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Human action recognition with video data:
Research and evaluation challenges

Manoj RAMANATHAN, Student Member, IEEE, Wei-Yun YAU, Senior Member, IEEE, and
Eam Khwang TEOH, Member, IEEE

Abstract—Given a video sequence, the task of action recog-
nition is to identify the most similar action among the action
sequences learned by the system. Such human action recognition
is based on evidence gathered from videos. It has wide application
including surveillance, video indexing, biometrics, telehealth
and human computer interaction. Vision-based human action
recognition is affected by several challenges due to view changes,
occlusion, variation in execution rate, anthropometry, camera
motion and background clutter. In this survey, we provide an
overview of the existing methods based on their ability to handle
these challenges as well as how these methods can be generalized
and their ability to detect abnormal actions. Such systematic
classification will help researchers to identify the suitable methods
available to address each of the challenges faced and their
limitations. In addition, we also identify the publicly available
datasets and the challenges posed by them. From this survey, we
draw conclusions regarding how well a challenge has been solved
and we identify potential research areas that require further
work.

Index Terms—Action recognition, view-invariance, execution
rate, anthropometric variations, camera motion

I. INTRODUCTION

Human action is not merely the pattern of motion of
various body parts, but is the real world depiction of the
person’s intentions and thoughts. It is an important component
in behaviour analysis and understanding which are essential
for many applications, such as human computer interaction,
surveillance, telehealth, biometrics, video indexing, training
or virtual coaching etc.

‘Action recognition’ as the word suggests, means recogni-
tion of an action by using a system that typically analyses
the video sequence to learn about the action and uses the
learnt knowledge to identify similar actions. [1] broadly clas-
sifies human activities into four categories: gestures, actions,
interactions (with objects and others) and group activities.
Automatic recognition of such complex actions and behaviours
has led to development of useful applications such as virtual
coaches [2], understanding user environments and behaviours
using wearable sensors [3], evaluation of robotic therapy as
biofeedback device in dementia care [4] and development of
home assistant robots for ageing society [5].

Actions recognition can be tackled using several strategies,
namely, 3D markers [6] and wearable sensors [3], [7]. Apart
from these strategies, video or images of a person’s action
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provide ample clues. There have been several methods pro-
posed in each of these categories. Since action recognition
is a vast domain, in this survey we restrict ourselves to
methods that gather evidence from action videos or images.
Research in this domain has seen significant progress but is
still impaired by several bottlenecks which include variation in
viewpoint, occlusion, execution rate or speed, anthropometric
variations, intra-class variations, camera motion and cluttered
backgrounds. Other challenges include developing a general-
ized method to recognize any action, collection of adequate
number of training samples and localizing the action spatially
and temporally in video segments. The objective of this survey
is to classify the methods according to their robustness to these
challenges. Such taxonomy can help to identify shortcomings
in the existing techniques.

The previous surveys classify the reported methods based on
the features and classifiers used [8], [9] or framework adopted
[1]. [8] described challenges in the domain that influence
the choice of representation and classification algorithm. On
the other hand [10] worked on a specific challenge, by
reviewing recent advances in view-invariant action recognition
and considering three issues namely, human detection, view-
invariant pose detection and behaviour understanding. Unlike
other surveys, our intention is not to classify the available
methods according to any factors but to understand how well
the challenges in action recognition domain have been solved.
Therefore we classify the methods according to the challenges
they can handle effectively.

In this survey, we mainly focus on vision based action
recognition systems that use video camera as the primary
sensor and incorporate video analysis component used to
determine the action in the video. Excluded are methods
that use wearable sensors or depth sensor such as Kinect
as the primary sensor. We searched IEEE, ScienceDirect and
Elsevier databases initially for previous reviews in the field
and also collected other papers by searching these databases
using keywords such as action recognition, activity recognition
and vision based action recognition. We widened our search
using publications cited in these collected papers. We identify
the various challenges in vision-based action recognition and
classify the selected papers according to their robustness to
these challenges. Some non-vision methods are included in our
discussion (in Section III) to compare how well such methods
could be generalized for practical applications compared to
the vision based approaches.

The rest of the paper is organized as follows: Section II deals
with each of the challenges mentioned above and methods
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used by the researchers to tackle them. Action classification
methodologies and training strategies are discussed in section
III. This is followed by section IV, which deals with datasets
used for testing the challenges. Section V then concludes
the paper and suggests potential research opportunities where
more works need to be done to improve the usability of action
recognition in day-to-day applications.

II. CHALLENGES IN VISION-BASED ACTION
RECOGNITION

In this section we list out some of the research challenges
faced in action recognition and outline the different methods
used by researchers to handle them. A quantitative perfor-
mance comparison of the proposed techniques is difficult since
datasets and testing strategy used vary significantly. Neverthe-
less, the amount of training data and ability to generalize the
method to any type of action can be used as benchmarks to
classify the methods as these are critical for successful real-
world deployment.

A. Variation in View point

Most methods assume that action is performed from a
fixed view point. Figure 1 shows why researchers tend to
make this assumption. The figure shows four views of an
actor performing walking action. In each camera angle the
location and posture of the person varies considerably. Also
motion patterns in each view would appear different, making
recognition of the action not so trivial.

