.
[147] proposed an asymmetric 3D CNN, and utilized multi-
sources enhanced input to decrease the computational cost.
Recent researches such as [143], [144], [148], [161] worked
for decreasing the computational cost as well.

The 3D CNN-based methods are very powerful in learn-
ing discriminative features from both spatial and temporal
dimensions for HAR. Though superior performance has
been achieved, 3D CNN-based frameworks often contain
a large number of parameters, and the network scales are
often large.

Apart from the above-mentioned network architectures,
some other frameworks have also been designed and ap-
plied for HAR in RGB videos, such as temporal convolution-
based networks [162], transformer networks [163], and Con-
volutional Gated Restricted Boltzmann Machines [164], etc.

In general, RGB data is the most commonly used modal-
ity for HAR in real-world application scenarios, as it is easy
to collect and contains rich information, yet it often requires
complex computation for feature extraction. Besides, due
to the sensitiveness of the RGB modality w.r.t viewpoint
variations and backgrounds, etc., recently, HAR with other
modalities, such as 3D skeleton data, have also received
great attention, which are introduced in the subsequent
sections.

3.2 SKELETON MODALITY

The skeleton sequence encoding the trajectories of human
body joints represents the human motions, and thus can be
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(a) Joints. (b) Rigid body parts (bones). (c) Joint angles.

Fig. 4. An illustration of skeleton-based hand-crafted feature represen-
tations in (a) joint-based, and (b)(c) part-based methods. The joint-
based methods extract features based on the positions and relations
of different joints, while the part-based methods extract features based
on the information and relations of rigid body parts (bones). (a)-(c) are
originally shown in [181], [182], [183].

used for HAR. Skeleton data can be acquired using pose
estimation and tracking algorithms with RGB [165], [166],
[167], [168] and depth data [169], [170], [171], [172], [173],
[174]. It can also be collected from motion capture systems.
Generally, human pose estimation is sensitive to viewpoint
variations. Meanwhile, motion capture systems, that are
insensitive to view and lighting, can provide reliable pose
(skeleton) data. However, it is often not convenient to de-
ploy motion capture systems in many practical application
scenarios. Thus many recent skeleton-based HAR works
[175], [176], [177] used the skeleton data acquired with pose
estimation and tracking algorithms using depth maps (e.g.,
NTU RGB+D dataset [178]) or RGB videos (e.g., Kinetics-
skeleton dataset [175]).

There are many advantages of using the skeleton modal-
ity for HAR, thanks to the provided body structure and
pose information, the essentially simple and informative
representation, the scale invariance, the robustness against
the variance of clothing texture and background, etc. Due
to these advantages and the availability of the accurate
and low-cost depth sensors (such as Kinect), skeleton-based
HAR has attracted lots of attention in the community re-
cently.

3.2.1 Hand-crafted Feature-Based Methods

In skeleton-based HAR, some of the existing methods [179],
[180] focused on extracting hand-crafted spatial and tem-
poral features from the skeleton sequence for classification.
The spatial information mainly refers to the structure of
the skeleton in each frame, while the temporal information
refers to the dependency information of the skeleton data
over different frames. The spatial and temporal features can
be extracted based on the joint locations and relations, and
also body part (bone) angles and relations. Thus, existing
hand-crafted feature-based HAR works using skeleton data
can be roughly divided into joint-based and body part-based
methods, according to the way of feature extraction.
Joint-Based Methods. Joint-based representations have
been very widely used in skeleton-based HAR. The joint-
based representations (see Figure 4(a)) model actions based
on the relative relationships among the coordinates of joints.
Wang et al. [184], [185] proposed an actionlet ensemble
model for HAR, where in each frame, pairwise relative
positions of the joints are calculated as the 3D joint features,
and then Fourier Temporal Pyramid is used to model the



temporal evolution, which is robust to noise. Xia et al. [186]
extended the approach in [169] to extract 3D skeletal joint
locations, and proposed Histograms Of 3D Joint locations
(HOJ3D) as a representation of human postures, which are
then clustered into several posture visual words, and finally,
the temporal information of the visual words is modeled by
discrete Hidden Markov Models (HMMs). Yang et al. [187]
introduced EigenJoints based on differences of the joint po-
sitions including posture, motion, and offset features. Yang
et al. [188] further proposed Accumulated Motion Energy
(AME) to select the informative frames, which addresses
the problem of noise and high computational cost. Hussein
et al. [189] introduced Cov3D], a temporal hierarchy of
co-variance descriptors to encode the relationship between
joint movements and time. Gowayyed et al. [190] utilized
Histogram of Oriented Displacements (HOD) projected by
three views to describe 3D joint trajectories, which is scale-
invariant and speed-invariant. Other joint-based methods
include [179], [180], [181], [191].

Part-Based Methods. The body part-based methods treat
the skeleton as a set of connected rigid body segments
(See Figure 4(b)) to model the human’s articulated system.
Chaudhry et al. [192] divided the skeleton into many tiny
parts, and then used bionic shape features to represent these
body parts. Vemulapalli et al. [182] utilized the skeleton as
points in a lie group to model the relative geometry between
body parts. As shown in Figure 4(c), joint angles measure
the geometric relationship of connected pairs of body parts,
so the methods using joint angles can be classified as part-
based methods as well. In [193], pairwise affinities between
view-invariant joint angle features were used to represent
actions. Ofli et al. [183] proposed to select the most infor-
mative representations based on the interpretable measures
(e.g., the mean or variance of joint angle trajectories). [194]
pointed out that the angle information is more discrimina-
tive than the joints’ normalized coordinates. In their further
research [195], they introduced an extended formulation of
the longest common sub-sequence algorithm to improve the
recognition accuracy. Keceli and Can [196] utilized the angle
representations as well, and they extracted features from
both the angle and displacement information of the skeleton
data, and utilized random forest and SVM to recognize
actions.

3.2.2 Deep Learning Methods

Compared to hand-crafted feature-based methods, deep
learning methods are more powerful for skeleton-based
HAR. Most of the skeleton-based deep learning methods
can be divided into three major categories: RNN, CNN,
and Graph Neural Network (GNN) or GCN-based meth-
ods. Figures 5(a), 5(b), and 5(c) illustrate these three types
of methods. TABLE 3 compares the performance of the
skeleton-based deep learning HAR methods on the large-
scale NTU RGB+D [178] and NTU RGB+D 120 [176] bench-
mark datasets.

RNN-Based Methods. RNNs are capable of learning the
dependency and dynamic information within the sequential
data, so the temporal context information within the skele-
ton sequences can be modeled by RNNs. As a successful
variant of RNN, LSTM is able to reduce the possibility
of gradient vanishing and exploding, and is suitable in
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modeling the long-term context dependence. Consequently,
plenty of LSTM-based methods have achieved good results
of HAR in long skeleton sequences.

In the past several years, different methods [197], [200],
[244] have been proposed, which applied and adapted the
RNNs and LSTM networks for skeleton-based HAR. As one
of the classic works, Du et al. [200] proposed an end-to-
end hierarchical RNN that divides the human skeleton into
five parts instead of inputting the skeleton in each frame as
a whole. Then they separately fed the five parts into mul-
tiple bidirectional sub-nets. The representations were then
hierarchically fused to generate high-level representations.
Differential RNN (dRNN) [199] focused on the change in
information gain caused by the salient motions between
frames, and this change could be quantified by Derivative of
States (DoS). Zhu et al. [197] introduced a novel mechanism
for the LSTM network to achieve automatic co-occurrence
mining, since co-occurrence intrinsically characterizes the
actions. Sharoudy et al. [178] proposed Part-aware LSTM
(P-LSTM) that introduces a mechanism to simulate the
relations among different body parts inside the LSTM unit.
Liu et al. [7], [245] proposed a Spatio-Temporal LSTM (ST-
LSTM) network with trust gates, extending the RNN design
to both the temporal and spatial domains. Specifically, they
utilized the tree structure-based skeleton traversal method
to further utilize the spatial information, and trust gates
were used to deal with the noise and occlusion. In their
further study, Liu et al. [204] proposed a new LSTM net-
work termed Global Context-Aware Attention LSTM (GCA-
LSTM), which is able to selectively focus on the informative
joints using the global contextual information. The GCA-
LSTM network uses two layers, where the first layer en-
codes the skeleton sequences and outputs a global context
memory, while the second layer performs attention and out-
puts attention representations to refine the global context.
Finally, the softmax layer classifies the actions. In [202], a
new two-stream RNN structure for modeling both temporal
dynamics and spatial configurations was proposed. Deep
LSTM with spatio-temporal attention was proposed in [203],
where a spatial attention sub-network and a temporal at-
tention sub-network work jointly, under the main LSTM
network. Lee et al. [205] proposed novel ensemble Temporal
Sliding LSTM (TS-LSTM) networks composed of multiple
parts, containing short-term, medium-term, and long-term
TS-LSTM networks, respectively. INndRNN [208] not only
addresses the problem of gradient vanishing and exploding
issues, but also is faster than the original LSTM. Other
LSTM-based methods include [201], [206], [246].

CNN-Based Methods. CNNs have achieved great suc-
cess of image analysis, thanks to its superior capability in
learning spatial information. But when facing the skeleton-
based HAR tasks, how to model the temporal information
becomes a challenge. Nevertheless, plenty of advanced ap-
proaches [210], [218] have been proposed, that convert the
skeleton sequences into pseudo-images encoding both the
spatial and temporal information. This means the spatial
structure within each frame and the dynamic information
between frames are simultaneously represented by the 2D
pseudo-images, which can then be fed to normal CNNs for
feature learning and action classification.

