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Abstract

Human activity recognition (HAR) has quite a wide range of applications. Due to its widespread use, new studies have

been developed to improve the HAR performance. In this study, HAR is carried out using the commonly preferred KTH

and Weizmann dataset, as well as a dataset which we created. Speeded up robust features (SURF) are used to extract

features from these datasets. These features are reinforced with bag of visual words (BoVW). Different from the studies in

the literature that use similar methods, SURF descriptors are extracted from binary images as well as grayscale images.

Moreover, four different machine learning (ML) methods such as k-nearest neighbors, decision tree, support vector

machine and naive Bayes are used for classification of BoVW features. Hyperparameter optimization is used to set the

hyperparameters of these ML methods. As a result, ML methods are compared with each other through a comparison with

the activity recognition performances of binary and grayscale image features. The results show that if the contrast of the

environment decreases when a human enters the frame, the SURF of the binary image are more effective than the SURF of

the gray image for HAR.

Keywords Human activity recognition � Image processing � Speeded up robust features � Bag of visual words �

Machine learning � k-Nearest neighbors � Decision tree � Support vector machine � Naive Bayes � Hyperparameter

optimization

1 Introduction

Human activity recognition (HAR) is the identification of a

person’s current activity using information from a variety

of motion sensors or cameras. HAR is a difficult field of

computer vision and pattern recognition. On the other

hand, it is quite a common research area owing to the fact

that it has a lot of applications such as video surveillance,

health care, sports analysis, entertainment systems, tactical

scenarios, elderly care, intelligent houses and human–ma-

chine interaction (HMI). HMI especially has a wide range

among them [1, 2].

HAR applications are closely related to HMI. A person

with suspicious movements can be identified by recogniz-

ing human movements with HMI applications. Thus, the

information related to the psychological state of this person

can be obtained. HMI implementations have accelerated

with Industry 4.0. In addition, in HMI-based robotic

applications, robots can now perform daily human activi-

ties such as cooking, cleaning and washing clothes, without

error. In order to teach robots such actions, human activi-

ties need to be recognized by the robot [3, 4].

HAR is still popular, despite being an active field for

more than a decade. The interaction of people with mobile

devices also improves the applications for HAR. Moreover,

owing to the difficulties of real-world problems, different

studies and researches are being carried out for the HAR.
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These difficulties may be due to factors such as background

similarities, partial occlusion, scale changes, point of view,

illumination change, appearance, dress variety and camera

movement. Each of these difficulties negatively affects the

success rate. Various studies show that the performance of

HAR applications depends on an appropriate feature

extraction method. Action representation and classification

stages after the feature extraction are also important [5, 6].

In feature extraction, these features being scale-invariant

and rotation-invariant are generally preferred. Scale-in-

variant feature transform (SIFT) [7] algorithm is a popular

feature extraction method as it meets these requirements.

SIFT is a local shape descriptor to define local gradient

information. With the gradients aligned in the main

direction, SIFT becomes rotation-invariant. For the condi-

tion of scale-invariant, different Gaussian scale spaces are

taken into account when calculating a vector [8]. SIFT is

also robust to illumination changes in some cases [9]. In

this way, reliable and stable keypoints are detected. SIFT

feature descriptors provide unique information for an

image and are therefore suitable for image matching. The

features are matched one by one between two images, and

Euclidean distance is used to match these features. The

speeded up robust features (SURF) algorithm [10] is also

used to extract local features like SIFT. Panchal et al. [11]

and Karami et al. [12] asserted that SIFT detected more

features than SURF, but was slow. The SURF algorithm

has emerged as an alternative to the SIFT method in terms

of speed.

In order to get the most out of the features, a classifi-

cation method that will strongly distinguish these features

is required. For a successful recognition task, an appro-

priate machine learning (ML) method should be used in

addition to robust feature extraction. Also, for a successful

classification, the direct use of the features is, at times, not

adequate. For example, SURF keypoints are both complex

and numerous. Each keypoint represents the features of a

pixel. Therefore, the large size of the object to be analyzed

means that there can be many local features. If these fea-

tures are logically combined, they are represented by fewer

new features. This will make the system run faster and

more accurately. One of the powerful methods to achieve

this is the bag-of-visual-words (BoVW) [13] algorithm.

The BoVW model is one of the important concepts in

computer vision. The BoVW model was inspired by the

bag-of-words (BoW) [14] algorithm. The BoW model is

widely preferred in document classification methods. The

word frequency in a document is employed as a feature in

training of a classifier. The same idea is implemented with

BoVW using images as data. In the BoVW model based on

image analysis, a visual representation of a word is used. In

the BoVW method, firstly, the extracted features (e.g.,

SURF, SIFT, spatiotemporal interest point (STIP) [15],

etc.) are clustered. Each cluster represents a visual word.

Afterward, histograms of the visual words frequency in

images to be classified are obtained. As a result of the

BoVW model, the image is expressed as a histogram of the

number of visual words [16]. These histograms are used as

a feature for classification.

Since there are many ML methods in the literature, it is

necessary to use the ML method which gives the best result

according to the application. The robust methods com-

monly used in the literature are k-nearest neighbor (k-NN),

decision tree (DT), support vector machine (SVM) and

naive Bayes (NB). k-NN [17] is an unsupervised learning

method that is easy to use and understand. DT [18] is a

supervised learning method that classifies large data in a

similar way to a tree structure (nodes, branches and leafs).

