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Human Activity Classification with radar:

Optimization and Noise Robustness with Iterative

Convolutional Neural Networks followed with

Random Forests
Yier Lin, Student, IEEE, Julien Le Kernec, Senior Member, IEEE, Shufan Yang, Member, IEEE,

Francesco Fioranelli, Member, IEEE, Olivier Romain, Member, IEEE, and Zhiqin Zhao, Senior Member, IEEE.

Abstract—The accurate classification of activity patterns based
on radar signatures is still an open problem and is key to detect
anomalous behavior for security and health applications. This
paper presents a novel iterative convolutional neural networks
strategy with an autocorrelation pre-processing instead of the
traditional micro-Doppler image pre-processing to classify ac-
tivities or subjects accurately. The proposed strategy uses an
iterative deep learning framework for the automatic definition
and extraction of features. This is followed by a traditional
supervised learning classifier to label the different activities.
Using three human subjects and their real motion captured data,
twelve thousand radar signatures were simulated by varying
additive white Gaussian noise. Additionally, 6720 experimental
radar signatures were captured with a frequency-modulated
continuous radar at 5.8GHz with 400MHz of instantaneous
bandwidth from seven activities using one subject and 4800

signatures from five subjects while walking. The simulated and
experimental data were both used to validate our proposed
method. With SNR varying from −20 to 20dB with 88.74%

average accuracy at −10dB and 100% peak accuracy at 15dB.
The proposed Iterative Convolutional Neural Networks followed
with Random Forests (ICNNRF) does not only outperform the
feature-based methods using micro-Doppler images but also the
classification methods using other types of supervised classifiers
after our proposed iterative convolutional neural network.

Index Terms—Micro-Doppler, Deep Learning, Convolution
Neural Networks, Random Forests, Radar.

I. INTRODUCTION

W ITH increasing numbers of terror attacks and their

diversity, automating the detection and classification of

“normal activities”against anomalous behavior has never been

more important. Security systems for mass surveillance need

to be able to identify and learn what “normal ”behavior is, in

order to isolate anomalous behaviors or threats from a crowd of

people moving in an area or building [1, 2]. Therefore, first and

foremost, accurate classification of activities or individuals is

a key enabler. Although classification could be performed with
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video or images, for the sake of protecting privacy, cameras

are not allowed in many places, and furthermore might be sen-

sitive to lighting and weather conditions especially outdoors.

However, radar is an interesting sensing modality to investigate

as an alternative or complementary tool as it can operate night

and day and in all weather.

Classically, activities or individuals are distinguished with

methods based on micro-Doppler radar signatures. The relative

motion of structural components of an object/body generates

unique patterns in the time-frequency domain of the radar

returns. Therefore, different activities are generating uniquely

distinctive features in micro-Doppler signatures (mDs) - a.k.a.

spectrograms - that can be used for classification. An overview

of mDs is provided in [3, 4]. In general, features are extracted

from mDs, followed by supervised machine learning [5, 6].

This kind of technique relies on features that are either

formulaic (e.g. centroid, skewness) or handcrafted. The best

set of parameters for optimal classification accuracy is usually

determined by trial and error, and requires significant effort in

fine-tuning the values of the input features. When activities are

similar in nature like walk, fast walk and running, the classifier

will be faced with “confusers”that drastically reduce accuracy

and requires new strategies to deal with those.

Deep learning methods such as Convolutional Neural Net-

works (CNNs) [7-11] and Deep Belief Network (DBN) [12]

have recently revolutionized several applications using hi-

erarchical neural networks, and they have been shown to

significantly outperform previous state-of-the-art classifiers

relying on domain knowledge-based features. The aforemen-

tioned techniques rely on image pre-processing. Most of these

methods [7-9, 12] use the square pixel images directly as

inputs. mDs images do not always have the right dimensions,

so great care is needed in selecting which part of the mDs

image to use. A bad selection results in classification errors.