Hou et al. [210] and Wang et al. [211] respectively pro-
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Fig. 5. An illustration of skeleton-based deep learning methods. (a) RNN and LSTM are able to model the temporal context information, and thus
can be used for skeleton-based HAR. (b) Skeleton sequences can be converted to 2D pseudo-images that can be then fed to CNNs for feature
learning. (c) The joint dependency structure naturally presents a graph structure, and thus GCN models are also suitable for this task. (a)-(c) are

originally shown in [175], [197], [198].

posed the skeleton optical spectra and the Joint Trajectory
Map (JTM), which both encode the spatio-temporal infor-
mation of skeleton sequences into color texture images, and
then adopt CNNs with classifiers to perform HAR tasks.
As an extension of these works, the Joint Distance Map
(JDM) [214] is more robust to view variations. Ke et al. [215]
transformed the skeleton sequence into three video ‘clips’
fed into CNN to get a compact representation. The output
CNN representations are concatenated in a feature vector
involving spatial and temporal information. Then a Multi-
Task Learning Network (MTLN) is adopted for HAR. The
idea of ‘clips’ is used in [218] as well. Kim and Reiter [212]
used the Temporal CNN (TCN), which explicitly provides
a type of interpretable spatio-temporal representations. In
[219], residual one-dimensional CNN was used as the base
network with four sub-nets ensembling together by late
fusion to exploit different sources of features of the skeleton
sequences. The four sub-nets are the two-stream model, the
body-parted model, the attention model, and the frame-
difference model, respectively. An end-to-end framework to
learn co-occurrence features with a hierarchical methodol-
ogy was proposed in [220]. Specifically, they learned the
point-level features of each joint independently, and then
utilized these features as a channel of the convolutional
layer to learn hierarchical co-occurrence features. A two-
stream framework was used to fuse motion features fi-
nally. Caetano et al. introduced SkeleMotion [198] and Tree
Structure Reference Joints Image (TSRJI) [222] for a skeleton
image representation as well. In [223], Skepxels were uti-
lized as a basic building block to construct skeletal images
that mainly encode the spatial information of human joint
locations and velocities. Besides, Skepxels are to capture
the micro-temporal relations, and Fourier Temporal Pyra-
mids are employed to exploit the macro-temporal relations.
Considering the spatial relationships among joints, Li et al.
[224] used geometric algebra to represent the shape-motion.
Some very recent methods [226], [227] also used CNNs for
skeleton-based HAR.

Plenty of researches focus on addressing certain specific
problems. For example, [214], [216], [225] focused on han-
dling the viewpoint variation issue. Since features extracted
from the skeleton are not always translation, scale, and
rotation invariant, some methods [213], [217] were also
proposed for handling these issues. CNN architectures are
complex resulting in high computation cost, and thus Yang
et al. [221] proposed Double-feature Double-motion Net-
work (DD-Net) to make the CNN-based recognition model
run faster.

GNN or GCN-Based Methods. In recent years, due to
the expressive power of graph structures, researches ana-
lyzing graphs with learning methods have received great
attention [247], [248]. As shown in Figure 5(c), skeleton
data is naturally in the form of graphs. And simply rep-
resenting the skeleton data as a vector sequence processed
by RNNSs, or a 2D or 3D map processed by CNN, cannot
fully model the complex spatio-temporal configurations and
correlations of the body joints. This indicates topological
graph representations can be more suitable for representing
the skeleton data. As a result, in the domain of HAR, many
GNN and GCN-based methods [175], [228] were proposed
to treat the skeleton data as graph structures of edges and
points, which focus on organizing the raw skeleton data into
specific graphs.

GNN is a connection model capturing the dependence
of graphs through message passing between nodes in the
graphs. Si et al. [228] proposed a spatial reasoning network
to capture high-level spatial structural information using
GNN, and a temporal stack learning network was used
to model the temporal dynamics. Shi et al. [229] repre-
sented the skeleton as a Directed Acyclic Graph (DAG) and
utilized GNN to perform HAR. In [230], Dynamic Multi-
scale GNN (DMGNN) utilized the multi-scale graphs to
model the relations of the human body joints. Specifically,
the DMGNN was developed based on the encoder-decoder
framework. In DMGNN, multi-scale graphs are used to
extract spatio-temporal features in the encoder, while the
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TABLE 3
Performance comparison of skeleton-based deep learning HAR methods on NTU RGB+D and NTU RGB+D 120 datasets. ‘CS’, ‘CV’, and ‘CP’
respectively represent the cross-subject, cross-view, and cross-setup evaluation criteria.

Dataset
Methods Reference Year NTU RGB+D NTU RGB+D 120
CS CV CS CcP
dRNN [199] 2015 - - - -
HBRNN [200] 2015  59.1 64.0 - -
Co-occurrence LSTM [197] 2016 - - - -
2 Layer P-LSTM [178] 2016 629 70.3 255 26.3
Trust Gate ST-LSTM [7] 2016  69.2 777 58.2 60.9
Zhang et al. [201] 2017 703 824 - -
RNN-Based | Two-stream RNN [202] 2017 713 79.5 - -
STA-LSTM [203] 2017 734 81.2 - -
GCA-LSTM [204] 2017 744 82.8 58.3 59.2
Ensemble TS-LSTM [205] 2017 74.6 81.3 - -
VA-LSTM [206] 2017 79.4 87.6 - -
MANSs (DenseNet-161) [207] 2018 827 93.2 - -
dense-IndRNN-aug [208] 2019  86.7 93.7 - -
Du et al. [209] 2015 - - - -
Hou et al. [210] 2016 - - - -
JT™ [277] 2016 734 75.2 - -
Res-TCN [212] 2017 74.3 83.1 - -
SkeletonNet [213] 2017 759 81.2 - -
TOM [2717] 2017 762 823 = .
Clips+CNN+MTLN [275] 2017  79.6 84.8 58.4 57.9
Liu et al. [216] 2017  80.0 87.2 60.3 63.2
Lietal [277] 2017 85.0 92.3 - -
CNN-Based RotClips+MTCNN [218] 2018 811 874 622 61.8
Xu et al. [279] 2018 84.8 91.2 - -
HACN [220] 2018 865 911 = .
DD-Net [227] 2019 - - - -
TSRJT [222] 2019 733 80.3 67.9 62.8
SkeleMotion [198] 2019 765 847 67.7 66.9
Skepxel [223] 2019 813 89.2 - -
Lietal [224] 2019 829 90.0 - -
VA-fusion (aug.) [225] 2019 894 95.0 - -
Banerjee et al. [226] 2020 842 89.7 74.8 76.9
Zhu et al. [227] 2020 87.4 93.5 - -
SR-TSL [228] 2018 84.8 924 - -
GNN-Based | DGNN [229] 2019 899 96.1 - -
DMGNN [230] 2020 - - - -
ST-GCN [175] 2018 815 88.3 - -
DPRL [231] 2018 83.5 89.8 - -
motif-GCNs+non-local VTDB [232] 2019 842 90.2 - -
BPLHM [233] 2019 85.4 91.1 - -
AS-GCN [234] 2019 86.8 94.2 - -
STGR-GCN [235] 2019 86.9 923 - -
2s-AGCN [236] 2019 885 95.1 - -
GCN-Based T STM (Jomt&ParD [237] 2019 892 950 . .
2s-SDGCN [238] 2019 89.6 95.7 - -
Advanced CA-GCN [239] 2020 835 91.4 - -
SGN [240] 2020 89.0 94.5 79.2 81.5
GCN-NAS [2471] 2020 89.4 95.7 - -
4s Shift-GCN [247] 2020 90.7 96.5 85.9 87.6
MS-G3D Net [243] 2020 91.5 96.2 86.9 88.4

results are obtained by the graph-based gated recurrent unit
in the decoder.

Very recently, GCN-based HAR is becoming a hot de-
velopment direction. Yan et al. [175] exploited GCNs for
skeleton-based HAR, as shown in Figure 5(c). They pro-
posed Spatial-Temporal GCN (ST-GCN), which can auto-
matically learn both the spatial and temporal patterns from
skeleton data. They estimated the pose from the input
videos, and constructed the spatial-temporal graph, which
is a good action representation method with strong general-
ization ability. But implicit joint correlations may be ignored.
Thus Li et al. [234] proposed the Actional-Structural GCN
(AS-GCN), which combines actional links and structural

links into a generalized skeleton graph. Actional links are
to capture action-specific latent dependencies, while struc-
tural links are to represent higher-order dependencies. To
explore implicit joint correlations better, Peng et al. [241] is
the first work that determines the GCN architecture with
neural architecture search. Specifically, they enriched the
search space to implicitly capture joint correlations based
on multiple dynamic graph substructures and higher-order
connections with Chebyshev polynomial approximation.
Besides, context information is utilized to model long-range
dependencies as well [239].