Fig. 1. Images depicting walking action from i3DPost [11] multi view dataset

The most common solution to tackle the change in camera
view angle is to train the classifier using multiple camera views
([12]–[20]). In this approach, the viewing angle is discretized
into evenly spaced segments or divisions each of which are
captured by a camera. The features that are extracted from
each view are combined to train a single classifier that handles
changes in view point or used to train a set of classifiers, each
one of them for a specific view point. Quantizing the space
of viewpoints leads to several view-dependent representations
of a single body pose, which causes many limitations during
implementation [10].

This is a crude solution because the framework developed
for one view is directly extended to a number of views. Once
the extension is done, the performance of the method only
depends on the features used to describe the action and the

trained classifier. [12], [16] used motion history image (MHI)
and motion energy image (MEI) to capture the underlying
human motion in the images. It could be disrupted by the
motion of background objects and also when more than one
person is present in the camera’s view. Methods such as
[14], [15], [17] also require precise extraction of silhouettes
for accurate results. These methods tend to ignore other
challenges and assume that the background subtracted images
or silhouettes are available. As a result the datasets used are
mostly in a controlled environment setting (such as indoors,
no illumination changes etc). Thus it is difficult to use such
methods in a normal environment. Another setback is that
multiple cameras have to be synchronized and processed at
the same time. This tends to increase the complexity and
computation time.

In order to obtain view invariant representation of the
action, researchers also model the 3D or 2D body posture
in an action ([14], [17], [21]–[33]). Human body is highly
deformable and composed of several parts, each capable of
undergoing separate deformations. But these deformations are
constrained because of the underlying kinematic and skeletal
structure of the body. The characterization of an action using
3D or 2D models depends on the representation used. For
example, visual hulls ([28], [29]), envelope shape ([31]–[33])
and silhouettes ([14], [17]) have been used. Some researchers
[24], [27] have also proposed detecting separate body parts
and then combining the results to obtain the body model.

One main concern in these modelling approaches is how to
track the changes in posture and reflect the same on the models
created. Kalman filtering [14], object interactions [25], motion
and appearance model [27] have been employed to track body
parts. The use of object interactions for tracking limits the
adoption of such methods to a very small class of actions
where the type and number of objects are already known.
[22], [26] try to track the dynamics involved in the action
by selecting only the key frames that depict maximum pose
variations. However, the main disadvantage is that dynamics of
the whole action is not considered and is completely dependent
on the key frames chosen.

Human body is highly articulated with many degrees of
freedom to support complex movements. Creating a com-
prehensive model that can represent these movements using
evidence collected from images is thus very challenging since
it poses a problem in a very high dimensional space. The
efforts to model in lower dimensions [21] (only 5 body joints
used), [27], [24] (uses 10 and 5 body parts respectively) could
only be an approximation and such reduced dimensional space
might not be able to model the complex movements. Moreover,
the representation obtained in the method [21] is not unique
for each action; also testing has been done only on walking
motion.

Lastly, researchers try to use view-invariant features or fea-
tures cast in a space or model where view-invariant matching
is possible ([30], [34]–[45]). Radon transform and Radon
transform surface ([43], [45]), temporal self-similarities and
dissimilarities that exist in an action [41], fundamental ratios
for fixed cameras [30] and temporal order of action sequences
[42] have been used successfully for recognition of certain
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limited actions. All these methods also have limitations based
on the features. [43], [45] uses only shape information. Iden-
tifying subtle differences in actions and differentiating similar
actions such as walking, running etc. would be difficult since
motion features have been ignored. Fundamental ratios, which
are the ratios among the elements in the upper left 2x2 sub
matrix of the fundamental matrix of a camera, and is invariant
to camera parameters are used in [30]. But this method is
limited because it identifies actions by looking for similar
planar motions from varying viewpoints. In [41], the descriptor
is not strictly view invariant but experiments have shown that
the method can handle very large changes in view.

Fourier transform and cylindrical co-ordinate systems ([40],
[44]) are the most popular spaces where the features are
cast for view-invariant matching. This is because a change in
viewpoint is converted into a much simpler translation that can
be easily computed and matched. Although wavelets filters in
[44] helps in image denoising and background segmentation, a
separate Maximum Average Correlation Height (MACH) filter
must be synthesized for every action we want to recognize.
Each of the methods mentioned design features in order to
achieve view invariance but the other challenges are mostly
ignored.

Among all these approaches, 3D modelling of the human
body postures shows more robustness towards change in
viewpoint. One reason is that all actions are represented using
features that are extracted with human body as the reference
frame. Using human body as reference helps to characterize
actions in relative terms rather than absolute. But main concern
is that inferring accurate 3D poses from the 2D images or
video frames is difficult due to the large number of param-
eters that needs to be estimated and perspective projection
involved may result in ambiguous poses to be recovered [10].
Another observation is that most multi-view datasets on which
researchers ([17], [22], [28], [42], [45]) have reported around
80-90% recognition rates contain relatively uniform or fixed
background. In order to truly gauge the performance of various
methods it would be necessary to test those using actions
recorded in real world settings.

B. Occlusion

The existing systems require that the action being performed
be clearly visible in the video sequences. In a normal surveil-
lance video, this is not possible because of the number of
people in the field of view of the camera. Occlusions can be
either self-occlusions or those created by other objects in the
field of view of the camera during the video capture. This
poses a big challenge to the research community because not
all the body parts performing the action are visible in the video
sequence.