SVM [19] is a supervised learning method that classifies

features by creating hyperplanes. Finally, NB [20] is a

supervised learning method which classifies the data sta-

tistically, according to the Bayes method.

To find the most suitable ML method, it is also neces-

sary to configure the methods, since the result of an ML

method depends on the parameters contained in that

method. To make the most of the ML method used, most of

the ML algorithms must be configured before training,

regardless of whether they are supervised or unsupervised.

Hence, they are improved using hyperparameter opti-

mization (HO) [21]. This optimization, called also a

hyperparameter search, not only increases the performance

of the training process but also increases the quality (e.g.,

prediction accuracy) of the ML method. Numerous algo-

rithms, such as grid search, swarm optimization algorithm

and Bayesian optimization, can be used for hyperparameter

search [22].

In this study, KTH (Royal Institute of Technology

(KTH; Swedish: Kungliga Tekniska Högskolan)) [23] and

Weizmann [24] dataset is used for HAR. Based on these

commonly used datasets, the proposed method is evalu-

ated. In addition, we are used our own dataset to expand the

evaluation. In practice, speeded up robust features (SURF)

are used as a feature extraction method. Then, these fea-

tures have been reinforced with the BoVW algorithm. For

this BoVW approach, k-means [25], the clustering algo-

rithm, has been used. With this algorithm, k-centers are

created. Each of these centers represents a visual word.

Finally, histograms are created based on the frequency of

the visual words. These steps are common to many studies

which use SURF.

The main contribution of this study is the presentation of

a different approach for the image used in feature extrac-

tion. Especially in previous studies using the BoVW

approach, the features were generally extracted from pre-

processed grayscale images. However, in this study, for the

purpose of recognizing simple activities, besides the
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grayscale image features, the features of the binary images

are also extracted, and the results are compared. In addi-

tion, the BoVW algorithm, which is usually used in con-

junction with SVM, is also classified using k-NN, DT and

NB methods. Prior to the classification process, the ML

parameters are optimized with Bayesian optimization, and

therefore, the system performance is enhanced. The clas-

sification accuracies obtained as a result of the experiments

performed show the effectiveness of the proposed system.

2 Related works

A number of studies have been conducted using different

approaches for HAR. Plötz and Guan [26] stated that HAR

applications are important but are subject to significant

limitations due to problems such as noise, ambiguity and

missing data. Therefore, it was emphasized that deep

learning should be used instead of traditional ML methods

in applications such as segmentation and classification.

However, in deep learning, there is a requirement for a big

data and large computational power for complex calcula-

tions used in training. For this reason, deep learning is not

more advantageous for datasets containing limited data

such as KTH and Weizmann. For example, in a study

conducted by Baccouche et al. [27], deep learning was

implemented for HAR and 94.39% accuracy was achieved

with the KTH dataset. However, in our study, 95.33%

accuracy was achieved using ML methods.

The increase in the success rates of HAR applications

depends on the different ways of image processing, action

representation, feature extraction and classification, or the

combination of these methods with different methods.

Owing to these reasons, different methods are applied to

existing datasets. In contrast to other region-based

approaches, Rahman et al. [28] performed the HAR using

negative space. Dynamic time warping (DTW) was used

for classification. As a result of the study with the KTH

database, the accuracy rate was obtained as 94.67%. With

regard to the problem of how these human actions will be

represented after the action is determined, Zhang et al. [29]

proposed a novel motion-based representation called

motion context (MC). With this representation, the distri-

bution of the motion words (MWs) over relative locations

in a local region around the reference point was captured,

and the human actions in motion images (MIs) were

modeled. In that study, which used two different training

strategies, the best success rate for the KTH was obtained

as 91.33%, with leave-one-out (LOO) strategy. Singh et al.

[30] practiced a different feature extraction approach using

directionality-based feature vectors. For this, the silhouette

was revealed with adaptive segmentation. Recognition was

made by calculating directional vectors (DVs) on the

silhouettes. This study was carried out with different

datasets (UoS-HID, UoT-DB, UoA-DB, etc.). In addition,

in that study, multiple accuracy values ranging from 85%

to 99% were obtained for many different situations (length

of frames, fps, activity type). Bian et al. [31] proposed a

transfer topic model (TTM) which is a different recognition

method which consists of cross-domain BoW representa-

tion and regularized target domain topic estimation. This

study was specifically developed for scenarios where the

target domain has limited data. Experiments on the KTH

and Weizmann databases were compared with three stud-

ies. Accuracy was found between 68% and 78% according

to the weighting parameter (k) value in TTM. In another

study, novel type 2 fuzzy topic models (T2 FTM) to rec-

ognize human actions were derived by Cao and Liu [32].

Unlike other topic models, this study used type 2 fuzzy sets

to encode the uncertainty of each topic. T2 FTM performs

better than other state-of-the-art topic models. Experiments

were performed on the KTH, Weizmann, UCF and Hol-

lywood2. The most accurate values obtained with the KTH

and Weizmann dataset were 92% and 99.6%, respectively.