Shi et al. [236] proposed a novel two-stream adaptive
GCN (25-AGCN) in which the topology of the graphs can



be either uniformly or individually learned by the back-
propagation algorithm, instead of setting manually. 2s-
AGCN explicitly combines the second-order information
(lengths and directions of human bones) of the skeleton with
the first-order information (coordinates of the joints). Wu et
al. [238] introduced a cross-domain spatial residual layer to
capture spatio-temporal information and a dense connection
block to learn global information based on ST-GCN. In
[235], the skeleton sequences were transformed as frame-
wise skeleton and node trajectories, respectively, which
were then fed into the spatial graph router and temporal
graph router to get new skeleton-joint-connectivity graphs
for further classification. High-level semantics of joints were
introduced in [240]. The attention mechanism helps to
extract discriminative information and global dependency
[232], [237]. To decrease computation cost, a Shift-GCN was
designed by Cheng et al. [242], which contains shift graph
operations and lightweight point-wise convolutions, instead
of using heavy regular graph convolutions. Liu et al. [243]
integrated a disentangled multi-scale aggregation scheme
and a unified spatial-temporal graph convolutional operator
named G3D to achieve a powerful feature extractor termed
as MS-G3D. Some other GCN-based methods include [231],
[235].

In summary, the skeleton modality provides the body
structure information, which is simple, efficient, and effec-
tive for representing human behaviors. Nevertheless, HAR
using skeleton data still faces some challenges, due to the
very sparse representation, the noisy skeleton information,
the lack of shape information that can be important when
handling human-object interactions. Hence, some of the
existing works also focused on using depth maps for HAR,
as discussed in the following section, since depth maps not
only provide 3D geometric structure information but also
keep the shape information.

3.3 DEPTH MODALITY

Depth maps refer to images where each pixel contains the
distance information from a given viewpoint to the points
in the scene. The depth modality, which is often robust to
variations of color and texture, provides reliable 3D struc-
ture and geometric shape information of human subjects,
and can be used for HAR.

The essence of constructing a depth map is converting
the 3D data into a 2D image. Various techniques have been
proposed to obtain depth images, which include active sens-
ing sensors (e.g., Time-of-Flight and structured-light-based
cameras) and passive sensing ones (e.g., stereo cameras)
[39]. Active sensors emit radiation in the direction towards
objects in the scene, and then measure the reflected energy
from the objects to complete the collection of depth infor-
mation. In contrast, passive sensors measure natural energy
that is emitted or reflected by the objects in the scene. For
example, as a type of passive sensor, stereo cameras usually
have two or more lenses to simulate the binocular vision
of human eyes to obtain depth images, where depth maps
can be recovered by seeking image point correspondences
across stereo pairs [249]. Compared to many active sensors,
such as Microsoft Kinect and Intel RealSense3D, passive
sensors can provide higher resolution of depth maps, which,
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however, are often computationally expensive and sensitive
to ambient light, and moreover, they can be inefficient in
texture-less regions or highly textured regions with repeti-
tive patterns.

In this section, we review methods that use depth maps
for HAR. In particular, both the hand-crafted feature-based
and deep learning HAR methods using depth modality are
reviewed. Note that only a few works used depth maps
captured by stereo cameras for HAR [250], [251], while most
of the existing methods [252], [253] focus on using depth
videos captured by active depth sensors to recognize human
actions, thanks to the development of consumer-available
and reliable active sensors like Kinect.

3.3.1 Hand-crafted Feature-Based Methods

In [254], an action graph was proposed to model the tem-
poral dynamics of the action instance, and a bag of 3D
points is utilized to characterize postures. The most sig-
nificant limitations of this method are its computational
complexity and the lack of spatial context information.
Thus, Space-Time Occupancy Patterns (STOP) [255] repre-
senting the depth sequence in a 4D space-time grid was
proposed, which preserves spatial and temporal contextual
information between space-time cells. Depth-based methods
are generally sensitive to noise and occlusion. For this,
researchers have designed robust features to address this
problem, which include Random Occupancy Pattern (ROP)
features extracted from depth images [256] and STIPs ex-
tracted from depth videos (called DSTIP) [257]. Lu et al.
[258] also designed range-sample features that are binary
and invariant w.r.t scale, viewpoint, and background varia-
tions. Besides, Rahmani et al. [252] also proposed a depth-
based HAR algorithm, which is robust to occlusions. Specif-
ically, the algorithm of [252] combines depth features (4D
depth and depth gradient histograms) and 3D joint position
estimations (local joint displacement histograms and joint
movement occupancy volume features), and uses random
decision forests for feature pruning and classification.

Some methods [259], [260] for HAR from depth map
videos were developed based on projected depth maps (i.e.,
projecting depth data to several orthogonal 2D planes). Yang
et al. [259] introduced Depth Motion Map (DMM) for HAR
by projecting depth maps onto three orthogonal Cartesian
planes, corresponding to front, side, and top viewpoints,
and then computing motion energy between consecutive
depth maps. Finally, HOG descriptors were computed from
the DMM of each viewpoint to represent actions. Thanks
to the success of DMM, several other HAR methods [260],
[261], [262] were also proposed based on it. Chen et al.
[262] employed DMMs to capture motion cues, and utilized
Local Binary Patterns (LBPs) to gain feature representations.
Chen and Guo [260] also presented a framework, called
TriViews, that projects depth maps onto three orthogonal
planes and evaluates the performance of different features
such as STIPs, dense trajectory shapes, and dense trajectory
motion boundary histograms. However, this type of method
is extremely dependent on the viewpoint, and generally
needs much computation due to the holistic representations,
which constraints their applicability in handling challenging
scenarios.



The surface normal can provide much shape and struc-
ture information of the subjects. Hence, Oreifej and Liu [263]
presented a novel descriptor termed as HON4D applying
the surface normal for depth-based HAR. Since the calcula-
tion of the HON4D descriptor needs to be performed on the
entire video sequence, this method needs to perform tem-
poral and spatial alignment first. As an extension work of
HON4D, Yang and Tian [253] utilized depth map sequences
to construct Super Normal Vector (SNV) features, which can
capture local motion and geometric information at the same
time. Specifically, they grouped hyper-surface normals from
a depth sub-volume into polynormals, then aggregated low-
level polynormals into the SNV, and finally applied spatial-
temporal pyramids.

3.3.2 Deep Learning Methods

Compared to the aforementioned hand-crafted feature-
based methods, deep learning methods [8], [264] are more
powerful and achieve better performance for HAR from
depth maps. An end-to-end HAR learning framework, uti-
lizing weighted hierarchical DMMs based on three CNNs
via score fusion, was proposed in [265]. As DMMs are not
able to capture detailed temporal information, local spatio-
temporal descriptors considering both the shape discrimi-
nation and action speed variations were designed in [266].
In [264], depth sequences were represented with three pairs
of structured dynamic images at the body, part, and joint
levels by utilizing bi-directional rank pooling [267], and
then Spatially Structured Dynamic Depth Images (S*DDI)
were constructed and fed into CNNs for fine-grained HAR.
The performance of this method was further improved in
[268] by introducing three representations of depth maps,
including dynamic depth images (DDIs), dynamic depth
normal images (DDNIs), and dynamic depth motion normal
images (DDMNIs).

Besides, Zhu and Newsam [269] introduced
Depth2Action using two-stream and C3D networks
for HAR. Rahmani et al. [8] transferred the human data
obtained from different views to a view-invariant high-
level space to address the view-invariant HAR problem.
Specifically, they utilized a CNN model to learn the
view-invariant human pose model and Fourier Temporal
Pyramids to model the temporal action variations. To
obtain much multi-view training data, synthetic data was
generated by fitting synthetic 3D human models to the
real motion capture data, and rendering the human data
from various viewpoints. In [270], multi-view dynamic
images were extracted through multi-view projection in
depth videos for action characterization. An end-to-end 3D
Fully CNN (3D-FCNN) was introduced in [271], which can
automatically encode spatio-temporal information without
pre-processing. In their subsequent work [272], a variant of
LSTM, named stateful ConvLSTM, was further introduced
to address the problem of memory limitation during video
processing, which can be used to perform HAR from long
and complex videos effectively.

In general, the depth modality provides geometric shape
information that is useful for HAR. However, the depth data
is often not used alone due to the lack of appearance infor-
mation that can also be helpful for HAR in some scenarios,
Thus, many works focused on fusing depth information
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with other data modalities for enhanced HAR. More details
can be found in Section 4.

3.4 INFRARED SEQUENCE MODALITY

Infrared sensors usually do not rely on external ambient
light, and are particularly suitable for HAR at night. Infrared
technologies can be divided into active and passive ones.
Some infrared sensors, such as Kinect, rely on active infrared
technology, which emit infrared rays and utilize target re-
flection rays to perceive objects in the scene. In contrast,
thermal sensors relying on passive infrared technology do
not emit infrared rays. Instead, they work by detecting rays
(i.e., heat energy) emitted from targets.

Traditional hand-crafted feature-based methods [273],
[274] exploiting infrared data have been used for gait recog-
nition [273], [275] and night HAR [274], [276]. Recently,
plenty of deep learning architectures [277], [278] have also
been proposed for infrared data-based HAR. In [277], a
framework using convolutional layers for modeling spatial
information and LSTM layers for modeling temporal de-
pendencies was designed for HAR. Shah et al. [278] used
3D CNNs and achieved real-time HAR in infrared data. In
[279], the 3D CNN used optical flow information computed
from infrared data as input for HAR. HAR using CNNs over
infrared data was studied in [280] as well.

