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Abstract

Segmentation of individual actions from a stream of hu-
man motion is an open problem in computer vision. This
paper approaches the problem of segmenting higher-level
activities into their component sub-actions using Hidden
Markov Models modified to handle missing data in the ob-
servation vector. By controlling the use of missing data,
action labels can be inferred from the observation vector
during inferencing, thus performing segmentation and clas-
sification simultaneously. The approach is able to segment
both prominent and subtle actions, even when subtle ac-
tions are grouped together. The advantage of this method
over sliding windows and Viterbi state sequence interroga-
tion is that segmentation is performed as a trainable task,
and the temporal relationship between actions is encoded
in the model and used as evidence for action labelling.

1 Introduction

From a machine understanding perspective, it can be
useful to consider human body motion as a hierarchy of
events ranked by complexity, where lower levels contain
shorter motions (dubbed actions in this paper) that combine
temporally to form higher level events (activities) which are
more abstract. Most research has focused on developing
techniques that can reliably classify an isolated event in its
entirety given a set of possible events [1, 5, 6].

Only a few researchers have attempted to automatically
segment an event into its component sub-events [9, 2, 3].
Segmentation is desirable since it allows the activity to be
examined in finer detail, such as determining exactly when
an actor manipulates an object in order to localise the po-
sition of that object. However, most of these attempts have
relied on a sliding window or hidden state labelling, both of
which can be noisy and lead to unreliable labelling. As an
alternative approach, this paper proposes the use of Hidden
Markov Models (HMMs) [10] modified to perform training
and inferencing in the presence of missing data in the obser-

vation vector. During training, the multinomial observation
vector contains two types of features: data extracted from a
simple 3D pose estimation of the actor [4, 7] and data rep-
resenting the labels for each sub-action (where each label is
a boolean flag). When testing against an unseen sequence,
the action labels are regarded as missing data and the most
probable action label is inferenced by the modified HMM
based on the actor’s motions and position in the sequence.

The significance of this approach is that it is able to clas-
sify and segment the actions in an activity without resorting
to heuristics such as sliding windows or labelling states in
the Viterbi sequence. Furthermore, the temporal ordering of
actions is encoded into the model, assisting in classification
for events that are visually similar but temporally distinct.
This temporal evidence also facilitates the classification of
subtle actions, testing the limits of the approach.

2 Related Work

Pinhanez and Bobick [9] were among the first to pro-
pose decomposing an activity into its sub-actions and use
the temporal relationships between actions to improve ac-
tion classification. They use the concepts of Past, Now, Fu-
ture and an associated logical formalism in a network topol-
ogy to arrange actions temporally. Unfortunately, in lieu of
a vision system sophisticated enough to detect sub-action
motions, Pinhanez and Bobick were forced to generate syn-
thetic data in order to test their models. Thus their ‘sensors’
provided perfect or near-perfect action classification.

Others have attempted automated segmentation using a
window-driven approach [2, 8], where a small window is
used to sample and classify part of the entire activity. The
window is incrementally moved through the full sequence
to label all frames. This can provide good results, but is
highly sensitive to the window size and tends to be noisy.

Another method using HMMs is to manually label the
actions that the hidden states correspond to [3]. Then dur-
ing inferencing, the Viterbi state sequence is used to de-
termine which states occurred at what time. However, the
hidden nature of HMM states means that they do not lend
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themselves well to interrogation and labelling — each state
could represent several actions at once or even none at all.
Also, segmentation accuracy is limited by the number of
HMM states, which is always less than the sequence length.

For this paper, HMMs were chosen as the classifier since
they have been proven to be highly successful for human
motion modelling and can be modified to handle missing
data during both learning and classification [7].

3 Human Motion Capture

a b

Figure 1. “Star” Skeletonisation, showing views of two
2D projections of the same 3D skeleton.

This research extracts usable features from a human sil-
houette using a simple, fast skeletonisation process origi-
nally proposed by Fujiyoshi and Lipton [4] and extended to
fuse multiple views into 3D [7]. It detects the gross extremi-
ties of the silhouette and assigns limb labels to each extrem-
ity (head, arm1, arm2, leg1, leg2). This assumes that each
extremity corresponds to a limb of the actor, an assumption
that is quite robust as long as the actor is not carrying any-
thing bulky that significantly affects their silhouette.

The skeleton produced is essentially a ‘stick-figure’ sim-
plification of the person’s silhouette (see Figure 1). Fea-
tures extracted from this skeleton include height, horizontal
speed, torso length, torso angle to ground, arm lengths, arm
angles to torso, leg lengths and angle between legs.