Representing and analysing action as space time volumes
can avoid limitations caused by occlusion [37]. Volumetric
analysis ([29], [37], [46]–[51]) of actions are robust to self-
occlusions because of two reasons. Firstly, the body parts
are usually not occluded in the entire video. Secondly, by
analysing spatio-temporal volumes as a whole, features ex-
tracted from other body parts in the entire interval when they

are not occluded would be enough to match and classify
the action. Employing local features such as local appear-
ance model [52], edge maps [53], and space time interest
points ([54]–[63]) in volumetric analysis would also solve
the problem of cluttered backgrounds. Local representations
create appearance models that can characterize the action in
small patches. Using local features makes the method able to
withstand pose, shape and illumination changes [64] compared
to using the entire global features. The selection of appropriate
patches or interest points that should be used to represent
action is still a hurdle for researchers. A normal interest point
detector [56] might wrongly identify local patches which are
not in the foreground object. [46] used the Bhattacharyya
coefficient to match the space time volumes which is robust
to outliers (such as occlusions).

Probabilistic based methods such as Bayesian networks
([25], [65]–[67]) and Hidden Markov models (HMM) ([20],
[25], [67], [68]) can also be used to create appearance mod-
els to model the limbs, heads and torso. These approaches
consider the configuration of each body part as a state in their
model and change of states is governed by a probability value.
Since each body part can be considered as a separate entity,
it also inherits the advantages of local representation. [67]
segmented higher level activities into their component sub-
actions using HMMs that are modified to handle missing data
in the observation vector (occluded data such as limbs etc). A
probable configuration of the body parts can be obtained by the
available data. HMMs are good to represent simple actions but
such a flat model cannot characterize the hierarchy and shared
structure in all classes of actions [68]. Similar to probabilistic
based methods, Kalman filters ([14], [27], [69]) and particle
filters ([19]) also estimate the location of body parts based on
the initially available data. These filters are simple methods
that are used for tracking body parts.

Considering body parts separately is a plausible option to
handle occlusions. Pose based constraints ([48], [70], [71]) can
be imposed to locate parts that are occluded. Use of poselets
([72]–[76]) also follows the principle of body part detection.
Poselets [72] were originally proposed for action recognition
from static images. Therefore extension to video sequences is
not so trivial. Poselets also require manually annotated training
images to train the detectors for each body part. This limits
the applicability of poselets for action recognition.

Researchers have also explored object interactions ([77],
[78]) and multiple camera setup ([12], [16], [32]) to handle
occlusions. [77], [78] used objects as image evidence to
identify the location of occluded parts. Generalization of these
methods to actions that do not involve objects is challenging.
Similar to [77], [78], instead of using object interactions,
contextual or scene related clues can be explored as a means
to determine the occluded regions. However this approach can
be biased towards the scene background and hence cannot be
used separately to obtain reliable decisions on the location
of the occluded parts. In the case of multiple camera set-up
methods, [12], [16] are dependent on silhouettes which are not
effective under self-occlusions.

Probabilistic methods and pose based approaches offer most
acceptable performance when actions are being occluded.



4 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS

They account for occluded parts by identifying most plausible
location of these parts from the available image evidence and
articulated human body constraints. One interesting research
avenue will be to explore classifiers that can handle occlusions.
Since feature extraction from occluded parts is not possible, it
is important to come up with robust classifiers that can adapt
according to the presence of occlusions.

C. Execution Rate

Each individual performs an action at his/her own pace.
Also there is no guarantee that a person will repeat the action
at the same speed every time. This variation in the rate of
execution of an action has to be taken into account in an action
recognition system.

Any method that provides a probabilistic framework such as
Hidden Markov models ([20], [25], [43], [66]–[68], [79]–[84]),
Bayesian networks ([24], [25], [65]–[67], [69], [85]–[90]),
conditional random fields ([91]–[93]) and fuzzy based systems
([94]–[97]) are better suited to handle this challenge. All these
modelling paradigms and probability values assigned to states
govern when the state needs to be changed. Even though
the action is performed at different speeds, the model will
be updated only when the probability values indicate a state
change. HMMs can model dynamic processes in nature [98].
Modelling complex interactions and simultaneous activities
poses a challenge for researchers due to the rigid flat structure
[68]. These models only provide architecture to represent
action, but the performance of the system will depend on
the effectiveness of the features extracted. As pointed out by
experiments in [99], HMMs are more sensitive to the training
examples and tend to require more training data for better
performance.

One way to model and represent simultaneous activities is
to employ Allen’s predicate logic and past-now-future (PNF)
networks ([100], [101]). These networks allow researchers to
explicitly model temporal relationships, for example, ‘during’,
‘before’, ‘after’ etc. PNF networks [101] represent the tempo-
ral structure of actions using an interval algebra constraint
network, a constraint satisfaction network where the variables
correspond to time intervals, and the arcs to binary temporal
constraints between intervals. The aim of this network is to
find the feasible values or minimal domain for the variables,
which is a NP-hard problem. Calculations in PNF networks
are easier since the number of states is reduced to three
namely, Past, Now, Future. AND-OR graphs in conjunction
with Allen’s interval logic [59] provides a graphical model to
encode variations in activities. This method can encode both
causal and temporal relationships but requires weakly labelled
data.