In [10, 11], a deep learning method obtained improved ac-

curacy by computing the sparse representation to extract the

most salient features. The source of errors is the Principal

Component Analysis of the gray-scale mDs image, resulting

in 90% classification accuracy for fall, sit, bend, and walk

shown in [11]. 90% accuracy is still too low and would

result in an unacceptable false alarm rate for practical in-field

applications. There is still scope for improvement in automatic

classification.
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In this article, a novel alternative approach for classification

of human activities which learns the features directly from the

AutoCorrelation Function (ACF) of the radar range informa-

tion. This contrasts with the classical approach of generating

and processing mDs images followed by feature extraction.

Our approach outperforms other state-of-the-art classification

techniques, especially when activities are very similar in nature

and are hardly distinguishable from each other to the human

eye or using traditional feature-based classification from mDs.

The proposed approach is a two-stage process initiated by an

iterative deep learning framework for feature definition and

extraction, followed by a traditional classifier. This method

bypasses the generation of mDs. Consequently, the trade-off

between time and frequency resolution can be avoided and

the loss of range information incurred when generating mDs.

The deep learning framework based on convolutional neural

networks (CNNs) uses the ACF as input from which it defines

and extracts features automatically. The CNNs output the

selected features it defined, and we will show in the following

sections that Random Forests (RF) classifier as second step

outperforms other considered classifiers. Furthermore, we will

test the robustness and optimization of the method against

other conventional classification strategies with respect to

signal-to-noise ratio, input size and epoch numbers.

In this paper, scalars will be denoted with lower case

symbols, e.g. x, whereas vectors will be denoted with bold

lower case letter, x. Matrices will be denoted with bold upper

case letter, X . Furthermore, ∗ will be utilized to denote

convolution operator, The notations ˆ and ¯ will be used to

denote the estimated operator and conjugate transpose operator

respectively.

The remainder of this paper is structured as follows. The

next section explains the theory and methodology applied for

classification. Section III introduces how the radar echoes for

human activities are simulated and the classification perfor-

mance against signal to noise ratio for different classification

strategies. In section IV, we apply the proposed method

on experimental radar data. The performances of ICNNRF

is tested against data input length and epoch numbers and

compared to other classification techniques accompanied with

discussions and plans for future work. Finally, conclusions are

drawn in Section V.

II. THEORY AND METHODS

Classically for classification problems in radar, the mDs -

a visual representation of the spectrum (usually in amplitude)

of the Doppler modulation as a function of time - displaying

the relative motion of structural components of an object/body.

These generate unique patterns in the time-frequency domain

of the radar returns. Research efforts have mainly been fo-

cused on learning features from mDs images directly for

classification; however, mDs mean a trade-off between time

and Doppler frequency resolutions and a loss of the range

information. To avoid information loss, we apply the ACF on

the range data directly and apply our proposed iterative CNNs

followed with Random Forest.

A. Theoretical development

The radar range information can be considered in of the

form

sig(t) = a(t) + σ(t), t = t0, · · · , tK−1, (1)

where t denotes the sample times, whereas K denotes the

number of available samples, and a(t)denotes the radar am-

plitude range data without the unrelated additive white Gaus-

sian noise (AWGN) σ(t). Considering (1), the ACF can be

expressed as (2).

ACF (sig(t)) = sig(t) ∗ sig(−t)

= a(t) ∗ a(−t) + a(t) ∗ σ(−t)

+ σ(t) ∗ a(−t) + σ(t) ∗ σ(−t)

= a(t) ∗ a(−t) + σ(t) ∗ σ(−t)

= ACF (a(t)) +ACF (σ(t))

. (2)

Assume that the total signal number is N . All the ACFs

can be re-arranged as shown in (3).

N∑

i=1

ACF (sigi(t)) =

N∑

i=1

ACF (ai(t)) +

N∑

i=1

ACF (σi(t)),

(3)

where sigi(t), ai(t), and σi(t) denote the range data with

AWGN, range data without AWGN and AWGN of ith sample

respectively.

To make the equations clearly understandable, we assume

that

sig =
∑N

i=1
ACF (sigi(t)), (4)

a =
∑N

i=1
ACF (ai(t)), (5)

σ =
∑N

i=1
ACF (σi(t)). (6)

Thus (3) can be rewritten as

sig = a+ σ ≈ a. (7)

To solve (7), the Lagrangian form can be defined as

min||sig − a||22 + λ1||a||
1
1. (8)

The first term in (8) measures the distance between signal

and model, and the second term enforces an overall sparsity

between diverse signals and thus the value of λ1 limits the

ACF number. The first term is a ℓ2-norm function, and the

second term is a ℓ1-norm function. Thus, the solution of (8) is

a convex optimization problem [13] as it is a sum of convex

functions.