In another study suggesting a new approach to feature

extraction, Uddin et al. [33] used depth and optical flow

information of human silhouettes for HAR. In that study,

the spatiotemporal approach was used along with the hid-

den Markov model (HMM) and showed a successful per-

formance. A different novel hidden Markov model-based

approach for HAR using 3D positions of body joints was

put forward by Ding et al. [34]. In [33, 34], datasets dif-

ferent from the KTH were used. While a 97.6% accuracy

rate was obtained in [34], a 98% accuracy rate was

obtained in [33].

Besides these studies, in recognition and classification

applications, the BoW-SVM method [35–40] is a popular

method. However, direct use of these methods is not suf-

ficient for the HAR. A novel method for the HAR based on

hybrid features was suggested by Vo and Ly [41]. The

SURF were used with BoW. In the study, the BoW features

were combined with the histogram of oriented gradients

(HOG) and the histogram of optical flow (HOF). As a

result of classification using SVM, the KTH dataset was

classified with a 95.2% accuracy. Finally, Liu et al. [37]

presented the partwise BoW (PBoW) representation to

outperform the standard BoW-SVM method in the HAR

applications. The HAR task was formulated as a joint

multitask learning (MTL) problem by transfer learning. In

that study, KTH was used and the highest accuracy rate

was obtained as 93.4%. In addition to these studies, there

are many different studies [42–61] related to the HAR,

because, although the HAR task is quite common, it still

needs to be further developed.

In studies which use local features such as SURF and

SIFT, the features are generally extracted from gray
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images. For example, in a study related to the HAR, Sun

et al. [51] have extracted SIFT features from the original

KTH and Weizmann images. In addition to the SIFT

properties, holistic properties were also used. As a result,

94% success was achieved with the KTH. In a different

study conducted by Liu et al. [62], a novel video descriptor

by combining local spatiotemporal features and global

positional distribution information of interest points was

proposed. As a result of the classification using SVM, KTH

data were classified with 94.92% accuracy. Similarly,

Moussa et al. [63] extracted SIFT features from gray space

images. As novelty, they limited the number of keypoints

and applied a normalization for BoVW. They achieved

97.89% accuracy for KTH and 96.66% for Weizmann.

Similar to the grayscale images, binary images are often

used in image recognition applications, as binarization is

quite advantageous in applications such as medical image

processing, document image analysis and face recognition.

Singh and Singh [64] performed face recognition according

to the features extracted from the binary images. The

binary image of the whole face was used as a feature for

artificial neural network (ANN). As a result of the study,

the face recognition rate was 97.5%. Pandey et al. [65]

developed optical character recognition (OCR) using bin-

ary document images. Convolutional layers were used for

feature extraction. Perner et al. [66] developed a human

epithelial (HEp-2) cell classification system. The cell

regions were represented by a number of features derived

from binary images. These features were then subdivided

into six classes using the DT algorithm. Based on these

previous studies, it can be concluded that binary image

features can also be used for the HAR.

In this study, BoVW method was used for HAR. How-

ever, unlike the above studies, SURF keypoints were also

obtained from binary images. As a result of the study, a

comparison was made with respect to the performances of

the gray image and the binary image features. Four dif-

ferent ML algorithms were enhanced using HO to obtain

optimal results. The results were compared with the pre-

vious study results.

3 Datasets

These datasets used in the application include simple

activities. Recognition performance of simple activities is

important for the recognition of complex activities,

because a simple activity can be considered as part of a

complex task. For example, ‘‘walking’’ is a part of the

complex activity of ‘‘approaching an object to hold it’’

[67]. In practice, three different datasets were used to show

the effectiveness of the proposed method. These are KTH,

Weizmann and our data.

The KTH dataset, which is frequently used in the liter-

ature, is image-based and includes six types of single

action such as walking, jogging, running, boxing, hand

waving and hand clapping (see Fig. 1). These activities are

performed several times by 25 people in four different

scenarios. This database contains 2391 sequences. All

images have a static background and are recorded using a

camera with a frame rate of 25 fps.

The image-based Weizmann dataset, which is widely

preferred in applications, also includes single action similar

to KTH. Ten different actions (bend, jack, jump, P-jump,

run, side, skip, walk, wave1 and wave2) (see Fig. 2) per-

formed by nine different people were recorded in a static

background using a camera with a frame rate of 25 fps.

In addition to the widely used KTH and Weizmann

datasets, we have recorded our own video sequences to

make a more comprehensive evaluation of the proposed

approach. A total of 80 videos, 10 s each, were recorded.

Totally, there are eight different activities (bend, boxing,

hand clapping, hand waving, running, side, skip and

walking) in total and the background is static (see Fig. 3).

The activities were carried out by two different people.

Videos were recorded at a frame rate of 30 fps on a phone

with a 12 MP camera.

4 Proposed work

In general, HAR studies consist of data acquisition from a

sensor or a camera, segmentation, feature extraction and

classification. Most work for data acquisition implements

frame-based HAR using the camera. Similarly, this study

was carried out using video frames. An overview of the

proposed algorithm is shown in Fig. 4.