All of the above mentioned approaches use temporal domain
to generate models. There has also been research in spatial
domain by considering the whole video length. Time warping
techniques ([13], [22], [23], [41], [44], [70], [102]–[105]) tend
to convert the template and the given input video data into
a common time scale that allows for easy comparisons. His-
togram based methods, specifically bag of features, codebooks
or dictionary based approaches ([50], [60], [71], [73], [75],

[76], [106]–[114]) apply the same principle since they consider
the image features from the complete video segments. The
challenge in these methods is that they can only describe the
complete actions and do not consider how the action is being
performed. As such these methods cannot be directly used
for action segmentation and localization. Codebooks or dictio-
naries developed suffer from quantization errors because the
intra-class variations present are all generalized into clusters
or codewords or visual words.

Considering temporal variations as intra-class variations,
researchers ([12], [16], [21], [26], [30], [35], [38], [42], [115]–
[120]) rely on the features used for action representation,
classifier used and training data to handle the temporal vari-
ations. Changes in execution rate of an action are implicitly
represented in datasets since more than one actor performs the
action. Since the datasets encompass these variations, most of
the methods tend to be robust to this challenge.

D. Anthropometric Variations

Each person has different body size, proportion and comfort
zone while performing an action, For example, a waving
gesture of a person might involve moving the hand above
the head and then wave the hand but another person might
not move his hand above his head and would just wave from
a shoulder height. Thus researchers develop a generalized
approach to capture and handle these variations.

Refer to Table I for the classification of the various methods.
Since the major variations are in the pose and appearance of
the actors, a common way is to avoid them and use other
features such as motion, optical flow, frequency domain etc.
These methods tend to ignore the shape/appearance of the
subject. Motion and optical flow features are coarse and many
scenes can exhibit similar flows over a short time period [118].
These features require a reliable and accurate background
segmentation method to avoid the effect of background flow
and motion [102], [53]. In order to reduce the effects of back-
ground variation, researchers use local feature representation
[119], space time interest points [103], bag of features [106],
motion trajectories ([38], [116]). These methods confine the
features to smaller regions in the video frames, but they do
not guarantee that the confined regions used will contain only
the desired actor’s motion.

Shape or appearance features are the simplest means of
capturing anthropometric variations by determining the shape
of the subject performing the actions. From the determined
shapes, classifier is made invariant to these variations. Silhou-
ettes, appearance models, pose based constraints and polygo-
nal shapes are popular ways to capture the shape information.
These methods are robust to variations in clothing and lighting
[118]. Shape based techniques require a proper background
model [118], [102], stationary cameras [118] and accurate
tracking system [102]. Artefacts such as shadows, complex
backgrounds, ghosts and moving objects in the videos can
affect shape based methods since they affect the performance
of background subtraction [121]. Silhouettes cannot identify
internal motions such as motion of hands or legs within the
body contour [118]. Other features such as power spectrum
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TABLE I
CLASSIFICATION OF METHODS ROBUST TO ANTHROPOMETRIC

VARIATIONS BASED ON FEATURES

Features Robust Methods
Shape,
Appearance

[14], [17], [21], [22], [27], [30], [36], [37],
[43], [48], [52], [53], [57]–[59], [65], [69],
[91], [100], [124]–[128]

Motion,
frequency and
others

[15], [16], [23], [24], [26], [28], [29], [34],
[35], [38], [79], [81], [82], [85], [87], [103],
[106], [116], [117], [119], [122], [129]–
[134]

Hybrid [25], [39], [40], [42], [47], [50], [54]–[56],
[60], [67], [73], [88], [102], [107], [118],
[135]

features [15] and discrete Fourier transform of image blocks
[122] can handle these variations but are not robust to other
challenges such as cluttered backgrounds, camera motion etc.

Using shape or motion feature alone has its own limitations
and advantages. Hybrid features that combine both shape
and motion information provide the right trade off. These
features try to combine the advantages of both features while
trying to avoid their limitations. Space time interest points
([39], [54]–[56], [60], [88]) and poselets [73] will encode
the pose based constraints. Local patches thus generated are
characterized by motion patterns [60], [107], optical flow [73],
[123] etc. Poselets [72], [73] are also robust to internal motion.
Experiments performed by the methods in Table I show they
work better than considering them alone. Such methods can
work very well in unconstrained, amateur videos that contain
dynamic backgrounds and camera motion [107].

It can be noticed from Table II that only a few methods are
not able to handle the changes introduced by this challenge. On
the features side, it can be seen that hybrid features provide the
best performance since they capture more information about
the action than a single feature. Currently, datasets available
capture anthropometric variations very easily since more than
one actor is used. However, most of the datasets use controlled
setting such as fixed background and stationary cameras.
Therefore, it would be interesting to see the performance of
these methods under unrestricted settings.

E. Camera Motion

In most action recognition cases, researchers assume static
cameras, which might not be the case in unconstrained systems
[62]. Camera motion severely affects motion features since
erroneous and misleading motion patterns are induced in
the videos. Shape features generally require a good tracking
mechanism, background model and stationary cameras [102],
[118]. Background subtraction required by these features is
affected by moving cameras.

Researchers have focused on epipolar geometry and camera
system directly to handle the variations. [36] handled non-
stationary cameras by factorizing the tracking matrix into
two matrices; one describing relative poses of the camera
and the foreground object and the other describing the shape
itself, thereby yielding invariance to camera motion. [34]
extended the standard epipolar geometry to the dynamic scenes
when cameras are moving using multi view geometry. They

achieve this by deriving a temporal fundamental matrix and
also analysing the rotation and translation motions. Even
though these methods can easily handle camera motion, they
require proper calibration and synchronization of cameras.
Also, intrinsic and extrinsic camera parameters are required.