As optical flow maps encode motion information that
can be important for HAR, multi-stream deep learning
architectures (containing optical flow streams) [9] have been
widely used for infrared data-based HAR. Infrared and op-
tical flow volumes were fed to a two-stream 3D CNN frame-
work for HAR in [9]. Low-resolution thermal images and
optical flow maps were combined in a two-stream network
in [281]. Liu et al. [282] introduced an Optical-Flow Stacked
Difference Image (OFSDI) as a global temporal representa-
tion, and then fed optical flow, OF-MHI, and OFSDI into
three-stream CNNs for HAR. Imran and Raman [283] built
a four-stream deep framework based on CNN and LSTM,
using Stacked Dense Flow Difference Images (SDFDIs) [284]
and Stacked Saliency Difference Images (SSDIs). Mehta et
al. [285] presented a novel adversarial network consisting
of two-channel 3D convolutional auto-encoders, which took
thermal data and optical flow as inputs for fall detection.

In all, the infrared data has been widely used for HAR,
especially for night HAR, thanks to its workability in dark
environments. However, infrared images may suffer from
relatively low contrast and low signal-to-noise ratio, making
it challenging for robust HAR in some scenarios.

3.5 POINT CLOUD MODALITY

Point cloud data is composed of a massive collection of
points that express the spatial distribution and surface char-
acteristics of the target under a spatial reference system.
There are two main ways to obtain 3D point cloud data,
namely, (1) using 3D sensors, such as LiDAR and Kinect,
and (2) using image-based 3D reconstruction. As a 3D data
modality, point cloud has great power to represent spatial
silhouettes and 3D geometric shapes of the subjects, and
can be used for HAR.

Rusu et al. [286] represented action shapes as 3D point
clouds using 3D point-based geometry methods, and then



computed feature histogram descriptors to recognize ac-
tions. The framework of clouds of space-time interest points
was introduced in [287] for action classification. Munaro
et al. [288] proposed a 3D grid-based descriptor encod-
ing the whole person motion from colored point clouds
as well as real-time 3D motion flow estimation for HAR.
Rahmani et al. [289], [290] integrated the local Histogram of
Oriented Principal Components (HOPC) descriptors with
Spatio-Temporal Key-Points (STKPs) detection for cross-
view HAR. Similar to the STOP descriptors [255], the de-
scriptors designed in [291] captured a point cloud structure
through a modified 3D regular grid with corresponding
cell space occupancy information, which were then used
for HAR. Recently, Wang et al. [10] proposed a 3D motion
representation, called 3D Dynamic Voxel (3DV), to encode
3D action information into a voxel set with temporal rank
pooling. The voxel representation was then abstracted and
passed through the PointNet++ model [292] for 3D HAR.

In all, the point cloud modality can effectively capture
the 3D shapes and silhouettes of the subjects, and can be
used for HAR, and generally, 3D point cloud-based HAR
methods can be insensitive to viewpoint variations, since
viewpoint normalization can be conveniently performed by
rotating the point cloud in 3D space.

3.6 EVENT STREAM MODALITY

Event cameras, also known as neuromorphic cameras or
dynamic-vision sensors, which can capture illumination
changes and produce asynchronous events independently
for each pixel [293], have received lots of attention recently.
Different from conventional video cameras capturing the en-
tire image arrays, event cameras only respond to changes in
the visual scene. Taking a high-speed object as an example,
traditional RGB cameras may not be able to capture enough
information of it, due to the low frame rate and motion blur.
However, this issue can be significantly mitigated when
using event cameras that operate at extremely high frequen-
cies, generating events at a pis temporal scale [293]. Besides,
event cameras have some other characteristics, such as
high dynamic range, low latency, low power consumption,
and no motion blur, which make them suitable for HAR.
Particularly, event cameras are able to effectively filter out
background information and keep foreground movement
only, avoiding considerable redundancy in visual informa-
tion. However, the information obtained with event cameras
is generally spatio-temporally sparse, and asynchronous.
Common event cameras include the Dynamic Vision Sensor
(DVS) [294] and the Dynamic and Active-pixel Vision Sensor
(DAVIS) [295], etc.

The output data of event cameras is highly different from
that of conventional RGB cameras, as shown in Table 1.
Thus, some of the existing methods [296] mainly focused
on designing event aggregation strategies converting the
asynchronous output of the event camera into synchronous
visual frames, which can then be processed with con-
ventional computer vision techniques. While hand-crafted
feature-based methods [296], [297] have been proposed,
deep learning methods are more popularly used recently.
Ghosh et al. [298] introduced spatio-temporal filtering in
the spike-event domain, where the raw event data was
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convolved with 3D spatio-temporal filters to generate mul-
tiple filtered channels, as the input of a CNN followed
by a classifier. However, it remains to be seen for static
recognition tasks. Innocenti et al. [293] proposed Tempo-
ral Binary Representation (TBR), where events were first
stacked together into intermediate binary representations,
which were then losslessly grouped into a single frame via
a binary to decimal conversion, interpreted by deep learning
models finally. Huang et al. [299] utilized timestamp image
encoding, to encode the event data sequence into frame-
based representations for HAR. Bi et al. [300] proposed a
compact graph representation for end-to-end learning with
Residual-Graph CNN (RG-CNN). Event cameras have also
been used for gesture recognition in [301], which achieved
promising results. However, since the size of the frame to be
processed in these methods is basically larger than the orig-
inal Neuromorphic Vision Stream (NVS), the advantages of
event cameras are diluted.

Therefore, different from the aforementioned methods,
some other methods [302], [303], [304], [305], directly us-
ing the event stream as the input of networks, have also
been proposed. George et al. [304] utilized Spiking Neural
Networks (SNNs) for event stream-based HAR. The works
in [302], [303] treated the event stream as the 3D point
cloud, which was then fed into deep networks for gesture
recognition. Chadha et al. [305] embedded the PIX2NVS
emulator [11] (converting pixel domain video frames to neu-
romorphic spike events) into a teacher-student framework
based on knowledge distillation, which transferred knowl-
edge from a pre-trained optical flow teacher network to
the Neuromorphic Vision Sensing (NVS) student network.
After training, the emulator component of the framework
was replaced with an NVS camera for HAR without using
optical flow, achieving promising recognition performance
and low computation complexity.

In general, the event stream modality is an emerging
modality for HAR, and has received great attention in the
past few years. Processing event data is computationally
cheap, and the captured frames usually do not contain
background information, which can be helpful for action
understanding. However, the event stream data generally
cannot be effectively and directly processed using conven-
tional video analysis techniques, and thus effectively and
directly utilizing the asynchronous event stream for HAR is
still a challenging research problem.

3.7 AUDIO MODALITY

The audio signal is the form of sound, mainly existing in
videos for HAR. Due to the synchronization between visual
and audio streams, the audio data can be used to locate
actions to save human labeling efforts and decrease compu-
tational cost. Audio modality is often used as complement
information of visual modalities for HAR, and thus most of
the existing audio-based methods [17], [306] focus on using
multi-modal deep learning technique, which are discussed
in 4.

Several hand-crafted feature-based methods [56], [307]
were proposed for HAR with audio signal. More recently,
plenty of methods [308], [309], [310], [311] that utilized
multi-stream deep learning architectures were proposed, in



which the visual and audio modalities were fed into CNNs
to perform HAR tasks via a fusion strategy. Hori et al. [306]
integrated the temporal attention mechanism into an RNN
encoder-decoder model to fuse information across RGB and
audio modalities, resulting in a reliable HAR model. In the
work of [17], two different architectures, including Temporal
Binding Network (TBN) and Temporal Segment Network
(TSN) [106], were evaluated. Specifically, the RGB, flow,
and audio information were fused with a mid-level fusion
technique and were trained jointly in TBN, while the data
was trained independently in TSN with an additional audio
stream performing late fusion. Gao et al. [12] utilized audio
as a clip-level preview tool in untrimmed videos for efficient
HAR.

In general, using audio modality alone is not a popular
scheme of HAR, since the audio signal does not contain
enough information for accurate HAR. Nevertheless, the
audio modality can serve as complementary information for
more reliable and efficient HAR, as shown by the existing
works [12], [306].

3.8 ACCELERATION MODALITY

Acceleration signals obtained from accelerometers have
been used for HAR [312], thanks to the robustness against
occlusion, view, lighting, and background variations, etc.
Specifically, a triaxial accelerometer can return an estimation
of acceleration along the z, y, and z axes, that can be used to
perform human activity analysis [313]. As for the feasibility
of the acceleration signals for HAR, although the size and
proportion of the human body vary from person to person,
people generally have similar qualitative ways to perform
an action, so the acceleration signals do not have obvious
intra-class variations for the same action. HAR using ac-
celeration signals can generally achieve high accuracy, and
thus has been adopted for remote monitoring systems [314],
[315] while taking care of privacy issues.

Plenty of traditional hand-crafted feature-based ap-
proaches [57], [312], [313], [314], [316], [317], [318], [319],
[320] have been proposed for HAR using acceleration data.
These methods placed several accelerometers on different
parts of the human body to obtain raw acceleration signals.
The signals were then pre-processed by removing the noise
or performing segmentation using window-overlapping
techniques. Finally, descriptive features were extracted by
applying different techniques, such as Principal Component
Analysis (PCA) and wavelet transform, for HAR. The com-
bination of accelerometers and other sensors has also been
adopted for HAR [315], [321], [322].

Deep learning networks have been widely applied as
well, since they can learn discriminative features. Zeng
et al. [13] captured local dependencies and scale-invariant
features of acceleration signals by PCA and Restricted Boltz-
mann Machine (RBM), etc., and these features were then
fed to CNNs to produce the classification results. In the
work of [323], the signal sequences of accelerometers and
gyroscopes were assembled into an activity image, which
was then fed into a CNN. Ordonez and Roggen [324]
combined convolutional and LSTM units into a framework
explicitly capturing the temporal dynamics, for HAR. In the
work of [325], CNN was augmented with statistical features
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embracing global properties from acceleration sequences for
recognition. Fan et al. [326] adopted an algorithm-hardware
co-design scheme to decrease computational cost.

