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ABSTRACT

In this paper, we propose a method for human action recog-

nition in unconstrained environments based on stereoscopic

videos. We describe a video representation scheme that ex-

ploits the enriched visual and disparity information that is

available for such data. Each stereoscopic video is repre-

sented by multiple vectors, evaluated on video locations cor-

responding to different disparity zones. By using these vec-

tors, multiple action descriptions can be determined that ei-

ther correspond to specific disparity zones, or combine infor-

mation appearing in different disparity zones in the classifi-

cation phase. Experimental results denote that the proposed

approach enhances action classification performance, when

compared to the standard approach, and achieves state-of-the-

art performance on the Hollywood 3D database designed for

the recognition of complex actions in unconstrained environ-

ments.

Index Terms— Human Action Recognition, Stereoscopic

Videos, Disparity Pyramids, Bag of Features

1. INTRODUCTION

The automatic recognition of human actions has received

considerable research study in the last two decades, due

to its importance in many applications, like content-based

video retrieval, human-computer interaction and intelligent

visual surveillance, to name a few. Depending on the ap-

plication scenario, several approaches have been proposed,

ranging from the recognition of simple human actions in con-

strained environments [1–4], to the recognition of complex

actions (also referred to as activities) in unconstrained envi-

ronments [5–7]. The methods proposed for the first scenario

aim at the recognition of simple human actions (usually re-

ferred to as Actions of Daily Living - ADL). According to

this scenario, action recognition refers to the classification of

one, or multiple videos captured from multiple viewpoints,

depicting a person performing an instance of a simple action

(e.g., a walking step) in a scene containing a relatively simple

background. The assumption of a simple background is vital

for the methods of this category, in the sense that video frame

segmentation is usually required in order to determine the

video locations depicting the performed action (e.g., in order

to obtain human body silhouettes).

The recognition of complex human actions in uncon-

strained environments is usually referred to as ‘action recog-

nition in the wild’ and is a very active research field nowa-

days, since it corresponds to a very challenging problem.

Challenges that methods belonging to this category should

be able to face include different capturing viewpoints, varia-

tions in action execution styles among individuals, cluttered

backgrounds (possibly containing multiple persons perform-

ing a different action) and variations in the distance between

the performed action and the capturing device(s). Perhaps

the most well studied and successful action representation

in this setting is based on the Bag of Features (BoF) model.

According to this model, videos are described by exploiting

shape and motion information appearing in spatiotemporal

video locations of interest. Several action descriptors, which

are evaluated directly on the videos, have been proposed to

this end. Finally, a compact video representation is achieved

by descriptor quantization. This approach has the advantage

that video frame segmentation is not required and, thus, the

assumption of a simple background is not necessary.

The type of the adopted capturing device plays an impor-

tant role on the information that action recognition methods

are able to exploit. Most of the conducted research until now

exploits visual information captured by one (RGB) camera.

Such an approach has the disadvantage that information re-

lated to the scene geometry is discarded, since only the pro-

jection of the scene on the camera plane is conceived. In the

unconstrained recognition problem, this information may fa-

cilitate the discrimination between different action types [8–

10]. Depth sensors, like Time of Flight (ToF) cameras and

structured light sensors (e.g. the Microsoft Kinect), are able

to provide information related to the scene geometry, since

such sensors provide maps denoting the distance of each real-

world point appearing in their field of view. Action recog-

nition can be performed either based on the derived depth

videos, or by combining depth and visual information in order

to increase recognition performance [8]. However, the capa-

bilities of current depth sensors are limited. For example the

Kinect sensor provides depth maps at 640×480 pixels and of

range around 0.8− 3.5 meters. The resolution of depth maps



created by ToF cameras is between 64× 48 to 200× 200 pix-

els, while their range varies from 5 to 10 meters. This is why

such devises have been employed only in indoor application

scenarios related to the recognition of ADL.

In order to overcome these issues, researchers have pro-

posed the use of multi-camera setups [1, 2, 11, 12]. By com-

bining the information coming from multiple viewpoints,

information related to the scene geometry can be conceived,

e.g., by applying 3D reconstruction methods. However,

multi-cameras setups need to be calibrated and are difficult

to be used in unconstrained environments. In addition, the

use of multiple cameras increases the computational cost of

the methods. Stereo cameras provide a compromise between

the computational cost and the geometric information that

can be exploited by computer vision methods. By using

two cameras, placed side by side in a similar manner to the

human eyes, two views of the scene captured by slightly dif-

ferent viewpoints are obtained. The application of disparity

estimation algorithms on synchronized video frames com-

ing from the two cameras [13] results to the production of

disparity maps denoting the displacement of the projections

of real-world points on the two camera planes. This way,

information related to the scene geometry can be obtained.