Another approach used to account for moving cameras is
to include a motion compensation or subtraction component
([12], [82], [102]). In [102], dynamic cameras were accounted
for in shape descriptors derived using appearance likelihood
maps, which will be used to assign a probability of each
pixel being part of a person in the bounding box. In the mo-
tion descriptor, they removed background and camera motion
components by subtracting with the median of flow fields to
obtain median compensated flow fields. To solve the camera
motion problem, [12] proposed a method to use body centered
motion field, where they subtract the motion caused by camera
from the image. Videos used in [82] undergo a feature-based
image alignment (homography from SIFT correspondences) to
compensate for moving cameras before features are extracted.
Motion compensation method is simple to implement but it
might remove motion features that belong to the foreground
object.

Researchers have tried to derive features that can be made
invariant to camera motion. Optical flow [136], [137], and
local space time features [54] account for the distortions in
motion patterns caused by moving cameras by using velocity
patterns observed in the video frames. [54] and [136] use
velocity patterns in scale-space. This helps them to achieve
invariance to scale changes as well. The difference in the
partial derivatives of the local flow fields used in [137] cancels
out most effects of camera motion in interest points generated.
[54] (Space time interest points), [137] (motion boundary
histogram) and [136] (optical flow based) all use local features
to handle camera movements.

Codebook based methods ([57], [58], [88], [138]) rely on
the generated dictionaries. If the newly observed local features
contain patterns of scale changes and camera motion similar
to those observed in the data used to form the codebook, they
will be assigned to consistent memberships of the codebook
[58]. Comprehensive training data is thus needed for these
methods to work properly. Due to clustering, codebooks also
tend to suffer from quantization errors.

On the whole, epipolar geometry based methods seem
to provide the optimum solution when moving cameras are
used. Since the camera system and its geometry are included
while representing actions, they provide the best performance
among all methods. One major drawback while comparing
these methods is the non-availability of a standard dataset
that contains camera motion [34]. Hence, most of the above
mentioned methods ([54], [57], [58] etc) either report their
performance on stationary camera datasets or create their own
dataset [34], [138] for testing. Lack of benchmark dataset
that portrays camera motion effectively is a major hurdle to
progress in this area.

F. Cluttered Background
Dynamic or cluttered background is a form of distraction

in the video sequence from the original action of interest as it
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introduces ambiguous information [58]. Flow based methods
that calculate motion is affected as they detect unwanted back-
ground motion along with the actual required motion. Also
color-based and region-based segmentation approaches require
uniform non-varying background for reliable segmentation
and tracking of the foreground object. To avoid the anomaly
introduced, most applications assume a static background or
a method to handle background segmentation from the videos
prior to processing [15], [17].

Simple solutions proposed by researchers include pre-
filtering or segmentation process ([53], [102], [129]) or nor-
malize and threshold to separate foreground from background
([43], [56], [69], [79], [119], [139], [140]). Handling complex
backgrounds is not so easy in these methods since they
assume a uniform distribution in the background. Researchers
have investigated spatio-temporal features based volumetric
analysis ([54], [112], [115], [118], [130], [141]). Volumetric
analysis does not rely on background subtraction or human
body-part segmentation, and are relatively immune to noise,
camera jitter, changing background, and variations in size and
illumination [100].

Methods that model the background ([27], [52], [83], [142])
in order to separate the foreground object have been explored
by researchers. Graphical models like latent semantic analysis
etc ([57], [58], [88], [124]), Gaussian mixture models ([31],
[82], [109], [122]) and Random Forests [143] are some of the
paradigms explored. These methods are also robust to shadows
and other artefacts in the videos [142]. These models provide
really good background subtraction but modelling complex
backgrounds over a long period of time will be difficult.
Gaussian mixture models are intrinsically linear, which leads
to relatively large fitting error to model complex and non-
linear data [144]. Also, [27] can work only on gray images.
Background subtraction results obtained using these methods
are restricted by the modelling constraints imposed.

Features that are robust to background clutter have been
explored such as space time saliency ([39], [46], [55], [100]),
pruning of motion features ([51], [107], [137]), Bag-of-words
approach ([62], [128]), PbHOG [87] and pose based repre-
sentation ([48], [49], [71], [73], [74], [111], [145]). Pose-
based representations can cope with background variations,
occlusions and shifts in global representations if key poses
are selected well [48]. Selecting key poses can also remove
important information in the video, which will affect the
recognition performance. Above all, [146] uses IR imagery
and [138] uses depth information to remove clutter. This also
limits the adoption of these methods.

In conclusion, color or region-based normalization and
threshold methods work well for simple, uniform backgrounds.
Reduction in computation time and complexity is an added
advantage of these methods. But in day-to-day environments,
methods based on modelling the background seem to be
more robust than others. These models are dynamic and
can adapt according to the background making them a good
option for the real world. Even though they can provide good
background segmentation, the final performance is dependent
on the features extracted to represent the action. This is evident
from the results reported by these methods. Another interesting

observation from the reported performance of all methods is
that average performance is only around 70-75% ([46], [49],
[60]–[62], [88], [102], [107], [139]) on datasets containing
challenging backgrounds, which suggests that more research
efforts are still required to further improve the performance to
a more acceptable level. Combining model based methods with
local feature representations can help in reducing the effect of
cluttered backgrounds.