In general, the acceleration modality can be utilized for
fine-grained HAR, and has been used for action monitor-
ing, especially for eldercare thanks to its privacy-protecting
characteristic. However, the subject needs to carry wearable
sensors that are often cumbersome and disturbing. In addi-
tion, the place of sensors can also affect the performance of
HAR.

3.9 RADAR MODALITY

Radars are active sensing systems that transmit electro-
magnetic waves and receive returned waves from targets.
There are some advantages of using spectrograms obtained
from radars for HAR, which include the robustness to
variations of illumination and weather conditions, privacy
protecting during HAR, and capability of through-wall
HAR [49]. Continuous-wave radars, such as Doppler radars
[327] and Frequency Modulated Continuous Wave (FMCW)
radars [328], are most often chosen for HAR. Specifically,
continuous-wave radars detect the radial velocity of body
parts (and thus are hard to be used to recognize non-
cooperative actions performed along the tangent direction),
and the frequency changes according to the distance, which
is known as Doppler shift. The micro-Doppler signatures
generated by the micro-motion of the radar target contain
the motion and structure information of the target, which
thus can be used for HAR. As for the FMCW radars, they
can measure the distances of the targets as well.

Some hand-crafted feature-based HAR methods using
radar data have been designed in the works of [329], [330],
[331]. Plenty of deep learning-based methods [14], [332]
have also been proposed recently. The works in [14], [332],
[333], [334] directly fed raw micro-Doppler spectrogram
images to CNNs for HAR, while [335] designed a three-layer
deep convolutional auto-encoder, combining the advantages
of CNNs and auto-encoders for radar-based HAR. Vander-
smissen et al. [336] computed the micro-Doppler signatures
from the recorded raw signals, and then did noise reducing
and segmentation pre-processing. Finally, they trained a
CNN model to get the recognition result. LSTM networks
were utilized for radar-based HAR as well [337], [338].
Wang et al. [337] performed the logarithm operation and
normalization on spectrograms of raw radar data. Then the
input was fed into the stacked RNN network for action
classification.

In general, the characteristics and advantages of the
radar modality make it suitable to be used for HAR in
some scenarios, but the radars are relatively expensive.
Though HAR using radar data has achieved satisfactory
results on some datasets, there is still plenty of room for the
development of the radar-based methods, and the work of
[49] also pointed out some future directions in this area, such
as handling more complex actions in real-world scenarios
with the radar data.

3.10 WIFI MODALITY

WiFi has been considered as one of the most common
indoor wireless signal types nowadays [339]. Since human



bodies are good reflectors of wireless signals, WiFi signals
can be utilized for HAR. There are some advantages of
using the WiFi modality for action analysis, thanks to the
convenience, simplicity, privacy protection, and low cost of
the WiFi signals and devices. However, in WiFi-based HAR,
the spatial range of the action performing is not large, and
the recognition accuracy is also limited. Specifically, most of
the existing WiFi-based HAR methods [15], [340] focused on
using the Channel State Information (CSI) to conduct action
recognition. CSI is the fine-grained information computed
from the raw WiFi signals, and the WiFi signals reflected by
a person, who performs an action, usually generate unique
variations in the CSI on the WiFi receiver.

E-eyes system [15] is a classic work that utilized CSI
histograms as fingerprints to perform daily activity recog-
nition. In the works of [58], [340], a CSI-based human
activity recognition and monitoring system was proposed.
The system consists of two models, namely, a CSI-speed
model and a CSl-activity model, that can quantitatively
correlate CSI dynamics and human activities. Wang et al.
[341] proposed WifiU, generating spectrograms from CSI
measurements and extracting features for capturing fine-
grained activity patterns based on commercial off-the-shelf
WiFi devices. The work of [342] used specialized directional
antennas to obtains CSI variations caused by lip movements.
Duan at al. [343] handled driver activity recognition based
on WiFi CSI. Besides, WiFi signals have also be used for fall
detection [344].

Deep learning networks [339] have received much atten-
tion as well. In the work of [345], the WiFi-based sample-
level HAR task was handled, which is different from the
past series-level recognition problem. More specifically, ev-
ery WiFi distortion sample in the series was categorized into
one action, whereas series-level HAR generally categorizes
the complete distortion series into one action. A deep model,
called Temporal Unet, was introduced by [345], and the
CSI was used as the time-serial WiFi distortion that can
be fed into the network for recognition tasks. Zou et al.
[339] designed an architecture named WiVi, taking RGB and
WiFi data as inputs of the C3D and CNN models, and then
performed multi-modal fusion for classification.

In general, thanks to the advantages (e.g., convenience)
of the WiFi modality, it can be used for HAR in some
scenarios. However, there are still some challenges that
need to be addressed, such as more effectively using the
CSI phase and amplitude information, and improving the
robustness when handling dynamic environments, etc.

3.11 OTHER MODALITIES

Apart from the modalities mentioned above, other sensor-
based modalities, such as pressure [346], orientation [346],
gyroscope [346], [347], radio-frequency (RF) [348], [349],
Piezoelectric Energy Harvester (PEH) [350], [351], and elec-
tromyography (EMG) [352], etc., have been applied for HAR
as well. Moreover, recently, Nagrani et al. [353] introduced
the speech modality, neither visual nor sensor modalities,
for action recognition, and they trained a Speech2Action
model from literary screenplays to predict action labels from
transcribed speech segments.
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4 MULTI-MODALITY

In real life, humans often perceive the environment in
a multi-modality cognition way. Similarly, multi-modality
machine learning can be used for HAR as well. Specifically,
multi-modality machine learning is a modeling approach
aiming to process and relate the information from multiple
modalities [354]. Aggregating the advantages and capabil-
ities of various data modalities, multi-modality machine
learning can often provide high accuracy and robustness of
HAR. There are two main types of multi-modality learning
methods, namely, fusion and co-learning. Fusion refers to
fusing the information from two or more modalities for
training and inference, while co-learning refers to transfer-
ring knowledge among different data modalities.

4.1 FUSION

As introduced in Section 3, different modalities can have
different strengths. Thus it becomes a natural choice to
take advantage of the complementary strengths of different
data modalities via fusion, so as to achieve enhanced HAR
performance. There are two widely used multi-modality fu-
sion schemes in HAR, namely, late fusion and early fusion.
Generally, late fusion [362], [363] is decision-based, which
integrates the decisions that are separately made based on
different modalities, to produce the final classification result.
As it is usually very convenient and effective to directly
fuse the classification results (confidence scores) obtained
based on different modalities, late fusion has been quite
popularly adopted for HAR. Meanwhile, early fusion [52],
[364] is generally feature-based, and it combines the features
of different modalities to yield aggregated features that are
often very discriminative and powerful and can then be
used for HAR. Note that in some works [7], other fusion
methods, such as intermediate feature fusion [7], have also
been exploited, and since they perform feature-based fusion
as well, here we simply group them to early fusion.

Table 4 gives the results of multi-modality fusion-based
HAR methods on the MSR-Action3D [254], MSRDailyAc-
tivity3D [184], UTD-MHAD [347], and NTU RGB+D [178]
benchmark datasets.

4.1.1 Fusion of Visual Modalities

With the emergence of low-cost RGB-D cameras, many
multi-modality datasets [178], [184] have been created by
the community, and consequently, plenty of multi-modality
fusion-based HAR methods appeared [52], [364]. Most of
these methods focused on the fusion of visual modalities,
such as RGB, depth, and skeleton data, which are reviewed
below.

Fusion of RGB and Depth Modalities. The RGB and
depth data respectively capture rich appearance information
and 3D shape information, that are complementary and
can be used for HAR. As a result, different methods [52],
[355] have been proposed to exploit the fusion of these
two modalities for more reliable action recognition. Ni et
al. [52] introduced two fusion methods naturally combining
RGB and depth features, including Depth-Layered Multi-
Channel STIPs (DLMC-STIPs) and 3D-MHIs, for HAR. In
the work of [355], HOG and HOF descriptors from RGB
data, and Local Depth Patterns (LDP) features from depth
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TABLE 4
Performance comparison of multi-modality fusion HAR methods on MSR-Action3D (M1), MSRDailyActivity3D (M2), UTD-MHAD (U) and NTU
RGB+D (N) benchmark datasets. Notation: S: Skeleton, D: Depth, IR: Infrared sequence, PC: Point Cloud, Acc: Acceleration, Gyr: Gyroscope.