When Fig. 4 is examined, each original frame in the

videos is recorded in binary and gray format after prepro-

cessing. The recorded frames are then parsed into training

and test data. Then, for both the training and test images,

the steps of feature extraction, clustering, histogram cre-

ation and HO are performed, respectively. Once these

operations are completed for the train and test images, the

ML algorithm is trained using the features of the train

images. This algorithm is tested by the test images. As a

result of the test, the activity type in each frame is deter-

mined. This loop is done for the four ML algorithms, three

datasets and two feature types (binary, gray). As a result,

24 different results are obtained.

In this application, real-time HAR is achieved using

image processing, feature extraction, ML methods and HO.

First, the preprocessing is performed on each frame in the

videos. In the preprocessing step, operations are performed

to facilitate the identification of human activity. Back-

ground subtraction technique is successfully applied
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(a) Boxing (b) Handclapping (c) Handwaving

(d) Jogging (e) Running (f) Walking

Fig. 1 KTH dataset [23, 68]

(a) Bend  (b) Jack          (c) Jump (d) Pjump                 (e) Run    

(f) Side (g) Skip (h) Walk (i) Wave1 (j) Wave2

Fig. 2 Weizmann dataset [24]

(a) Bend (b) Boxing (c) Handclapping (d) Handwaving

(e) Running (f) Side (g) Skip (h) Walking

Fig. 3 Our dataset
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because of the fact that videos in KTH, Weizmann and our

dataset are recorded in same or similar environment. In

these datasets, a background image occurs in the image

which does not have a person. For this, first, a frame which

the person is not a part of is recorded. This frame is used as

a background for the first steps. Then, every image in

which there is no person is recorded as a new background.

After subtracting the original image from background, the

binarized image is obtained by setting the threshold value.

In the following steps, morphological processing is per-

formed to enhance the image, and finally, noise in the

image is removed. These steps are shown in Fig. 5 using an

example from the KTH dataset.

The steps shown in Fig. 5 are applied to all video

frames. In this way, a new preprocessed dataset is created.

Area values of the white pixels are also used as a limiting

factor while constructing the dataset. Frames of the same

class with a specific range of area are recorded separately,

both in binary and in gray space. With area limitation,

frames without a human are not recorded as data. In the

generated dataset, each binary and gray space image is

grouped in six different groups for KTH, ten for Weizmann

and eight for our dataset. These datasets have different

frame numbers. Therefore, for each class, 800 frames

(120 9 160) from KTH data, 405 frames (144 9 180)

from Weizmann and 540 frames (214 9 120) from our

dataset are collected. A part of the ‘‘running’’ and ‘‘side’’

class frames of KTH and Weizmann data is shown in

Fig. 6.

To identify activity in the recorded frames similar to

Fig. 6, the SURF-BoVW algorithm is used. The BoVW

method produces visual words from these frames. Visual

words are created using SURF. The SURF keypoints are

extracted from both the binary and gray images as shown in

Fig. 7. The keypoints (red stars) represent the rotation-in-

variant, scale-invariant and the noise-resistant pixels.

As it can be seen from the studies in Sect. 2, in HAR

studies using SURF or SIFT, these features are extracted

from gray or original images. However, in this study, the

SURF properties of binary images are also used. In fact, the

gray space image contains more gradient information than

the binary image, since the gradient information is obtained

by calculating the density differences between pixels.

Therefore, the density change and the direction of change

in a binary image do not represent that image exactly.

Gradient information is particularly important for many

Feature 

Extracting

(SURF)

Train 

Images
Clustering

(K-Means)

Histogram 

Creation

(New feature 

space)

Hyperparameter

Optimization

Test

Images

Feature 

Extracting

(SURF)

Clustering

(K-Means)

Histogram 

Creation

(New feature 

space)

Boxing

Handclapping

Handwaving
Running

Wailking
Jogging

Machine

Learning 

Algorithms

(Test)

Machine

Learning 

Algorithms
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Hyperparameter

Optimization

Preprocessing
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Fig. 4 BoVW-based image classification algorithm

(a) Original Frame (b) Background (c) Background Subtraction

(f) Noise Removal (e) Morphological Process (d) Thresholding

Fig. 5 Preprocessing of video

frames
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recognition applications, especially image matching

applications. However, in HAR, it is not vitally necessary

for a feature to match another feature in a different image.

What is more important is that the features represent that

activity as a whole. Hence, a foreground information with

edge features rather than what the object in the image

contains may represent that activity in question. In addi-

tion, the features in the binary image are less complex and

do not contain background keypoints. The SURF in the

binary image generally include scale-invariant and rota-

tion-invariant edge features. These features may be suffi-

cient for HAR.

The next step after the SURF are extracted is the clus-

tering phase. The k-means is used as a clustering algorithm.

The number of k is set to 500. In total, there are 4800

images for KTH, 4050 images for Weizmann and 4320

images for our dataset. 80% of these images are used for

testing and 20% for training. The number of keypoints to

be used for the KTH, Weizmann and our dataset is

3686400, 4292350 and 4478976, respectively. The differ-

ent number of keypoints depends on the foreground of the

image and the number of frames used for training. For a

faster and more accurate classification, these features are

divided into 500 clusters. Now, the images can be

expressed using 500 words. With this clustering, visual

word distribution in each image is found. According to this

distribution, histograms of each image are created. The

histograms now represent a feature vector.