Ambiguities in action recognition have been caused by at
least one of the above issues. The presence of even one of
the above mentioned issues can degrade the performance of
the system drastically. Hence, researchers focus on solving
more than one of these issues, thereby making it difficult to
classify them according to the challenges they are robust to.
To put this in perspective, we have summarized the various
approaches according to all challenges it can handle in Table
II. In Table II, ‘I’ represents an integrated approach and ‘S’
denotes a separate block is added to make the method robust to
the challenge. For instance, using Hidden Markov Model that
models temporal constraints inherently to tackle execution rate
changes will be ‘I’, whereas including a time warping on the
features or video sequences separately will be ‘S’. ‘

√
’ means

that the method is generalizable and ‘×’ represents that the
method is not robust to the challenge.

III. ACTION CLASSIFICATION

Action classification and feature extraction are complemen-
tary to each other. They must mutually compensate for each
other’s limitations so as to improve the overall system. To
achieve efficient action classification, training the classifier
becomes essential. The training scheme helps the classifier
to learn about the intra and inter-class action variations. For
reliable classification performance, classifier must be trained
with adequate and diverse amount of training data to learn
every action effectively. In this section, we try to determine the
bottlenecks in the classifiers by discussing 3 aspects, namely,
generalizability of an approach, abnormal action detection, and
classifier approaches to reduce the amount of labelled training
data needed.

A. Generalizability

An important concern for researchers when they develop
an action recognition system is the capability of the method
to learn actions other than what they have been trained for.
For instance, can a recognition system originally created to
study gait patterns of people, be used to recognize falling
or sitting down action? The ability of a method to learn or
to cope with actions other than what they were originally
made for broadens the usage to encompass a variety of other
applications of similar class.

Uniqueness in the representation is very important for action
classification to be generalized to other actions. Canonical
poses [21], person dependent features ([13], [80]) rigid shape
formations [36] all suffer from this limitation. MACH filters
([44], [131]) extracted for each action, classifiers for gait
patterns ([14], [21], [147] etc), makes extension to lots of ac-
tivities with subtle variations difficult. Region based methods
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that rely on negative spaces ([70], [105]) are dependent on
background subtractions and shapes of negative spaces making
it difficult to generalize.

Moving Lights Display (MLD) [23], 3D Markers [6], solid
coloured gloves [80] and RFIDs [7] have been used to capture
3D joint angles. However, extension of these methods to
normal day-to-day activities which are unconstrained is not
possible. Similar to the above mentioned examples, methods
developed to identify objects from human interactions with
them or vice versa, ([25], [66], [67], [77], [78], [86], [128])
also cannot be extended to actions without objects. Some clas-
sifiers cannot be employed in all circumstances, for instance,
W4 [27] and [146] are based only on monocular gray and
infra-red imagery. Likewise, [138] requires depth information
from depth cameras.

B. Abnormality Detection
One important task of a surveillance system is to identify an

aberration or abnormality in user behaviour or action, such as
detecting a bank robbery or suspicious persons in an airport.
Generally this detection is done by a human observer, who
sits in front of the monitor throughout the day. Abnormality
can also be seen in normal day to-day life activities, for
example, people trying to correct their postures, athletes trying
to improve their performance in training sessions etc. Some of
the approaches used for abnormal behaviour detection methods
in intelligent video systems are discussed in [160].

One important concern is to collect training samples that
contain these abnormalities. Movie clips [39], Youtube videos
[107], and amateur videos [62] provide a good source for
training data from which both normal and abnormal action
examples can be collected. For learning actions from movie
clips, [39] employs a text based classifier using scripts and
subtitles. But these scripts and subtitles need to be accurately
aligned with the scenes and coping with substantial variability
of action expressions in the text.

Some of the methods ([104], [124], [126]) have been
developed specifically for detecting abnormal behaviours. Ab-
normality depends upon the overall context where the action is
performed. Detecting aberration requires these methods to de-
fine criteria which characterize the abnormality. Hybrid latent
Dirichlet allocation (h-LDA) is applied to automatically learn
the distribution of the spatio-temporal words and correspond to
human action categories in [124]. h-LDA learns the probability
distribution of motion text words in a scenario, which is used
to define the criteria for abnormal action.

The exemplar based method used in [104] models the
function space of an action using a set of time warping
transformations on the computed action trajectory and can
be extended to abnormal action detection since the method
is independent of features chosen to represent action and
requires lesser number of training examples. But to define
an abnormality criterion would be difficult since it will vary
with the type of feature used. To monitor and detect abnormal
activities using a very low resolution image, [126] models

1 View-invariance 2 Occlusion 3 Execution rate 4 Anthropometric
variations 5 Camera motion 6 Cluttered Background 7 Generalizability
8 Abnormality detection

TABLE II
CLASSIFICATION OF APPROACHES BASED ON ROBUSTNESS TO

CHALLENGES, GENERALIZABILITY, ABNORMALITY DETECTION

Method VI1 Oc2 Er3 An4 Cam5 C B6 Gen7 Ab8

[79], [140] × × I I × S × ×
[100], [112], [139], [142],
[148]