Dataset
Method Reference  Year Modality Deep Network Fusion M1 M2 U s N ov
DLMC-STIPs [52] 2011 RGB,D None Early - - - - -
3D-MHIs [52] 2011 RGB,D None Early - - - - -
Zhao et al. [355] 2012 RGB,D None Early - - - - -
RGGP [356] 2013 RGB,D None Early - 85.6 - - -
BHIM 2015 RGB,D None Early - 86.9 - - -
Structured MMHIM-2 2017 RGB,D None Early - 89.4 - - -
Imran et al. 2016 RGB,D CNN Late - - 91.2 - -
SFAM [360] 2017 RGB,D CNN Late - - - - -
c-ConvNet [18] 2018 RGB,D CNN Late - - - 864 89.1
GM-VAR [361] 2019 RGB,D GAN Early - - - - -
Dhiman et al. 2020 RGB,D CNN,LSTM Late - - - 794 841
Wang et al. 2020 RGB,D CNN,RNN Late - - - 89.5 917
SSFF 2014 RGB,S None Early - 81.9 - - -
Franco et al. [365] 2020 RGB,S None Late - - - - -
ST-LSTM [7] 2017 RGB,S LSTM Early - - - 732 80.6
DSSCA-SSLM [366] 2017 RGB,S Autoencoder Early - 97.5 - 74.9 -
Chain-MS [367] 2017 RGB,S CNN Late - - - 80.8 -
Zhao et al. [368] 2017 RGB,S CNN,RNN Early - - - 83.7 937
Baradel et al. [369] 2017 RGB,S CNN,LSTM Late - 90.0 - 84.8 90.6
Liu et al. [370] 2018 RGB,S LSTM Late - - - -
SI-MM [371] 2018 RGB,S CNN,LSTM Late - 91.9 - 926 979
DS+DCP+DDP+JOULE+SVM 2015 RGB,S,D None - - 95.0 - - -
Ye et al. 2015 RGB,S,D,PC None Late 90.4 - - - -
MMHIM +Skeleton 2017 RGB,S,D None Early - 95.6 - - -
CMFL [374] 2019 RGB,S,D None Early - 956 921 723 786
Chaaraoui et al. [375] 2013 S,D None Early 91.8 - - - -
DCSF+]oint [257] 2013 S,D None Early - 88.2 - - -
Zhu et al. [179] 2013 S,D None Early 94.3 - - - -
JAS+HOG? [193] 2013 S,D None Early 94.8 - - - -
Rahmani et al. 2014 S,D None Early 88.8 74.5 - - -
Althloothi et al. 2014 S,D None Early - 93.1 - - -
MMMP 2015 S,D None Early 98.2 91.3 - - -
Jala et al. [378] 2017 S,D HMM Early 93.3 94.1 - - -
PRNN [379] 2017 S,D CNN,RNN - 94.9 - - - -
Rahmani et al. [380] 2017 S,D CNN Early - - - 752 83.1
Kamel et al. [381] 2018 S,D CNN Late 945 88.1 - - -
3DSTCNN [382] 2019 S,D CNN Late 94.2 - 95.3 - -
Chen et al. [383] 2014 D,Acc None Early,Late - - - - -
Chen et al. [384] 2015 S,D,Acc None Late - - 97.2 - -
Zou et al. [385] 2017 RGB,D,Acc None Early - - - - -
MHCCA 2018 RGB,S,D,Acc None Early 93.5 (S+D) - 96.1 - -
JMHC 2019 S,D,Acc None Late - - 94.9 - -
Ehatisham et al. 2019  RGB,Acc,Gyr None Early - - 97.6 - -
DCNN [323] 2015 Acc,Gyr CNN Early - - - - -
DeepConvLSTM [324] 2016 Acc,Gyr CNN,LSTM Late - - - - -
WiVi [339] 2019 RGB,WiFi CNN Late - - - - -
Memmesheimer et al. 2020 S,WiFi,etc. CNN Early - - 93.3 - -
FUSION-CPA 2020 S,IR CNN Early - - - 91.6 945
Zou et al. 2020 Acc,Gyr CNN,LSTM Late - - - - -
Imran et al. [284] 2020 RGB,S,Gyr CNN,RNN Late - - 97.9 - -

data were fused for activity classification. Liu and Shao [356]
proposed a Restricted Graph-based Genetic Programming
(RGGP) approach, simultaneously extracting and fusing the
RGB and depth information, and in this method, a group of
3D operators were used to evolve the individual program
to obtain discriminative representations. Bi-linear Heteroge-
neous Information Machine (BHIM) [357] and Max-Margin
Heterogeneous Information Machine (MMHIM) [358] were
also used to compress and project heterogeneous data to a
learned shared space. Besides, they utilized feature matrices,
instead of feature vectors, to represent actions, so as to keep
inherent spatio-temporal structural information within the
features.

Deep learning architectures [359], [362] have also been
used for RGB and depth data fusion-based HAR. In the
work of [359], a four-stream deep CNN architecture was

designed, which was fed with three DMMs from the front,
side, and top views generated from depth data, and MHI
generated from RGB data. Dhiman et al. [362] designed
a two-stream network composed of a motion stream and
a Spatial-Temporal Dynamic (STD) stream. In the work of
[18], a c-ConvNet was cooperatively trained on RGB Visual
Dynamic Image (VDI) features and Depth Dynamic Images
(DDI) features. Specifically, the c-ConvNet cooperatively
exploited the information in RGB VDIs and DDIs by jointly
optimizing a ranking loss and a softmax loss. Wang et al.
[360] proposed a representation method, called Scene Flow
to Action Map (SFAM), extracting features from depth and
RGB modalities as a joint entity for HAR. In the work of
[361], a Generative Multi-View Action Recognition (GM-
VAR) framework was introduced, which generated one
view conditioned on the other views to make HAR more



robust to cross-view settings. In the work of [363], a hybrid
network of CNN and RNN was proposed, where weighted
dynamic images were fed into CNNs, while RGB and depth
sequences were fed into 3D ConvLSTMs to extract features.
Then a canonical correlation analysis was applied to fuse
these features.

Fusion of Skeleton and Depth Modalities. The skele-
ton data has been shown to be a succinct yet informative
representation for human behavior analysis [392], which,
however, is a very sparse representation without encoding
shape information of the human body and the interacted
objects. Besides, the skeleton data is often noisy, limiting
the performance of HAR when using skeleton data only
[7]. Meanwhile, the depth maps provide discriminative 3D
shape and silhouette information that can be helpful for
HAR. Therefore, many methods [193], [257] have attempted
to fuse the skeleton and depth information for more ac-
curate HAR. The body pose and shape information based
on silhouettes were fused through feature concatenation
in [375]. Depth Cuboid Similarity Features (DCSFs) were
concatenated with the joint position features in [257]. Ohn-
Bar and Trivedi [193] proposed two descriptors extracted
from skeleton and depth sequences, which include Joint
Angle Similarity (JAS) and HOG? features. A bag-of-words
scheme and a SVM classifier were further used for HAR.
In the work of [376], shape features extracted via spherical
harmonics representations and motion information of the
3D joint positions were fused by Multiple Kernel Learn-
ing (MKL), which is a model-based fusion strategy. In the
work of [179], features were fused based on the random
decision forests method. Shahroudy et al. [377] employed a
heterogeneous set of skeleton features (joint trajectories) and
depth features (local occupancy patterns and histograms of
oriented 4D normals) for HAR.

As for deep learning-based approaches, Shi and Kim
[379] proposed an RNN architecture driven by Privileged In-
formation (PI), and they pre-trained an embedded encoder
taking depth maps and skeleton as input. Then a multi-task
loss was applied to exploit the PI in the regression term
as a secondary task. Besides, a bridging matrix was also
defined to discover the latent PI at the final refining step.
Jalal et al. [378] extracted multi-fused features consisting
of four sets of joint features from skeleton sequences and
one set of body shape features from depth sequences, and
then adopted HMM for recognition. In the work of [380],
an end-to-end learning framework effectively combining
representations from skeleton data and depth images was
introduced. CNNs were used in [381] to take in Depth Mo-
tion Images (DMIs) and Moving Joint Descriptors (M]Ds)
for HAR via score fusion. The work of [382] utilized two
3D Space-Time CNN (3DSTCNN) streams taking raw depth
data and depth motion map as input, as well as a manifold
representation stream taking 3D skeleton as input, for action
classification.

Fusion of RGB and Skeleton Modalities. The appear-
ance information provided by RGB data, and body pos-
ture and joint motion information provided by skeleton se-
quences, are complementary and useful for activity analysis.
Thus RGB and skeleton data fusion-based approaches [7],
[366] have also been introduced for HAR. In the work of
[364], the hierarchical bag-of-words feature fusion technique
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based on structured sparsity learning was proposed to fuse
features from the RGB and skeleton data. Franco et al. [365]
utilized HOG descriptors derived from the RGB frames to
highlight the temporal evolution of actions, together with
skeleton information to capture body postures.

Besides, some deep learning-based methods [368], [369]
have also been proposed. The two-stream deep network
was utilized in [368], where the RNN stream and the
CNN stream were fed with skeleton and RGB data, re-
spectively. They further evaluated both feature-based fu-
sion and decision-based fusion, and found the former
achieved a superior result. Baradel et al. [369] fused a
model based on pose sub-sequences and a spatio-temporal
attention model on RGB data conditioned on pose features
for HAR. Chained Multi-Stream (Chain-MS) networks [367]
integrated multiple cues (pose, optical flow, and RGB) se-
quentially via a Markov chain model. Liu et al. [7] stud-
ied early fusion and late fusion, together with the newly
proposed feature fusion strategy above the spatio-temporal
LSTM network [7] for action analysis. Shahroudy et al.
[366] presented a method of hierarchical shared-specific
component factorization. They focused on studying the cor-
relation between modalities, and factorizing them into their
correlated and independent components. Then a structured
sparsity-based classifier was utilized for feature fusion. Liu
et al. [370] proposed a two-stream multi-modality multi-task
RNN. Song et al. [371] proposed a Skeleton-Indexed Multi-
Modality (SI-MM) feature learning framework containing
a skeleton-indexed transform layer and a part-aggregated
pooling layer, where the skeleton-indexed transform ex-
plicitly captured local details with high resolution, while
the part-aggregated pooling layer was to adapt to different
dimension skeleton-indexed features.