Histograms only provide frequency information. That is,

information about the location of the extracted features is

not found in the histograms. A histogram generated

according to a gray frame is shown in Fig. 8. This graph

shows the frequency of the SURF extracted from the frame

according to clusters. In this way, the classification is made

by using these histogram values obtained from each frame.

That is, for ML approaches, the inputs contain 500 fre-

quency information of each frame, while the outputs

include the activity index.

After histograms are obtained for each binary and gray

image shown in Fig. 8, the classification of histograms can

be performed using ML methods. In this study, for each

ML method used, appropriate parameters (hyperparame-

ters) are determined using HO. The types of hyperparam-

eters vary according to the ML method. Hyperparameters

Fig. 6 Generated running and side class data

Fig. 7 Extracting SURF from binary and gray images for each data
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are the number of neighbors and distance for k-NN, min-

imum leaf size for the DT, coding method, box constraints

(C), kernel scale for SVM, distribution type and kernel

width (in case the distribution type is kernel) for NB. These

parameters have been affected by training processes. The

values of these calculated parameters using HO are shown

in Table 1. After that, training and testing are carried out

using these values. In the training process, the number of

iterations is used as stop criteria for all ML methods.

In SVM, as a result of HO, the most optimal coding is

provided by the one-versus-one (OVO) approach.

According to the OVO approach, multi-class problems are

transformed into binary classes. These problems can be

thus solved with binary classifiers. Eventually, the results

are combined to provide a solution to the multi-class

problem [69].

5 Results and comparison

Table 2 shows the test accuracy rates and the training time

obtained by ML algorithms according to the binary and

gray image features. The train time of the NB is generally

much higher than the other methods as the distribution type

is kernel. When Table 2 is examined, it is seen that the best

result values are obtained using k-NN and SVM. Also, the

confusion matrices obtained as a result of these ML algo-

rithms are shown in Fig. 9.

The results of the study shown in Table 2 are compared

with previous studies. When Table 3 is examined, it is seen

that the proposed method is quite successful for KTH and

Weizmann data.

6 Discussion

HAR accuracy values shown in Table 2 depend on the

characteristics of the human silhouette that represent the

foreground. Thus, the features extracted from the images in

0 50 100 150 200 250 300 350 400 450 500
0,0

0,1

0,2

0,3

W
o

rd
 F

re
q

u
en

cy

Visual Words

Fig. 8 Frequency of the visual

words in an image

Table 1 Hyperparameters of ML algorithms obtained using HO based on binary and gray image features

ML

alg.

Hyperparameters KTH binary

images

Weizmann binary

images

Our binary

images

KTH gray

images

Weizmann gray

images

Our gray

images

k-NN Number of

neighbors

1 1 1 1 1 1

Distance Euclidean Cosine Correlation Cityblock Correlation Cityblock

DT Minimum leaf

size

1 1 3 3 1 9

SVM Coding method OVO OVO OVO OVO OVO OVO

Box constraints

(C)

56.472 5.859 0.0364 0.1638 0.2589 0.0010

Kernel scale 0.0039 0.0011 0.0027 0.0062 0.0054 0.0038

NB Distribution type Kernel Kernel Kernel Kernel Kernel Kernel

Kernel width 0.00119 0.00041 0.00034 0.00095 0.00087 0.00193
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which the foreground is strongly separated from the

background represent the foreground more accurately. To

determine such datasets, the contrast values of both the

background and the original frame image are calculated

using the gray-level co-occurrence matrix (GLCM) [70], a

texture analysis method. These values are shown in

Fig. 10. The values obtained for the original frames are the

average values of the frames in which the human exists.

For datasets with different backgrounds, the average value

is calculated.

When the values in Fig. 10 are examined, the contrast is

increased in the KTH and Weizmann dataset with the

foreground (human). The rate of increase is higher for

KTH. However, the contrast is reduced due to the fore-

ground in our dataset. There is a relationship between this

situation and the accuracy values shown in Table 2.

Although the grayscale image features for KTH and

Weizmann are more accurate, the results of the binary

image features for our data are more accurate. If the

foreground in an image is prominent, the grayscale features

represent the foreground better. Otherwise, if the fore-

ground does not increase the contrast of frame, the use of

the local features of binary images for HAR will be more

accurate. Because, in the binary image, the background is

removed, the foreground is made clear, and therefore, the

contrast is increased. Although the features obtained from

this binary image are insufficient in terms of the gradient, it

gives better results for the HAR than the grayscale image.

Moreover, considering the train times in Table 2, these

results indicate that binary images are more advantageous

in terms of train time.

It should be noted that the threshold value must be

sensitively adjusted in order to make an accurate segmen-

tation in the binary image. When SURF are obtained from

grayscale images, the threshold setting is not required.

However, in order to obtain a correct result from the binary

image, the appropriate threshold must be determined. For

example, in this application, the threshold value for KTH

and Weizmann is 0.1, while for our data, this value is 0.4.

At present, it is easy to reach a lot of data owing to the

development in artificial intelligence applications. In par-

ticular, large-size data are required for training in deep

learning practices like the convolutional neural network

(CNN). However, while using small datasets such as KTH

and Weizmann, they tend to suffer from the overfitting

problem. Moreover, if large-size data are used in deep

learning, the training time is a problem. In this study, it is

seen that the training time of binary image features is

shorter than gray image features. This shows that the binary

frame local features are more advantageous in terms of

training time, especially in deep learning applications. This

inference will be taken into consideration in future works.