The resolution of the obtained disparity maps can vary from

low- to high-resolution, depending on the resolution of the

cameras used. In addition, the range of the stereo camera can

be adjusted by changing the stereo baseline, i.e., the distance

between the two camera centers. Thus, stereo cameras can be

used in both indoor and outdoor settings.

Despite the fact that action recognition in unconstrained

environments from videos is a well-studied problem in com-

puter vision, the adoption of stereo-derived information for

human action recognition is a relatively new approach [9,10].

It has been mainly studied in a BoF-based action recognition

framework exploiting local activity information appearing in

Space Time Interest Point (STIP) locations. This can be per-

formed either by evaluating local space-time descriptors di-

rectly on the obtained disparity videos [10], or by extending

single-channel local video description, in order to exploit the

enriched VpD (visual plus disparity) information [9]. To this

end, extensions of two STIP detectors and three action de-

scriptors in four dimensions have been proposed in [9]. This

is achieved by considering stereoscopic videos as 4D RGB-

D data and extending the Harris and Hessian interest point

detectors in order to operate in four dimensions. This way,

the obtained interest points correspond to video locations that

undergo to abrupt intensity value changes in space, time and

disparity directions. Extensions of the Histogram of Oriented

Gradients (HOG), the Histogram of Optical Flow (HOF) and

the Relative Motion Descriptor (RMD), evaluated on such in-

terest points have been employed in order to represent stereo-

scopic videos.

Experimental results conducted on the recently intro-

duced Hollywood 3D database [9, 10] denote that, by using

disparity-enriched action descriptions in a BoF-based classifi-

cation framework, enhanced action recognition performance

can be obtained. However, the adoption of a STIP-based

action descriptions have proven to provide inferior perfor-

mance, when compared to action descriptions evaluated on

densely sampled interest points [14]. This is due to the fact

that STIP-based action descriptions exploit information ap-

pearing in a small fraction of the available video locations of

interest and, thus, they may not be able to capture detailed

activity information enhancing action discrimination. The

adoption of 4D STIP-based stereoscopic video descriptions

may further decrease the number of interest points employed

for action video representation, decreasing the ability of such

representations to properly exploit the available enriched

VpD information.

In this paper we propose a method for human action

recognition based on stereoscopic videos. In order to avoid

the above mentioned issues relating to STIP-based action

representations, we exploit information appearing in densely

sampled interest points for action description. Since the

computational cost of such action representations is high,

the computation of disparity-enriched interest points and

descriptors would undesirably further increase the computa-

tional cost of the adopted action representation. This is why

we follow a different approach. We employ the disparity

videos evaluated on a set of (training) stereoscopic videos in

order to define multiple disparity zones. Such disparity zones

can be exploited to roughly divide the scenes in multiple

depth levels. By using this information, we can subsequently

represent stereoscopic videos by multiple vectors, called ac-

tion vectors hereafter. This is achieved by applying the BoF

model on different disparity zones. In addition, by combining

the action vectors describing a stereoscopic video, enriched

representations based on disparity pyramids can be obtained.

Experiments conducted on the Hollywood 3D database de-

note that the proposed stereoscopic video representation en-

hances action classification performance, when compared to

the single-channel case. In addition, the proposed approach

achieves state-of-the-art performance on the Hollywood 3D

database, as will be seen in the experimental section.

The remainder of the paper is structured as follows. The

proposed stereoscopic video representation is described in

Section 2. The adopted classification scheme is described

in Section 3. Experiments conducted on the Hollywood 3D

database are illustrated in Section 4. Finally, conclusions are

drawn in Section 5.

2. STEREOSCOPIC VIDEO REPRESENTATION

Let us denote by V a database consisting of N stereoscopic

videos depicting actions. We refer to the i-th stereoscopic

video of the database by using vi. Let us also denote by v
l
i,

v
r
i the left and right channels of vi, respectively. We employ

v
l
i, v

r
i in order to evaluate the corresponding disparity videos



Fig. 1. Distribution of disparity values in the training set of

the Hollywood 3D database.

v
d
i by applying the method in [13]. That is, we can say that the

stereoscopic video database is a set consisting of 3N videos,

i.e., V = {vl
i,v

r
i ,v

d
i }

N
i=1

.