One unfortunate aspect of the skeleton is that limbs do
not always have a corresponding extremity in the silhou-
ette. For example, when the actor’s legs come together and
form a single extremity, only one ‘leg’ is detected. This
produces an incomplete skeleton where some of the limbs
may be missing. Thus to perform action recognition using
the skeleton, it is necessary to extend the HMM to handle
missing data during both learning and inferencing [7].

4 Action Segmentation and Classification

In order to perform segmentation and classification of ac-
tions in an activity, each action is associated with a particu-
lar action label flag in the observation vector. During train-
ing, the labels are fully observed (from the ground-truth)

and the HMM learns an association between the action la-
bels and the motions for that action. When it comes to clas-
sification, the labels are not observable and are marked as
missing data to allow the HMM to generate its ‘best guess’
of the labels based on the motions being performed and the
sequence of the activity. By taking the most probable ac-
tion label at each frame, the sequence of actions and their
start/finish times can be estimated, segmenting and classi-
fying the actions within an activity at the same time.

The ground-truth segmentation for actions is constructed
by hand, with action boundaries rounded to the nearest fifth
frame. To some extent, this ground-truth is uncertain since
many actions blend smoothly into the next, and some ac-
tions even partially overlap. Also, the pose estimation often
cannot detect the start and end of a motion (compared to the
ground-truth) due to the granularity of pose measurements.

5 Action Label Interrogation

During classification, all action labels are marked as
missing. After inferencing the HMM is interrogated as to
which missing action label is most probable at each time in-
stant, indicating when each action is most likely occurring.

Missing data exists both for the incomplete pose skele-
ton and missing action labels. However, action labels are
only missing during inferencing and thus this paper will
only show the extension to the standard HMM for infer-
encing. See [7] for details on extending the HMM to learn
with missing data.

In order to classify a test case, the probability of seeing
the test case’s observations y1...T is:

P (y1...T ) =

QX

i=1

P (qT = i, y1...T ) =

QX

i=1

αT (i)

Each yt is a tuple (yp
t , ya

t ), where yp
t is the set of pose

features and ya
t is the set of boolean action labels for each

action. Features are assumed independent. qT is the hidden
state q at the last time instant T and αT (i) is the recursive
‘forward variable’ for HMMs. The HMM which best fits
the observation vector is then chosen as the classification.

If there is missing data in the observation vector, the for-
mulation of αt(i) must be modified (denoted as α′

t(i) to
indicate the distinction). If yt is missing, α′

t(i) is:

α′
t(i) = P (qt = i, y1...t)

= P (qt = i, y1...t−1) since yt is missing

=

QX

j=1

P (qt−1 =j, qt = i, y1...t−1)

=

QX

j=1

P (qt = i|qt−1 =j)P (qt−1 =j, y1...t−1)

α′
t(i) =

QX

j=1

`
Aji · α′

t−1(j)
´
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(a) (b)

Figure 2. PRINTER (a) and TEA (b) Activities — action sequence breakdowns represented spatially and temporally. Ellipses
indicate actions, with arrows showing the sequencing. Rectangles show the objects being interacted with.

where Aji is the HMM state transition matrix that defines
the probability of transitioning from state j to state i. Sim-
ilarly, the HMM backwards recursive variable β′

t(i) can be
derived for the case where yt is missing:

β′
t−1(i) = P (yt...T |qt−1 = i)

= P (yt+1...T |qt−1 = i) since yt is missing

=

QX

j=1

P (qt =j, yt+1...T |qt−1 = i)

=

QX

j=1

P (yt+1...T |qt =j)P (qt =j|qt−1 = i)

β′
t−1(i) =

QX

j=1

`
β′

t(j) · Aij

´

For all other times t where yt is observed, the standard
HMM equations for α′

t(i) and β′
t(i) must be used:

α′
t(i) = Bik

QX

j=1

`
Aji · α′

t−1(j)
´

β′
t−1(i) =

QX

j=1

`
β′

t(j) · Bjk · Aij

´

where Bik is the HMM observation matrix that defines the
probability of observing symbol yt =k when in state qt = i.

To determine the most likely missing action label at
each time t, it is necessary to calculate the probability that
ya

t = true for each action label a (dubbed �t(a)). The most

probable label is then chosen as the action for time t.