7 Conclusion

The aim of is to recognize human movements. In practice,

first the frames in KTH, Weizmann and our dataset are

preprocessed. Then the SURF are extracted from 4800,

4050 and 4320 frames for KTH, Weizmann and our data-

set, respectively. As a result, 3686400, 4292350 and

4478976 features are obtained, respectively. Since there are

too many keypoints, they are reduced by clustering (k-

means) with the help of the BoVW method. Thus, the

images are expressed with fewer features. This provides

advantage in terms of speed and accuracy.

In the BoVW algorithm, each cluster represents a word.

After clustering, the word frequency in each frame is

obtained. Histograms are created according to the fre-

quency of visual words in an input frame. As a result of the

BoVW algorithm, each frame is now represented by a

histogram. Since the cluster number (k) was set to 500, 500

different types of frequency information are extracted from

a frame. Before the ML methods for classification are

applied, the hyperparameters are determined using HO.

The above explanation roughly summarizes the work.

Like previous related works, this study is presented a dif-

ferent approach for the HAR. It is suggested that the SURF

Table 2 Comparison of ML algorithm results for binary and gray

image features

k-NN DT SVM NB

Binary image features

KTH

Train time (s) 5.57 8.73 6.04 343.48

Accuracy (%) 95.33 86.16 95.17 86.33

Weizmann

Train time (s) 3.99 11.73 11.63 333.47

Accuracy (%) 86.91 70.61 90.24 78.27

Our

Train time (s) 4.32 7.44 6.77 344.60

Accuracy (%) 95.94 86.92 96.52 90.62

Gray image features

KTH

Train time (s) 8.37 9.51 14.54 321.27

Accuracy (%) 96.14 85.72 95.17 86.04

Weizmann

Train time (s) 3.88 18.72 46.39 260.71

Accuracy (%) 87.78 69.63 91.11 73.70

Our

Train time (s) 7.89 15.38 6.95 313.59

Accuracy (%) 89.58 80.09 92.71 80.67

Bold values indicate the methods that have best performance

Neural Computing and Applications (2020) 32:8585–8597 8593

123



extracted from binary frame can be effective in HAR

applications. To prove this, SURF are extracted from both

the gray space and the binary images. In addition, three

different datasets are used to determine the performance of

the binary image features on the images with different

contrasts.

When Table 2 is examined, for our data, it is seen that

the SURF-based BoVW features in the gray space frame

B
in

ar
y

 I
m

ag
e 

F
ea

tu
re

s

1.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.91 0.06 0.03

0.00 0.00 0.00 0.12 0.84 0.04

0.00 0.00 0.00 0.02 0.01 0.97

0.97 0.01 0.01 0.01 0.00 0.00

0.01 0.95 0.01 0.01 0.01 0.01

0.01 0.03 0.96 0.01 0.01 0.00

0.01 0.01 0.01 0.78 0.11 0.09

0.01 0.01 0.01 0.17 0.71 0.10

0.01 0.01 0.00 0.13 0.06 0.80

1.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.91 0.06 0.03

0.00 0.00 0.00 0.13 0.84 0.03

0.00 0.00 0.00 0.02 0.02 0.96

1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.97 0.00 0.00 0.00 0.03

0.00 0.04 0.96 0.00 0.00 0.00

0.00 0.00 0.00 0.71 0.14 0.15

0.01 0.00 0.00 0.24 0.73 0.02

0.00 0.00 0.01 0.06 0.13 0.81

(a) k-NN CM for KTH (b) DT CM for KTH (c) SVM CM for KTH (d) NB CM for KTH

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.97 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.04 0.00 0.84 0.00 0.03 0.01 0.03 0.03 0.01 0.00

0.01 0.01 0.00 0.96 0.00 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.03 0.00 0.64 0.05 0.21 0.07 0.00 0.00

0.01 0.00 0.02 0.12 0.02 0.80 0.01 0.01 0.00 0.00

0.00 0.00 0.03 0.00 0.16 0.01 0.76 0.03 0.00 0.00

0.01 0.00 0.08 0.00 0.08 0.04 0.02 0.76 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.86 0.06 0.03 0.00 0.00 0.01 0.01 0.00 0.01 0.01

0.02 0.83 0.00 0.00 0.02 0.03 0.02 0.03 0.03 0.03

0.07 0.00 0.69 0.01 0.03 0.03 0.07 0.07 0.01 0.00

0.01 0.01 0.00 0.83 0.01 0.09 0.01 0.00 0.01 0.01

0.01 0.02 0.05 0.03 0.41 0.07 0.23 0.16 0.01 0.00

0.02 0.04 0.01 0.06 0.08 0.73 0.01 0.05 0.00 0.00

0.01 0.05 0.05 0.02 0.24 0.03 0.46 0.12 0.01 0.00

0.01 0.01 0.10 0.04 0.18 0.04 0.14 0.49 0.00 0.00

0.02 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.94 0.00

0.01 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.04 0.89

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.97 0.00 0.03 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.87 0.00 0.10 0.01 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.70 0.03 0.18 0.07 0.00 0.00