Assume H(·) is an unknown convex feature mapping func-

tion, then (4) and (5) can be expressed as: and which yields

y = H(sig), (9)

x = H(a). (10)
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Fig. 1: Structure of the Iterative CNNs followed by a classifier to obtain class labels for an input size of 44× 44.

Considering (8-10), we need to solve

min||y − x||22 + λ||x||11, (11)

which is also a convex problem. To obtain a better solution,

weights A are added to the ℓ1-norm:

min||y − x||22 + λ||Ax||11. (12)

Assume that

W = Ax, (13)

(12) can be rewritten as:

min||y − x||22 + λ||W ||11. (14)

Equation (14) is a simple deep learning form [14], and a

fully connected feedforward CNNs method is applied to solve

it. In this sort of deep learning method, x represents the desired

output at the last layer, as well as y denotes the actual value

of the output at the last layer, while W denotes the network

weight, and λ denotes the scaling parameter of the ℓ1-norm

function.

B. Method

We propose utilizing LeNet-5 CNNs framework [15, 16]

with its “typical”parameters to solve (14), which has two

convolutional layers, two subsampling layers, and a fully-

connected layer. The CNNs have 5 × 5 kernels for the

convolutional layers with respectively 3 and 9 filters and a

scaling of 2 for the max-pooling layers. Assume the CNNs

input size is a B ×B matrix, a filter size of F × F (F < B),

L1 filters in the first convolutional layer and L2 filters in

the second. After the first convolution, the output matrix is

(B − F + 1) × (B − F + 1) × L1. The subsampling layer

reduces the matrix to B−F+1

2
× B−F+1

2
× L1 feature maps.

Through second convolution layer, the feature map is shrunk to

(B−F+1

2
−F+1)×(B−F+1

2
−F+1)×L2 followed by a max-

pooling layer resulting in
B−F+1

2
−F+1

2
×

B−F+1

2
−F+1

2
× L2

feature maps before the fully connected layer. The parameters

for each layer are show in Table I for varying input sizes. Note

that the optimization of the CNNs architecture, filter size and

numbers in different layers is beyond the scope of this article

and is a future research direction.

TABLE I: Feature Maps Parameters with Various CNNs Input

Size

Input Matrix C1 S1 C2 S2

44× 44× 1 40× 40× 3 20× 20× 3 16× 16× 9 8× 8× 9

40× 40× 1 36× 36× 3 18× 18× 3 14× 14× 9 7× 7× 9

36× 36× 1 32× 32× 3 16× 16× 3 12× 12× 9 6× 6× 9

32× 32× 1 28× 28× 3 14× 14× 3 10× 10× 9 5× 5× 9

28× 28× 1 24× 24× 3 12× 12× 3 8× 8× 9 4× 4× 9

24× 24× 1 20× 20× 3 10× 10× 3 6× 6× 9 3× 3× 9

20× 20× 1 16× 16× 3 8× 8× 3 4× 4× 9 2× 2× 9

16× 16× 1 12× 12× 3 6× 6× 3 2× 2× 9 1× 1× 9

C1: the first convolutional layer; C2: the second convolutional layer;
S1: the first subsampling layer; S2: the second subsampling layer.

The solution quality obtained from (14) will solely depend

on the CNNs. CNNs only accept square matrices as input.

Assuming a length of range radar data is K, the ACF size

is (2K − 1). Unfortunately, the ACF length is not always

equal to the square of a positive integer. Hence, a single
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CNNs processing is resulting in insufficient accuracy. To

solve this problem and improve the classification accuracy,

we designed an iterative CNNs framework classifier. Figure

1 shows a sample implementation of the iterative CNNs

framework classifier with 44 × 44 as the matrix input size.

The classification robustness of our iterative CNNs framework

classifier to varying input matrix sizes will be presented in

Section IV.