�t(a) = P (ya
t = true|y1...T )

=

QX

i=1

P (ya
t = true|qt = i)P (qt = i|y1...T )

�t(a) =

QX

i=1

Ba
i,k=true · γ′

t(i)

where γ′
t(i) is the HMM forwards-backwards variable cal-

culated by γ′
t(i) = P (qt = i|y1...T ) ∝ α′

t(i)·β′
t(i) and �t(a)

is the probability that action label a is occurring at time t.

6 Results and Analysis

6.1 Experiments

Two types of activity were modelled for this research.
The first type involves printing and retrieving a document
before returning to the computer, consisting of 15 actions
(Figure 2a). The second type is the act of making a cup of
tea, which contains 19 actions (Figure 2b). All actions are
executed one after the other, sometimes partially overlap-
ping if the actions can be carried out simultaneously (eg:
dipping teabag whilst putting the tea kettle down). Thus
Bakis-1 strict left-right HMMs [10] are used to model the
activities. Note that there are no gaps in the action sequence,
hence even ‘bridging’ actions are modelled such as when
the actor must reach out to the keyboard before typing.

To avoid any implicit learning of relative orientations,
the scene was arranged in several different ways and train-
ing data was taken from all topographies for both activities.

The main difference between the PRINTER and TEA

sequences is that the PRINTER sequence contains mostly
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Time Mean Err. Std Dev.
Action Recall (sec) (frames) (± frames)

Type 100% 17.6 N/A N/A
TypeRetract 70% 0.6 3.5 4.80

StandUp 98% 1.3 5.2 5.18
WalkToPrinter 100% 3.2 4.9 5.94

PrinterOutOfPaper 92% 1.8 -2.3 8.99
WalkToPaper 84% 2.2 -2.4 5.73

GetPaper 86% 2.0 -0.4 9.71
WalkToPrinter 88% 2.4 -2.9 9.02

LoadPaper 80% 2.2 2.2 8,76
WaitForPrintout 86% 6.7 9.3 16.56

GetPrintout 84% 1.9 1.5 13.9
WalkToComputer 100% 3.0 -2.5 9.79

SitDown 100% 1.3 0.8 3.37
TypeReach 80% 0.8 2.9 5.67

Type 92% 8.7 -5.8 7.82

Time Mean Err. Std Dev.
Action Recall (sec) (frames) (± frames)

Walk 100% 2.7 N/A N/A
GetKettle 100% 2.6 0.4 10.14
OpenTap 94% 2.4 1.4 6.68
FillKettle 94% 7.8 -6.8 10.90
CloseTap 90% 2.1 3.5 6.74

PutKettleBoil 96% 3.1 -0.7 4.78
BoilWater 100% 15.6 -1.8 8.44

GetTeabag 98% 2.3 1.9 6.51
PutTeabagInCup 60% 1.2 -5.1 8.31
GetBoilingKettle 78% 2.0 -2.6 13.71
PourWaterInCup 86% 5.7 -4.0 18.62

PutKettleBack 80% 1.6 5.5 15.32
DipTeabag 96% 6.3 -0.8 5.74

DiscardTeabag 84% 1.9 6.0 7.54
GetCup 80% 1.4 -3.1 15.15

WalkToChair 98% 5.6 -3.8 16.47
SitDown 98% 1.8 -2.7 5.26

Sitting 74% 2.0 -7.7 3.82
Drink 100% 3.4 -16.3 32.30

(a) (b)

Colour Legend: % Well-segmented Actions % Poorly-segmented Actions

Table 1. Segmentation accuracy. PRINTER sequence in (a), TEA sequence in (b). All actions have 50 instances.

prominent actions such as walking, typing and grabbing.
In contrast, by including reasonably subtle actions such as
putting the teabag in the cup, dipping the teabag and oth-
ers, the TEA sequence was designed to push the limits of
the system (whilst taking into account the shortcomings of
the human pose estimation model). Note that some of these
actions are also adjacent to other subtle actions. This forces
the system to distinguish between subtle actions — if sub-
tle actions were only ever adjacent to prominent actions, it
would be impossible to tell if the system was merely detect-
ing the prominent actions and simply allocating the labels
for subtle actions in the gaps between.