0.00 0.01 0.00 0.05 0.00 0.94 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.16 0.00 0.79 0.03 0.00 0.00

0.00 0.00 0.11 0.00 0.06 0.00 0.02 0.81 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.99

0.74 0.00 0.21 0.01 0.00 0.01 0.03 0.00 0.00 0.00

0.00 0.88 0.00 0.05 0.03 0.00 0.00 0.00 0.00 0.05

0.01 0.00 0.87 0.01 0.04 0.03 0.01 0.01 0.00 0.00

0.00 0.00 0.01 0.96 0.00 0.01 0.01 0.00 0.00 0.00

0.00 0.02 0.07 0.00 0.56 0.01 0.18 0.15 0.00 0.00

0.00 0.00 0.10 0.17 0.02 0.67 0.02 0.02 0.00 0.00

0.00 0.00 0.10 0.00 0.15 0.01 0.65 0.09 0.00 0.00

0.00 0.01 0.15 0.00 0.17 0.00 0.05 0.62 0.00 0.00

0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.95 0.00

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98

(e) k-NN CM for Weizmann (f) DT CM for Weizmann (g) SVM CM for Weizmann (h) NB CM for Weizmann

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.86 0.00 0.05 0.09

0.00 0.00 0.00 0.01 0.00 0.99 0.00 0.00

0.00 0.00 0.00 0.00 0.12 0.00 0.87 0.02

0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.97

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.03 0.00 0.00 0.00 0.68 0.04 0.14 0.12

0.03 0.01 0.01 0.01 0.03 0.86 0.03 0.03

0.00 0.00 0.00 0.00 0.15 0.01 0.76 0.08

0.01 0.00 0.00 0.00 0.18 0.01 0.09 0.72

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.92 0.00 0.02 0.06

0.00 0.00 0.00 0.01 0.01 0.97 0.01 0.00

0.00 0.00 0.00 0.00 0.04 0.00 0.93 0.03

0.00 0.00 0.00 0.00 0.08 0.01 0.00 0.91

0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.04

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.70 0.00 0.13 0.18

0.00 0.00 0.00 0.00 0.01 0.97 0.02 0.01

0.00 0.00 0.00 0.00 0.06 0.00 0.89 0.04

0.00 0.00 0.00 0.00 0.18 0.02 0.03 0.77

(i) k-NN CM our dataset (j) DT CM for our dataset      (k) SVM CM for our dataset      (l) NB CM for our dataset      

G
ra

y
 I

m
ag

e 
F

ea
tu

re
s

1.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.92 0.04 0.04

0.00 0.00 0.00 0.08 0.90 0.01

0.00 0.00 0.00 0.05 0.01 0.94

0.96 0.01 0.00 0.01 0.02 0.00

0.01 0.95 0.01 0.01 0.03 0.00

0.01 0.08 0.90 0.01 0.00 0.00

0.00 0.01 0.02 0.74 0.11 0.12

0.01 0.01 0.00 0.13 0.78 0.08

0.00 0.01 0.01 0.10 0.09 0.80

1.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00

0.00 0.00 0.00 0.91 0.04 0.05

0.00 0.00 0.00 0.10 0.87 0.03

0.00 0.00 0.00 0.05 0.03 0.93

1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.97 0.00 0.01 0.00 0.02

0.00 0.04 0.96 0.00 0.00 0.00

0.00 0.01 0.00 0.66 0.17 0.16

0.00 0.01 0.00 0.16 0.81 0.02

0.00 0.00 0.00 0.09 0.15 0.75

(m) k-NN CM for KTH (n) DT CM for KTH (o) SVM CM for KTH (p) NB CM for KTH

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.99 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.04 0.00 0.86 0.00 0.01 0.00 0.04 0.06 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.02 0.00 0.62 0.01 0.13 0.21 0.00 0.00

0.00 0.00 0.00 0.03 0.01 0.88 0.03 0.04 0.01 0.00

0.03 0.00 0.12 0.00 0.17 0.00 0.61 0.07 0.00 0.00

0.00 0.00 0.04 0.00 0.07 0.03 0.07 0.79 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.87 0.05 0.03 0.03 0.00 0.00 0.00 0.00 0.01 0.01

0.01 0.78 0.00 0.13 0.01 0.01 0.01 0.01 0.01 0.01

0.04 0.00 0.53 0.06 0.08 0.02 0.16 0.11 0.00 0.00

0.04 0.03 0.03 0.80 0.01 0.04 0.04 0.00 0.01 0.01

0.01 0.00 0.02 0.00 0.51 0.06 0.10 0.29 0.00 0.00

0.01 0.06 0.09 0.09 0.12 0.48 0.04 0.09 0.01 0.00

0.00 0.00 0.19 0.00 0.09 0.03 0.55 0.14 0.00 0.00

0.00 0.03 0.05 0.00 0.17 0.04 0.07 0.64 0.00 0.00

0.01 0.01 0.02 0.07 0.00 0.00 0.00 0.00 0.83 0.06

0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.95

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.91 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.95 0.00 0.00 0.00 0.02 0.01 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.02 0.00 0.71 0.01 0.14 0.12 0.00 0.00