× × I I × I
√

×

[149] × × I I × I
√ √

[123], [141] × × I I × S
√

×
[145], [146], [150] × × I I × I × ×
[151] × × I S × I

√
×

[152] × × S S × I
√

×
[13] I × S × × × × ×
[103], [116] × × S I × × × ×
[84], [109], [114], [120] × × S I × ×

√
×

[106] × × S I × ×
√ √

[21], [23] I × S I × × × ×
[22], [33], [41] I × S I × ×

√
×

[80] × × I × × × × ×
[101] × × I × × ×

√
×

[104] × × S × × × ×
√

[81], [85], [91]–[97],
[108], [113], [127], [153],
[154]

× × I I × ×
√

×

[89], [90], [117] × × I I × ×
√ √

[86], [105], [134], [155] × × I I × × × ×
[24] S × I S × × × ×
[53], [75] × I × I × I

√
×

[52], [74], [78] × I × I × I × ×
[66] × S I I × × × ×
[69] × S I I × S

√
×

[129] × S I I × S × ×
[27] I S × I × S × ×
[14] I S × I × × × ×
[12] I I I × S ×

√
×

[26], [30], [38], [42] I × I I × ×
√

×
[35], [44] I × I I × × × ×
[34] I × I I I ×

√
×

[83], [119] × × S I × S
√

×
[87], [111] × × S I × I

√
×

[17], [28], [40] I × × I × ×
√

×
[36] I × × I I × × ×
[39] I × × I × S

√ √

[132], [133], [135], [156] × × × I × ×
√

×
[126], [131] × × × I × × ×

√

[125], [157], [158] × × × I × × × ×
[55] × S × I × S

√
×

[56] × S × I × S × ×
[54] × S × I S S × ×
[47], [59], [65], [68] × I I I × ×

√
×

[67], [70] × I I I × × × ×
[130], [159] × × × I × I

√
×

[118] × × × I × I × ×
[122] × × × I × S

√
×

[124] × × × I × S
√ √

[15], [29], [37] I I × I × ×
√

×
[16] I S × I × ×

√
×

[25], [32] I I I I × × × ×
[20] S I I I × ×

√
×

[19] S I S I × ×
√

×
[57], [58] × I × I I I

√
×

[115] × × I × S I × ×
[102], [107], [136], [138] × × S I I I

√
×

[88] × × I I I I
√

×
[82] × × S I S S

√
×

[46] × I × × × I
√

×
[43] I × I I × S

√ √

[31] I × S I × I
√

×
[48]–[51], [60]–[63], [71],
[73]

× I I I × I
√

×

[128] × × × I I I × ×
[18] I × × × × ×

√
×

[45] S × S S × ×
√

×
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an activity using the polygonal shape of the configuration of
point masses and their deformation over time. Abnormality is
defined by learning the mean shape and dynamics of the shape
change using manually indexed location data. This approach
is limited as it can be applied to static shape activities only.

C. Classifier Training

In this section we will look into the classifier approaches and
training strategies used. Some of the classifiers have not been
used in action recognition but have potential to be explored
and employed in the domain. Researchers use classifiers such
as nearest neighbour ([84], [100], [117], [118], [129], [136],
[150], [153] etc) and SVM ([41], [54], [106], [118], [125])
due to their simplicity and good performance. Most of these
methods use Euclidean distance between features which might
not be efficient for distance calculation in high dimensional
case such as action recognition features. Many other metrics
such as Mahalanobis distance ([12], [16], [56]), Chamfer
distance [103], Riemannian metric [136], weighted Euclidean
distance [15] and normalized Levenshtein distance [150] have
been employed to perform the distance calculations correctly.
These methods make an assumption that the distribution of
data used in training and test data are the same. However,
this might not be true in many cases [110]. These classifiers
also require lots of training data to capture all the possible
variations.

Several researchers have devised classifiers that require less
training data or techniques to collect these data automatically.
One simple approach is to use web as a source of information
for the classifier training [87]. A typical search engine is
employed to retrieve the images and irrelevant ones are cleaned
up using an incremental procedure. Transfer learning model
([110], [161], [162]) provides impressive properties to learn
attributes and features in one dataset and apply them to another
target dataset. These methods still use simple classifiers such
as SVM or AdaBoost to learn conceptual clues from image
databases and use them in the target action database. Active
learning paradigm [163] requires a small amount of training
data but is restricted in usage since wearable sensors are used
to extract context information. Incremental learning methods
[63] and slow feature analysis [151] do not require extensive
training since they can learn and update the feature represen-
tation models based on new training samples. Even though
these methods can work with insufficient training data, they
do not make any distinctions between positive and negative
training data.

A good classifier should uncover the most discriminative
features and learn them with more weightage to make reliable
decisions. Classifier [164] tries to learn from partially repre-
sentative data in huge datasets that include negative data. Data
mining has been used in ([51], [148]) to learn from compound
features created from spatio temporal corners. Fuzzy rule
based classifications ([94], [95]) have also been shown to
discriminate between features. [95] introduced McFIS clas-
sifier that can be used in an incremental manner since it
automatically decides what, when and how to learn based
on its available knowledge and new training sample. These

methods can handle most of the action recognition challenges.
However, requiring the task adaptive classifiers such as Hough
forests [19] and adaptive vocabulary forests [165] to handle
all the challenges in action recognition might not be easy. For
instance, a separate Hough forest [19] needs to be created for
every view angle we want to handle. Also these methods are
dependent on codebooks to learn the appearance, which are
subject to quantization errors.