6.2 Segmentation Analysis

Table 1 shows the accuracy in finding action boundaries
when segmenting actions using the proposed technique. Re-
sults were generated using 10-fold cross-validation. Recall
(true-positive rate) indicates the success in finding the ac-
tion at all — misclassifications are defined as any segmen-
tation where the centerpoint of the estimated action posi-
tion does not fall within the time that the action actually
occurred. Since a few actions are quite long (eg: WaitFor-
Printout), some segmentations were classified as ‘correct’
even though the boundary detection was significantly worse
than the distribution of boundary errors across all 50 in-
stances (distributions were found to be near-normal). Thus

any instances with a boundary error more than 2.5 standard
deviations from the mean are also considered misclassifi-
cations. Across all sequences there were only three events
that were completely missed. Given these misclassification,
most actions were detected reasonably well, with generally
better recall rates for the longer actions. The main exception
is PutTeabagInCup — its 60% recall can be explained by its
very short duration (around one second, thus highly affected
by segmentation inaccuracies) and the fact that the transi-
tion from the previous event (GetTeabag) to PutTeabagIn-
Cup is quite blurred.

Boundary detection evaluation was performed only on
correctly-classified instances. In a few cases at the bound-
ary between action transitions, segmentation would switch
to the next action before producing a short burst (2-3
frames) of false positives for the previous action. These
bursts were easily filtered out by requiring an action to en-
dure for more than five frames. In general, the mean error in
detecting event transitions is quite low, especially consider-
ing the ground-truth itself is only accurate to the nearest five
frames. Uncertainty in these errors is also fairly good, with
most standard deviations being less than 10 frames. The
TEA sequence has larger uncertainties than the PRINTER se-
quence, a result that was expected since the TEA sequence
has several subtle actions and the action transitions tend to
be more indistinct than in the PRINTER sequence.
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Sequence-based (per-frame) Separate Models (pre-segmented)
T.P. F.P. Actual T.P. F.P. Actual

Action Count Count Count Recall Precision Count Count Count Recall Precision
Type 32203 586 32950 97.7% 98.2% 99 15 100 99.0% 86.8%

TypeRetract 521 422 810 64.3% 55.2% 30 0 50 60.0% 100.0%
StandUp 1329 364 1630 81.5% 78.5% 49 0 50 98.0% 100.0%

Walk 12020 1942 13689 87.8% 86.1% 200 12 200 100.0% 94.3%
PrinterOutOfPaper 1898 257 2340 81.1% 88.1% 16 1 50 32.0% 94.1%

GetPaper 1863 427 2606 71.5% 81.4% 38 63 50 76.0% 37.6%
LoadPaper 2196 1276 2739 80.2% 63.2% 32 12 50 64.0% 72.7%

WaitForPrintout 6984 581 9371 83.4% 92.3% 33 0 50 66.0% 100.0%
GetPrintout 1819 726 2450 74.2% 71.5% 25 19 50 50.0% 56.8%

SitDown 1549 237 1735 89.3% 86.7% 50 0 50 100.0% 100.0%
TypeReach 537 633 1050 51.1% 45.9% 45 11 50 90.0% 80.4%

Colour Legend: % Good accuracy for action % Poor accuracy

Table 2. PRINTER sequence classification accuracy. Note that the four different Walk actions are analysed as one (same for Type)

Statistical hypothesis tests (99% confidence intervals for
the true means) were used to identify error means that dif-
fered significantly from a zero error (ie: were significantly
late or early, in a statistical sense). Most of these signif-
icant errors occur because the end of one event is often
very similar to the beginning of the next, with the more
prominent event usually annexing frames from the other
event. For example, in the PRINTER sequence the second
Type is detected early (-5.8 frames) since it tends to an-
nex frames from the end of TypeReach (when the arms are
outstretched). For the same reasons, WaitForPrintout and
TypeRetract start late (+9.3 and +3.5). Similar failures oc-
cur in the TEA sequence, including PutTeabagInCup and
DiscardTeabag.

Poor uncertainty (and thus poor segmentation) occurs in
clusters, possibly because errors propagate from one event
to the next until corrected by an event with a strong motion
signature. Substantiating this is difficult, requiring more se-
quences and variety in activity types. However, the pattern
does occur in both PRINTER and TEA (see Figure 1, DipTe-
abag and SitDown events).

A special case of error is found in the Drinking action,
which is segmented very early (-16.3) and has an extremely
poor uncertainty. This is due to the fact that the pose estima-
tor only detects the arm limb when it has lifted significantly
away from the actor’s lap, but the ground-truth for the start
of drinking is defined about half a second earlier, meaning
that the segmentation does not have any evidence for the
true start of the Drinking action.