As we have already described, we employ the disparity

videos vd
i , i = 1, . . . , N in order to determine disparity zones

that will be subsequently used for action description. In order

to do this, we would like to estimate the probability of observ-

ing each disparity value in a stereoscopic video. Assuming

that all the stereoscopic videos appearing in V (as well as the

stereoscopic videos that will be introduced in the test phase)

have been captured by using the same stereo parameters, i.e.,

the same stereo baseline and focal length, this probability can

be estimated by computing the distribution of the disparity

values of the disparity videos in V . In Figure 1, we illustrate

the distribution of the disparity values in the training set of

the Hollywood 3D database. As can be seen in this Figure,

we can define two disparity zones: one corresponding to low-

disparity values, i.e., 0 − 20, and one corresponding to the

disparity values in the interval 50 − 160. Clearly, the stereo-

scopic video locations having a disparity value appearing in

the first zone correspond to background1, while those having

a disparity value in the second zone may correspond either to

background or to foreground.

In order to automatically determine the disparity zones,

we compute the cumulative distribution of the disparity val-

ues in V . Let us denote by f(dj) the probability of appear-

ance for the disparity value dj , j = 0, . . . , 255. The cumu-

lative distribution of the disparity values is given by F (dj) =
∑j

k=0
f(dk). That is, F (·) is the CDF of the disparity values

in the training set. The cumulative distribution of disparity

values in the training set of the Hollywood 3D database is il-

lustrated in Figure 2. Let us assume that we would like to

determine D disparity zones. By using F (·), we can define

1The locations having a disparity value equal to zero may correspond ei-

ther to background, or to locations where the disparity estimation algorithm

failed. Currently, we do not distinguish these two cases. That is, we as-

sume that the locations where the disparity estimation algorithm has failed

do not contain much information for action discrimination and are regarded

as background locations.

Fig. 2. Cumulative distribution of disparity values in the train-

ing set of the Hollywood 3D database.

D − 1 threshold values by equally segmenting the CDF of

the disparity values. An example of this process for the case

of D = 3 is illustrated in Figure 2. Finally, in order to al-

low fuzzy segmentation of the disparity values, the disparity

zones are determined so as to overlap by 0.25.

After the calculation of the D disparity zones, we use

them in order to compute D action vectors for each stereo-

scopic video in V . We employ an activity description which

exploits local video information in densely-sampled interest

points in order to preprocess the color videos of the database

V . Since the two channels of a stereoscopic video vi depict a

slightly different view of the performed action, the activity in-

formation appearing in them is the same. Thus, in order not to

increase the overall computational cost, we can employ only

one of the channels (we chose v
r
i ) in order to calculate a set

of action descriptors denoted by Si. By exploiting the previ-

ously determined disparity zones, Si can be split to D action

descriptor sets, i.e., Si = {Si,1, . . . ,SiD}. Subsequently, we

can evaluate D BoF-based action video representations, each

evaluated by using the descriptors appearing in the corre-

sponding activity descriptor set. It should be noted here that,

since the distances of each descriptor in Si to the codebook

vectors need to be calculated only once, the computational

cost of the proposed stereoscopic video representation is the

same with that of the standard BoF-based single-channel

video representation. In the case where the adopted action

description approach employs multiple descriptor types, e.g.,

HOG, HOF, etc, the above described process is performed

for each descriptor type independently and the stereoscopic

video is, finally, represented by C = DQ action vectors,

where Q is the number of the available descriptor types.

3. STEREOSCOPIC VIDEO CLASSIFICATION

Let us assume that the N stereoscopic videos in V have been

annotated. That is, each vi, i = 1, . . . , N is accompanied

by an action class label li denoting the performed action. Let

us assume that the number of action classes appearing in V is

equal to A. By applying the above described process, each vi



Table 1. Comparison with state-of-the-art in the Hollywood

3D database.
mAP CR

Method in [9] 15 % 21.8 %

Method in [10] 26.11 % 31.79 %

Proposed Method 30.52 % 36.09 %

is represented by C action vectors xc
i ∈ R

Kc , c = 1, . . . , C.

We employ x
c
i and li in order to train a kernel Extreme Learn-

ing Machine (ELM) network [15]. We use the multi-channel

χ2 kernel function, which has been shown to outperform other

kernel function choices in BoF-based classification [16]:

[K]i,j = exp

(

−
1

Ac

Kc
∑

k=1

(xc
ik − xc

jk)
2

xc
ik + xc

jk

)

. (1)

Ac is a parameter scaling the χ2 distances between the c-

th stereoscopic video representations. We set this parame-

ter equal to the mean χ2 distance between the training action

vectors x
c
i . In the test phase, when a test stereoscopic video

appears, we introduce the corresponding test action vectors to

the ELM network and classify it to the class corresponding to

the highest network response.

4. EXPERIMENTS

We have applied the above described stereoscopic video clas-

sification method on the publicly available Hollywood 3D ac-

tion recognition database consisting of stereoscopic videos.