Fuzzy rule based classifiers combined with tree data struc-
ture [166] was used to create user profile based keyboard
inputs. These classifiers are evolving and can adapt over time
to behavioural changes. This structure can be extended to
action recognition to create a hierarchical action recognition
system. In addition, fuzzy empirical copula was used as
classifier in [99] to identify human hand motion using finger
joint angles captured using data gloves. Recently, Extreme
Learning Machines (ELM) [50] is becoming popular because
of the fast output and good multi-class performance to make
distinctions between features. ELM can generate hidden nodes
or parameters without seeing the training data [167]. Results
obtained can fluctuate from ELM due to the random initializa-
tion. As a result, classification is done based on the average
of a number of iterations.

IV. DATASETS

Testing action recognition algorithm is essential as it pro-
vides qualitative and quantitative performance analysis. But
for reliable analysis it is necessary that the datasets capture
all the actions under various challenges and conditions that
would prove the system is robust to them. Datasets that capture
actions in all possible scenarios are very limited. Also, some
datasets are not publicly available. This is the primary reason
why many researchers create their own dataset for evaluation
([34], [35], [79], [103], [119], [126]). A detailed survey on
the available datasets for performance evaluation is given in
[168].

KTH & Weizmann human action datasets are the most
popular for action recognition. KTH dataset [54] contains
6 action classes performed by 25 actors in four different
scenarios: outdoors (s1), outdoors with scale variation (s2),
outdoors with different clothes (s3), and indoors (s4). KTH
dataset is restricted because cameras are relatively stationary,
and only zooming of camera is considered as camera motion.
Weizmann dataset [37] contains 10 action classes by 9 actors
using simple background and fixed camera [168]. They also
provide background sequences so that silhouettes can be
extracted easily.

IXMAS dataset [28], CASIA motion datasets [43], i3DPost
Multi-view Dataset [11], MuHAVi [169], Virtual Human
Action Silhouette (ViHASi) [170] [171] and West Virginia
University (WVU) multi-view dataset [172] provide datasets
for variations in viewpoint. In order to provide a good multi-
camera video input, all actions are captured in an indoor
controlled setting. Dynamic backgrounds are not considered in
most of these datasets. UT-Tower dataset [173] provides videos
of actions in the outdoor environment but mainly from aerial
view in which people cannot be seen clearly. All of the above
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mentioned datasets provide only single person single action
video data. This means spatial and temporal action localization
cannot be directly tested using these datasets.

Recently, ChaLearn gesture dataset [174] and G3D, a
gaming dataset [175], concentrated on continuous actions.
These datasets do not consider the usual challenges in action
recognition field since they provide multi-modal data such as
skeleton data, depth and audio (only in ChaLearn) in addition
to the video data. The main restriction is that ChaLearn
considers only hand gestures and G3D only actions in gaming
environment.

Datasets like Keck gesture set [176], UCF Sports dataset
[131] and Hollywood2 human action (HOHA) datasets [106]
provide good database for camera motion and background
clutter. YouTube dataset [107] is collected from YouTube
and broadcast videos that are captured under uncontrolled
settings. UCF Sports dataset [131], Hollywood2 human action
(HOHA) datasets [106] and YouTube dataset [107] are good
datasets for dynamic background since they are extracted from
sports, movies and web videos. They also can provide good
benchmarks for multi-person actions and interactions.

V. CONCLUSION

Action recognition has received much interest due to the
many research challenges that have not been satisfactorily
addressed [8]. Another important reason is the vast range of
potential applications such as surveillance, human computer
interaction, telehealth, biometrics etc. In this survey, we have
presented methods based on their robustness to the various
challenges faced in action recognition including view invari-
ance, occlusion etc.

Execution rate and anthropometric variations have been
resolved as researchers have shown that they can be effectively
handled as intra-class variations and by combining different
features. View-invariance is the most motivating challenge in
the field now for real-world applications in an uncontrolled
setting. Most of the methods can only achieve moderate view-
invariance.

Methods that tackle camera motion are even fewer. Methods
employing motion compensation or the multi view geometry
along with standard epipolar geometry to resolve the discrep-
ancies have shown good performance but are still limited in
nature. Efforts to solve occlusion and cluttered background
have been high, but there is still room for improvement
especially in real world scenarios. Other research potential
includes new classifiers to handle these challenges robustly.

Development of datasets that can cater to all these chal-
lenges is also crucial to gauge and benchmark the performance
of the proposed methods. Generalization of methods must be
considered during the design stage of the system. As far as
we are aware of, none of the methods proposed can handle all
these challenges. Developing a unified approach that is robust
to all these issues may require explorations into new fields
and new ideas. This survey is the first step towards identifying
challenges that have not yet been fully resolved. In turn, this
will help researchers in this area focus their research effort on
those issues identified as bottlenecks and to eventually develop
a system robust to all major action recognition challenges.
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LIST OF FOOTNOTES

1) Page 7, Footnote explaining the names of the challenges
in Table II ‘1 View-invariance 2 Occlusion 3 Execution rate
4 Anthropometric variations 5 Camera motion 6 Cluttered
Background 7 Generalizability 8 Abnormality detection’