6.3 Classification Analysis

For the purposes of evaluating the effect of temporal se-
quence evidence on classification accuracy, a separate set

of HMMs was constructed, one for each individual sub-
action. This way, no temporal relationships between ac-
tions are encoded. The actions are pre-segmented accord-
ing to the ground-truth for both training and testing of these
models, and 10-fold cross-validation was performed. The
results from this are compared to the results from Sequence-
Based classification in Tables 2 and 3. Note that the
Separate-Models classification has the substantial advan-
tage of perfect segmentation, whilst sequence-based classi-
fication must perform both segmentation and classification.

Although the Sequence-Based method is on a per-frame
basis and the Separate-Models method is on a per-instance
basis, it is still possible to get a sense of whether the se-
quence aids in separating different (though visually similar)
actions. As can be seen from Tables 2 and 3, the Separate-
Models method has considerable confusion between actions
that have similar motions. This includes GetPaper, LoadPa-
per and GetPrintout, all of which involve the actor reaching
out with his hand. Note that GetPaper has a high recall but
low precision since the other two events are mostly mis-
classified as GetPaper. Conversely, the Sequence-Based
method is only outperformed on TypeRetract and TypeR-
each, and only because these are very short events, thus the
accuracy is very sensitive to any failure in segmentation.
Part of the reason for this success lies in the fact that the
sequencing ensures that misclassifications can only occur
between neighbouring actions.

A similar situation exists for the TEA sequence, with
‘grabbing’-style actions such as GetKettle, PutKettle, Open-
Tap, CloseTap and FillKettle all confused with one another
in the Separate-Models method. PutTeabagInCup also has
a low accuracy, often incorrectly classified as PourWaterIn-
Cup since both involve the use of two hands. In compari-
son, the Sequence-Based method manages to detect PutTe-
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Sequence-based (per-frame) Separate Models (pre-segmented)
T.P. F.P. Actual T.P. F.P. Actual

Action Count Count Count Recall Precision Count Count Count Recall Precision
Walk 9911 803 10475 94.6% 92.5% 100 34 100 100.0% 74.6%

GetKettle 4705 1641 5820 80.8% 74.1% 60 7 100 60.0% 89.6%
OpenTap 2489 581 3090 80.6% 81.1% 43 7 50 86.0% 86.0%
FillKettle 9017 781 9820 91.8% 92.0% 50 31 50 100.0% 61.7%
CloseTap 2202 414 2660 82.8% 84.2% 31 8 50 62.0% 79.5%
PutKettle 5075 1339 5981 84.9% 79.1% 66 6 100 66.0% 91.7%

BoilWater 19397 386 19609 98.9% 98.0% 45 2 50 90.0% 95.7%
GetTeabag 2387 409 2920 81.7% 85.4% 40 1 50 80.0% 97.6%

PutTeabagInCup 857 569 1510 56.8% 60.1% 20 19 50 40.0% 51.3%
PourWaterInCup 5446 845 7130 76.4% 86.6% 47 26 50 94.0% 64.4%

DipTeabag 7559 514 7940 95.2% 93.6% 50 29 50 100.0% 63.3%
DiscardTeabag 1506 451 2455 61.3% 77.0% 39 8 50 78.0% 83.0%

GetCup 1141 693 1805 63.2% 62.2% 24 8 50 48.0% 75.0%
SitDown 1823 356 2315 78.7% 83.7% 49 2 50 98.0% 96.1%

Sitting 1491 520 2600 57.3% 74.1% 46 0 50 92.0% 100.0%
Drink 4094 1068 4340 94.3% 79.3% 49 3 50 98.0% 94.2%

Colour Legend: % Good accuracy for action % Poor accuracy

Table 3. TEA sequence classification. Note that the four different Walk actions are analysed as one (same for GetKettle, PutKettle)

abagInCup reasonably well considering that its accuracy is
fundamentally flawed by its short duration and difficulty in
distinguishing it from the end of GetTeabag.

One caveat to note with the Sequence-Based method
is that the first and last action of each activity (Type for
PRINTER, Walk, Drink for TEA) have an artificially high ac-
curacy since one of their boundaries is the first or last frame
and thus that boundary’s segmentation is perfect by default.

7 Conclusions

The controlled use of missing data in the observation
vector of an HMM to facilitate action labelling presents
an elegant, trainable approach to automatically segmenting
an activity into its constituent actions without the need for
heuristic methods such as sliding windows or interrogat-
ing the Viterbi state sequence. This has the added benefit
of incorporating the sequence itself as a form of evidence,
markedly improving classification of sub-actions that are
visually similar but temporally distinct. Even though flat
HMMs are not ideal for modelling the hierarchical relation-
ship between activities and actions, the method is still able
to segment action boundaries accurately.
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