0.00 0.01 0.00 0.01 0.04 0.92 0.00 0.01 0.00 0.00

0.00 0.00 0.04 0.00 0.12 0.00 0.83 0.01 0.00 0.00

0.00 0.00 0.05 0.00 0.16 0.01 0.00 0.78 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

0.90 0.00 0.01 0.08 0.00 0.01 0.00 0.00 0.00 0.00

0.00 0.68 0.00 0.13 0.00 0.09 0.01 0.00 0.01 0.08

0.00 0.00 0.86 0.02 0.02 0.09 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.97 0.00 0.03 0.00 0.00 0.00 0.00

0.01 0.01 0.14 0.01 0.35 0.15 0.10 0.22 0.00 0.00

0.00 0.00 0.03 0.04 0.03 0.88 0.03 0.00 0.00 0.00

0.00 0.00 0.20 0.00 0.16 0.13 0.38 0.13 0.00 0.00

0.01 0.01 0.14 0.01 0.23 0.15 0.09 0.36 0.00 0.00

0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.94 0.05

0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.99

(q) k-NN CM for Weizmann (r) DT CM for Weizmann (s) SVM CM for Weizmann (t) NB CM for Weizmann

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.58 0.00 0.12 0.30

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.13 0.00 0.77 0.10

0.00 0.00 0.00 0.00 0.14 0.00 0.07 0.79

0.96 0.00 0.00 0.00 0.03 0.00 0.02 0.00

0.00 0.99 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.99 0.00 0.00 0.00 0.00

0.03 0.00 0.00 0.01 0.50 0.04 0.15 0.27

0.00 0.00 0.00 0.03 0.09 0.79 0.01 0.08

0.02 0.00 0.01 0.00 0.18 0.01 0.66 0.11

0.02 0.00 0.00 0.01 0.29 0.03 0.14 0.51

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.70 0.01 0.05 0.25

0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.01

0.00 0.00 0.00 0.00 0.04 0.00 0.92 0.04

0.00 0.00 0.00 0.00 0.16 0.01 0.03 0.80

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

0.03 0.00 0.00 0.00 0.48 0.02 0.18 0.29

0.02 0.00 0.00 0.01 0.05 0.86 0.00 0.06

0.02 0.00 0.00 0.00 0.13 0.01 0.67 0.16

0.04 0.00 0.00 0.00 0.44 0.02 0.07 0.43

(u) k-NN CM for our dataset (v) DT CM for  our dataset (w) SVM CM for our dataset (x) NB CM for our dataset

Fig. 9 Confusion matrices according to ML methods
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are classified as 92.71% by SVM. The accuracy rate for the

binary frame features is 96.52%. The most accurate values

for the KTH are obtained using the k-NN as 96.14% and

95.33%, respectively. Similarly, the most accurate values

for the Weizmann are obtained using SVM as 91.11% and

90.24%, respectively. When the results of the studies in

Table 3 were examined, Cao and Liu [32] and Moussa

et al. [63] achieved much better results for KTH and

Weizmann. Like this study, Cao and Liu [32] also used

BOW paradigm. However, in that study, higher-order

uncertainties were encoded with the type 2 fuzzy topic

models (T2 FTM) used instead of SVM. This made this

work more successful. Moussa et al. [63] utilized the SIFT

method with BoVW and performed classification using

SVM. The more accurate results were substantially due to

the normalization of histograms generated by BoVW.

Considering the training periods, the training time for

k-NN, which is the most successful classification according

to KTH results, is 5.57 s in binary images and 8.37 s in

gray images. For Weizmann, these values were determined

as 11.63 s and 46.39 s, respectively, by using SVM. Sim-

ilarly, for our data, these values are 6.77 and 6.95 s,

respectively, using SVM.

When all the results are evaluated, the final result is that

the SURF for a binary image are more effective for HAR

studies in frames which the foreground (human) reduces

the contrast. In addition, training time is lower for binary

image.
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Table 3 Comparison of our approach with previous works

Previous works KTH Weizmann

Baccouche et al. [27] 91.04 –

Rahman et al. [28] 94.67 –

Zhang et al. [29] 91.33 92.89

Singh et al. [30] – –

Bian et al. [31] 68.00–78.00 –

Cao and Liu [32] 92.00 99.6

Uddin et al. [33] – –

Ding et al. [34] – –

Liu et al. [37] 93.40 –

Vo and Ly [41] 95.20 –

Gilbert et al. [42] 94.50 –

Grushin et al. [43] 90.70 –

Jhuang et al. [44] 91.70 –

Kläser [45] 94.20 79.80

Lin et al. [46] 93.43 –

Liu et al. [47] 93.80 –

Liu and Shah [48] 94.16 –

Rodriguez [49] 81.50 –

Schindler and Van Gool [50] 92.70 –

Sun et al. [51] 94.00 –

Veeriah et al. [52] 93.96 –

Wu et al. [53] 95.10 –

Niebles et al. [55] – 90.60

Ramage et al. [56] – 97.20

Blank et al. [57] – 99.63

Scovanner et al. [58] – 82.60

Bregonzio et al. [59] – 96.60

Dollár et al. [60] – 85.20

Klaser et al. [61] – 84.30

Liu et al. [62] 94.92 –

Moussa et al. [63] 97.89 96.66

Our approach

Binary image features 95.33 90.24

Gray image features 96.14 91.11
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