Other Fusion Methods. Besides fusing two data modali-
ties, some methods [372], [374] have explored fusing three or
more modalities to further enhance the robustness of HAR.
As different features may share similar hidden structures,
a joint heterogeneous feature learning method was intro-
duced in [372] to explore the shared and feature-specific
components based on RGB, depth, and 3D skeleton data.
Since some fusion-based methods simply concatenated the
features and ignored their latent connections, Kong et al.
[374] proposed a Collaborative Multi-modal Feature Learn-
ing (CMFL) model, where RGB, skeleton, and depth data
were factorized to learn shared features to discover their
latent connections.

Moreover, besides fusing the RGB, depth, and skeleton
information, some other methods [373] have also attempted
to fuse other visual modalities, such as point cloud data, for
HAR as well. For example, the point cloud data was fused
with other visual modalities in [373], where a multi-modal
feature fusion method was proposed to exploit different
discriminative capabilities of the features extracted from
multiple modalities.

4.1.2 Fusion of Visual and Sensor Modalities

Visual and sensor modalities can also be fused to leverage
their complementary discriminative capabilities for better
HAR accuracy and higher robustness. Chen et al. [383]
fused depth information and acceleration signals at both
feature level and decision level for HAR. In their subsequent



work [384], the depth image features and acceleration signal
features were fed to two computation-efficient collaborative
representative classifiers for real-time HAR. Zou et al. [385]
proposed two algorithms, namely, EigenGait and TrajGait,
to extract acceleration and RGB-D features. Multi-modal
Hybrid Centroid Canonical Correlation Analysis (MHC-
CCA) [386] extracted the bag of angles from skeleton data,
HP-DMM from depth data, MHI-MEI from RGB data, and
statistical features from acceleration data. These features
were then fused for multi-modality HAR. Ehatisham et
al. [388] proposed a feature-level fusion method based on
HOG features extracted from RGB or depth videos, and
statistical features extracted from inertial sensors. Malawski
and Kwolek [387] proposed an action descriptor, called Joint
Motion History Context ((MHC) computed from depth and
skeleton data. JIMHC, was together with Joint Dynamics (JD)
and Local Trace Images (LTI) descriptor on skeleton data, as
well as Acc descriptor based on acceleration data, for HAR.

In the work of [324], a DeepConvLSTM model was
applied to the combination of acceleration data and gy-
roscope data. Acceleration data and gyroscope data were
also utilized for gait recognition in [391]. Imran and Raman
[284] designed a three-stream network architecture, where
a 1D-CNN for gyroscopic data, a 2D-CNN for RGB data,
and an RNN for skeleton data were used, and late fusion
was adopted to predict the final class label. Memmesheimer
et al. [389] transformed different modalities as images, and
utilized CNN to perform HAR.

Although the aforementioned multi-modality fusion-
based HAR methods have achieved promising results on
some benchmarks, the task of effective modality fusion is
still largely open. Specifically, most of the existing multi-
modality methods have complicated model structures that
need high computation cost. Thus efficient multi-modality
HAR also needs to be addressed.

4.2 CO-LEARNING

Co-learning enabling knowledge transferring between dif-
ferent modalities is also an important problem in HAR,
which explores how knowledge learned from one modality
can be used to assist the model learning of another modality
[354]. Co-learning with multiple modalities often makes up
for the shortcomings of a single data modality. It can also
benefit the learning when there is a lack of samples for a
certain modality, since other correlated modalities with rich
samples can be used to assist the model training of this
modality in co-learning. Specifically, the data of assistive
modalities is only needed during the training process, and
is not needed during testing.

4.2.1 Co-Learning with Visual Modalities

Plenty of co-learning-based methods [393], [394], [395] have
been introduced for HAR recently, and many of them fo-
cused on co-learning with visual modalities, such as RGB
with depth modalities and RGB with skeleton modalities,
introduced below.

Knowledge transferring [354] between RGB modality
capturing appearance information and depth data encod-
ing 3D shape information, has been shown to be able to
improve the representation capability of the model of each
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modality for HAR, especially when one of these modalities
has limited annotated data. BHIM [357] and MMHIM [358]
are HAR methods that investigated cross-modality learning.
Garcia et al. [395] studied multi-stream network learning
with modality generalized distillation. Since the latent cor-
relation between modalities is important for cross-modality
recognition, Jia et al. [396] designed a semi-supervised
framework utilizing a cross-modality graph coupling RGB
and depth modalities to find their correlation and address
the problem of missing modalities.

Co-learning between RGB and skeleton modalities has
been investigated as well [394]. Thoker and Gall [394]
utilized TSN [106] as the teacher network, and ST-GCN
[175] and HCN [220] as the student networks, to perform
knowledge distillation for cross-modality HAR. Specifically,
the teacher network was trained with RGB videos, provid-
ing supervision information for the student network han-
dling skeleton data. Song et al. [397] proposed a Modality
Compensation Network (MCN) taking advantage of the
skeleton modality to compensate the feature learning of the
RGB modality with adaptive representation learning, and
a modality adaptation block with residual feature learning
was designed to bridge information between modalities.

4.2.2 Co-Learning with Visual and Sensor Modalities

There have also been some works [346], [398] for co-learning
between visual and sensor modalities, i.e., transferring
knowledge amongst these two types of different modalities
to enhance the model performance for a certain modality
or some modalities. Kong et al. [346] proposed a novel
multi-modality distillation model with an attention mech-
anism, which can transfer adaptive knowledge from sensor
modalities to visual ones. Considering the synchronization
of vision and sound in videos, Aytar et al. [398] trained
deep Sound Networks (SoundNets) by transferring visual
knowledge from established vision networks into the sound
networks. Alwassel et al. [399] proposed a self-supervised
method, called Cross-Modal Deep Clustering (XDC), to
utilize the semantic correlation and the differences between
RGB and audio modalities. In the work of [400], audio deep
learning models were trained, and the visual and acoustic
images were exploited in a teacher-student fashion.

5 DATASET

In the past decades, lots of datasets [20], [50], [94], [95], [176],
[178], [401] have been proposed for HAR. The significance
of the benchmark datasets is self-evident, that facilitates the
objective evaluation of HAR methods and promotes the
development of the HAR field. In TABLE 5, the informa-
tion of a series of benchmark datasets with various data
modalities is presented. Below we also introduce some of
the representative benchmark datasets.

MSR-Action3D [254]. MSR-Action3D dataset, collected
by Microsoft and the University of Wollongong in 2010,
is the first publicly available dataset providing depth and
skeleton modalities for HAR. It contains 20 action classes,
and each action was performed by 7 subjects 3 times.

HMDB51 [50]. HMDB51 dataset contains 6,766 manually
annotated RGB video clips collected from various sources. It
includes 51 action categories, grouped in five types, namely,



Some of the representative benchmark datasets with various data modalities for HAR. Notation: S: Skeleton, D: Depth, IR: Infrared sequence, PC:

TABLE 5

Point Cloud, ES: Event Stream, Au: Audio, Acc: Acceleration, Gyr: Gyroscope, EMG: electromyography.

Dataset Reference  Year Modality #Class  #Subject  #Sample #View
KTH [£02] 2004 RGB 6 25 2,391 1
Weizmann [66] 2005 RGB 10 9 90 1
IXMAS 701 2006 RGB 1 10 330 5
HDMO05 [403] 2007 RGB,S 130 5 2,337 1
Hollywood [87] 2008 RGB 8 - - 430
Hollywood2 [404] 2009 RGB 12 - 3,669 -
MSR-Action3D 2010 S,D 20 10 567 1
Olympic 2010 RGB 16 - 783 -
ASLAN 2011 RGB 432 - 3,697
CAD-60 [ 2011 RGB,S,D 12 4 60 B
HMDB51 [50] 2011 RGB 51 - 6,766 -
RGB-HuDaAct [52] 2011 RGB,D 13 30 1,189 1
ACT4? 2012 RGB,D 14 24 6,844 4
DHA 2012 RGB,D 17 21 357 1
MSRDailyActivity3D 2012 RGB,S,D 16 10 320 1
UCF50 [410] 2012 RGB 50 - 6,681 -
UCF101 [94] 2012 RGB 101 - 13,320 -
UTKinect [186] 2012 RGB,S,D 10 10 200 1
Berkeley MHAD [56] 2013 RGB,S,D,Au,Acc 12 12 660 4
CAD-120 [411] 2013 RGB,S,D 10 4 120 -
TAS-lab 2013 RGB,S,D,PC 15 12 540 1
J-HMDB 2013 RGB 21 - 31,838 -
MSRAction-Pair 2013 RGB,S,D 12 10 360 1
UCFKinect [413] 2013 S 16 16 1,280 1
Multi-View TJU 1] 2014 RGB,S,D 20 22 7,040 2
Northwestern-UCLA [415] 2014 RGB,S,D 10 10 1475 3
Sports-TM 7] 2014 RGB 187 - 1,113,158 -
UPCV [£16] 2014 S 10 20 400 1
UWA3D Multiview [289, [417] 2014 RGB,S,D 30 10 1,075 1
ActivityNet 2015 RGB 203 - 27,801 -
ESC50 2015 Au 50 - 2,000 -
SYSU 3D HOI 2015 RGB,S,D 12 40 480 1
TJU 2015 RGB,S,D 15 20 1,200 1
UTD-MHAD 2015 RGB,S,D,Acc,Gyr 27 8 861 1
UWAS3D Multiview IT 2015 RGB,S,D 30 10 1,075 4
InfAR [53] 2016 IR 12 40 600 2
NTU RGB+D [178] 2016 RGB,S,D,IR 60 40 56,880 80
YouTube-8M 2016 RGB 4,800 - 8, 264, 650 -
20BN-Something-Something 2017 RGB 174 - 108,499 -
AVA 2017 RGB 80 - 437 -
FCVID [423] 2017 RGB 239 - 91,233 -
Kinetics-400 [95] 2017 RGB 400 - 306,245 -
NEU-UB [358] 2017 RGB,D 6 20 600 -
PKU-MMD [51] 2017 RGB,S,D,IR 51 66 21,545 3
UniMiB SHAR [424] 2017 Acc 17 30 11,771 -
EPIC-KITCHENS 2018 RGB - 32 90,000 Egocentric
Kinetics-600 2018 RGB 600 - 495,547 -
RGB-D Varying-view 2018 RGB,S,D 40 118 25,600 8+1 covering 360°
DHP19 [55] 2019 ES, S 33 17 - 4
Drive&Act 2019 RGB,S,D,IR 83 15 - 6
EV-Action 2019 RGB,S,D.EMG 20 70 7,000 9
HACS 2019 RGB 200 - - -
Kinetics-700 2019 RGB 700 - 650,317 -
Kitchen20 2019 Au 20 - 800 -
MMAct 2019 RGB,S,Acc,Gyr,WiFietc. 37 20 36,764 4+Egocentric
Moments in Time 2019 RGB 339 - 1,000,000 -
NTU RGB+D 120 2019 RGB,S,D,IR 120 106 114,000 155
ARID [433] 2020 RGB 11 11 3,784 3