We provide a description of the database and the experimental

protocols used in our experiments in subsection 4.1. Experi-

mental results are given in subsection 4.2. In the experiments,

we have employed the state-of-the-art action description [14],

where five action descriptors, i.e., HOG, HOF, MBHx, MBHy

and Trajectory, are calculated on the trajectories of densely

sampled interest points. As a baseline approach we use the

method in [14], which corresponds to the proposed stereo-

scopic video representation by using one disparity zone, i.e.,

for D = 1. In addition, we compare the performance of the

proposed method with that of the two state-of-the-art methods

in [9,10], exploiting the enriched VpD information for action

recognition.

4.1. The Hollywood 3D database

The Hollywood 3D database [9] consists of 951 stereoscopic

videos coming from 14 3D Hollywood movies. It contains

13 action classes and another class referred to as ‘No action’.

The actions appearing in the database are: ‘Dance’, ‘Drive’,

‘Eat’, ‘Hug’, ‘Kick’, ‘Kiss’, ‘Punch’, ‘Run’, ‘Shoot’, ‘Sit

down’, ‘Stand up’, ‘Swim’ and ‘Use phone’. A training-test

split (643 training and 308 test stereoscopic videos) is pro-

vided by the database. Training and test samples come from

Fig. 3. Video frames of the Hollywood 3D dataset depicting

instances of twelve actions.

Table 2. Action Recognition Performance on the Hollywood

3D database.
D=1 D={1,2} D={1,3} D={1,2,3}

mAP 29.44 % 30.45 % 30.52 % 30.5 %

CR 34.09 % 35.43 % 35.76 % 36.09 %

different movies. Example video frames from the database

are illustrated in Figure 3. The performance is evaluated by

computing the mean Average Precision (mAP) over all classes

and the classification rate (CR), as suggested in [9].

4.2. Experimental Results

Table 2 illustrates the performance obtained by applying the

proposed stereoscopic video classification method on the Hol-

lywood 3D database. We denote by {·} the set of the used

pyramid levels. For example we use D = {1, 2} in order

to denote that each stereoscopic video is represented by Q +
2Q = 3Q action vectors. Since the adopted action description

employs Q = 5 descriptors, in the case of D = {1, 2} each

stereoscopic video is represented by 15 action vectors. As can

be seen, the adoption of a stereoscopic video representation

based on disparity pyramids enhances the action classifica-

tion performance, when compared to the baseline approach,

i.e., for D = 1, in both the mAP and CR cases. The adop-

tion of a three-level pyramid seems to provide the best perfor-

mance, since it clearly outperforms the remaining choices in

CR and achieves close to the highest performance in mAP. In

Table 1 we compare the performance of the proposed method

with that of the best results reported in [9, 10]. As can be

seen, the proposed method clearly outperforms both of them.

We also provide the average precision values of all the 14
classes in Table 3. It can be seen, that the proposed method

outperforms [10] in nine, out of fourteen, classes and [9] in

twelve classes. Overall, the proposed method outperforms

the current state-of-the-art performance [10] by 4.4% (mAP)

and 4.3% (CR).

5. CONCLUSIONS

In this paper, we proposed a method for human action recog-

nition in unconstrained environments based on stereoscopic



Table 3. Comparison with state-of-the-art in the Hollywood

3D dataset.
Class D={1,3} Method in [10] Method in [9]

Dance 37.45 % 36.26 % 7.5 %

Drive 59.84 % 59.62 % 69.6 %

Eat 7.48 % 7.03 % 5.6 %

Hug 17.09 % 7.02 % 12.1 %

Kick 22.93 % 7.94 % 4.8 %

Kiss 41.42 % 16.4 % 10.2 %

Punch 27.71 % 38.01 % 5.7 %

Run 47.89 % 50.44 % 27 %

Shoot 49.38 % 35.51 % 16.6 %

Sit down 10.03 % 6.95 % 5.6 %

Stand up 50.02 % 34.23 % 9 %

Swim 29.44 % 29.48 % 7.5 %

Use phone 14.75 % 23.92 % 7.6 %

No action 11.83 % 12.77 % 13.7 %

Mean 30.52 % 26.11 % 14.1 %

videos. Actions are represented by multiple vectors, each de-

scribing shape and motion information in different disparity

zones (corresponding to different depth zones with respect to

the capturing camera). By combining these vectors, multi-

ple action representations can be determined which take into

account information relating to the geometry of the scene.

Experimental results on the publicly available Hollywood 3D

database show that the proposed approach outperforms com-

peting methods exploiting the enriched VpD information and

achieves state-of-the-art performance on this database.
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