general facial actions, facial actions with object manipula-
tion, general body movements, body movements with object
interaction, and body movements for human interaction.

RGBD-HuDaAct [52]. RGB-HuDaAct dataset, contain-
ing RGB and depth modalities, was collected by the Ad-
vanced Digital Sciences Center of Singapore, in 2011. It
contains 12 categories of daily human activities performed
by 30 student volunteers.

CAD-60 [407] and CAD-120 [411]. CAD-60 and CAD-
120 datasets were collected by Cornell University. CAD-60
dataset has 60 RGB-D videos of 12 activities, which were
performed by 4 subjects in 5 different environments. CAD-
120 dataset has 120 RGB-D videos of 10 high-level activities
performed by 4 subjects, and each action sample contains

RGB frames, depth frames, and skeleton data.

MSRDailyActivity3D  [184].  MSRDailyActivity3D
dataset was collected by Microsoft and Northwestern
University in 2012. This dataset contains 16 activities,
performed by 10 people near the sofa. The data modalities
of this dataset include RGB, depth, and skeleton.

UCF101 [94]. UCF101 dataset contains 101 action classes
and 13,320 clips. It consists of realistic videos downloaded
from YouTube. Various background, lighting, and camera
motion conditions make this dataset challenging.

UT-Kinect [186]. UT-Kinect was collected by the Univer-
sity of Texas at Austin in 2012. It contains 10 action classes
performed by 10 subjects, and three modalities (RGB, depth,
and skeleton joint locations) were synchronously recorded
by a single stationary Kinect.



ACT4? [408]. ACT4? dataset is a multi-view RGB-D
human action dataset that was collected by the Institute
of Computing Technology of Chinese Academy of Science
in 2012. It mainly focuses on daily activities. RGB and
depth data was captured from 4 different viewpoints using
Microsoft Kinect sensors. There are 14 action classes and
6,844 samples.

MSRActionPairs [263]. MSRActionPair dataset was col-
lected by the University of Central Florida and Microsoft
in 2013. The actions in this dataset are selected in pairs
resulting in similar motions and shapes. RGB, depth, and
skeleton data are provided by this dataset.

Berkeley MHAD [56]. The University of California
at Berkeley and Johns Hopkins University collected this
dataset in 2013. This dataset contains 11 actions performed
by 12 people. All the subjects repeated each action 5 times,
resulting in about 660 action sequences. Each action was
simultaneously captured by five different systems, covering
RGB, depth, skeleton, audio, and acceleration data modali-
ties.

UTD-MHAD [347]. UTD-MHAD was collected by the
University of Texas at Dallas in 2015. It contains 27 actions
performed by 8 subjects, and each action was performed 4
times. RGB videos, depth videos, skeleton joint positions,
and the inertial sensor signals (acceleration and gyroscope
signals) were recorded.

Kinetics-400 [95]. Kinetics-400, extracted from YouTube,
contains 400 human action categories, with 400-1150 clips
for each action. The action classes can be grouped into per-
son actions (singular), person-person actions, and person-
object actions. This dataset has been further extended to
Kinetics-600 [426] and Kinetics-700 [430].

PKU-MMD [51]. PKU-MMD covers 51 action categories
with 1,076 long video sequences for continuous multi-
modality 3D action analysis. It was collected with the Kinect
v2 sensors providing multi-modality data, including RGB,
depth, skeleton, and infrared radiation.

MMAct [346]. Multi-Modal Action dataset (MMAct) is
a large-scale dataset for multi-modality human action anal-
ysis, which covers seven modalities, namely, RGB videos,
skeleton, acceleration, gyroscope, orientation, WiFi, and
pressure signals.

NTU RGB+D [178] and NTU RGB+D 120 [176]. NTU
RGB+D and NTU RGB+D 120 datasets were collected with
Microsoft Kinect v2 sensors providing depth maps, 3D joint
information, RGB frames, and infrared sequences. There are
60 action classes, 40 distinct subjects, 56,880 samples from
80 views in the NTU RGB+D dataset, while its extended
version, NTU RGB+D 120 dataset, is a very large multi-
modality HAR dataset containing 120 action categories and
114,480 samples.

6 DISCUSSION

In the previous sections, we review the methods and
datasets for HAR with various data modalities. Below we
discuss some of the potential and important directions that
could need further investigation in this domain.

Dataset. Large and comprehensive datasets generally
have vital importance for the development of HAR, es-
pecially for the deep learning-based HAR methods. There
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are many aspects to indicate the quality of a dataset, such
as the size, diversities, applicability, labels, and modalities,
etc. Despite the large number of existing datasets that have
prompted the HAR area greatly, to further facilitate the
research on HAR, new benchmark datasets with higher
qualities in multiple aspects still need to be further de-
veloped. For example, most of the existing multi-modality
datasets were collected in controlled environments, where
actions were usually performed by volunteers. Thus collect-
ing multi-modality data from uncontrolled environments
to achieve large and challenging benchmarks for further
promoting multi-modality HAR application in practical sce-
narios, can be important. Besides, the construction of large
and challenging datasets for group action recognition can be
further investigated as well.

Multi-modality Learning. As discussed in Section 4,
plenty of multi-modality learning methods, including multi-
modality fusion and cross-modality transfer learning, have
been designed for HAR, since the fusion of multi-modality
data can often complement each other to improve the HAR
performance, while co-learning can be used to alleviate the
issue of data lack for some modalities. However, as pointed
out by [434], many existing multi-modality methods are not
effective as expected owing to a series of challenges, such as
over-fitting. This implies that there remains a large space for
designing more effective fusion and co-learning strategies
for multi-modality HAR.

Efficient Action Analysis. The superior performance of
many HAR methods is built on high computational com-
plexity, while efficient HAR is also crucial for many practical
applications. Hence how to reduce the computational cost
and resource consumption (e.g., CPU, GPU, and energy
consumption, etc.), and achieve efficient and fast HAR, is
worth further study as well.

Early Action Recognition. Early action recognition (ac-
tion prediction) enables recognition when only a part of
the action has been performed, i.e., recognizing an action
before it is fully performed [392], [435], [436]. This is also an
important problem due to its relevance to some applications,
such as online human-robot interaction and early alarm in
some scenarios.

Few-shot Action Analysis. It can be difficult to collect a
large amount of training data (especially the multi-modality
data) for all action classes. To handle this issue, one of the
possible solutions is taking advantage of few-shot learning
techniques [437]. Though there have been some attempts
for few-shot HAR [176], [438], considering the significance
of handling the data lack issue in many practical scenarios,
more advanced few-shot action analysis can still be further
studied.

Unsupervised and Semi-supervised Learning. Super-
vised learning methods, especially deep learning-based su-
pervised learning methods, often require a large amount
of data with expensive labels for model training. Mean-
while, unsupervised and semi-supervised learning tech-
niques [361], [396] often enable us to leverage unlabelled
data to train the models, which significantly reduces the
requirement of labeled data. Since unlabelled action samples
are often easier to be collected than labeled sequences,
unsupervised and semi-supervised HAR also becomes an
important direction that is worth of further development.



7 CONCLUSION

HAR is an important task that has attracted contiguous
research attention in the past decades, and various data
modalities with different characteristics have been applied
for this task. In this paper, we have given a comprehensive
review of HAR methods using different data modalities,
including RGB, skeleton, depth, infrared sequence, point
cloud, event stream, audio, acceleration, radar, and WiFi,
etc. Multi-modality recognition methods, including multi-
modality fusion and cross-modality co-learning methods,
have been surveyed as well. The benchmark datasets have
also been reviewed. Besides, we have discussed some po-
tential research directions in this paper.
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