We first select the side length of the CNNs input matrices,

which must be a positive integer smaller than the square root

of the ACF length. The relation between the iteration number

and the side length of the CNNs input square matrices is shown

in (15).

2K − 1 = IterNum+ SideLen2, (15)

where IterNum denotes the iteration number, and SideLen

denotes the side length of the CNNs input square matrices.

We apply the CNNs to automatically define and extract

features. Different features represent the different outputs of

the CNNs from different ACF segments as shown in Fig.1.

The second step aims to classify diverse behaviors [17] and

can be formulated by (16).

z = G(x), (16)

where the function G(·) is unknown, with known (x, z) as the

training set. The vector z always denotes a class label vector,

and the vector x denotes the input features.

In classifying part, we compare several traditional classi-

fier methods. An ensemble learning method called Random

Forests (RF) [18] outperforms other methods and obtains the

best performances (e.g., accuracy, sensitivity, and specificity),

which is shown in the simulation and measurement part of

this paper. Hence, we suggest applying the RF as the final

classifier, which also has a weighted neighborhood scheme.

Since a forest averages the predictions of a set of m trees

with individual weight functions Wj , its predictions for unseen

samples x′ can be expressed as

ẑ =
1

m

m∑

j=1

N∑

i=1

Wj(xi, x
′)zi, (17)

where xi and zi come from a training set {(xi, zi)}
N
i=1.

This category of ensemble learning classifier constructs a

multitude of decision trees at training time and outputs the

class. RF are trained on different parts of the same training set

and result in a variance reduction and a boost in classification

performances.

Algorithm 1 summarizes our proposed ICNNRF in pseudo-

code.

III. SIMULATION SETUP AND NUMERICAL RESULTS

One of the objectives of this article is to investigate the

reliability of our algorithms by comparing accuracy of other

classification method with various signal-to-noise ratio. For

this, we need to generate simulated radar returns via motion

capture (MoCap) data. Because MoCap-based animations can

be used to simulate complex motions, many publications such

Algorithm 1 The ICNNRF algorithm

Require: sig, x, SideLen, N

1: for ii=1: N do

2: Obtain sig via (2);

3: end for

4: Obtain IterNum via (15);

5: for ii=1: IterNum do

6: InputCNNs=sig(:,ii:ii+SideLen2);

7: InputCNNs = reshape(InputCNNs’,SideLen,SideLen,N );

8: Obtain y by solving (14) via CNNs;

9: end for

10: Solve (16) via Random Forests.

as [19-23] make use of simulated radar returns via MoCap-

based data. Even though the accuracy of the MoCap data

cannot be guaranteed as some noise exists in positioning the

joints during motion as the markers are considered to be

affixed on a rigid structure where in fact they are fitted on

skin or clothing that stretch during movements. This being

said formulating equations of motion for complex motion

such as the Boulic model [24] for walking is very time

consuming and is a generalized model of walking. We believe

that variability in the performance of an action, noise and

different morphology will enhance the classification perfor-

mance by identifying common trends in the actions performed

by the individuals. The generalization is deported from the

formulation of equations of motion to the machine learning

algorithms. Furthermore, this gives us access to a wealth of

complex motions that would be near impossible to model

mathematically e.g. salsa dancing.

The simulations were checked manually to verify the quality

beforehand to avoid anomalies in motion and outliers. From

verified MoCap data, the noise in joint positioning is below

Fig. 2: The flowchart of how the CMU data and basic functions

are performed to get the simulated radar returns.
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the range resolution of the simulated radar (2cm) and therefore

does not affect the simulation result as the range is rounded to

the nearest integer multiple of the range resolution to simulate

radar returns.

The MoCap data in this paper comes from Carnegie Mellon

University (CMU) Motion Capture (MoCap) Database [25,

26] and the simulation process is illustrated in Fig. 2 that

we developed in [19, 20]. This method is used to assess the

performance for different configurations of our method and

other classic techniques and their robustness against noise.

In this flowchart, the simulation model is set up as shown

in Fig.3.

Fig.3: Human walk model along the positive direction of the

z-axis extracted based on Motion Capture data from Carnegie

Mellon University shown with a sample radar position with

respect to the target for simulation of micro-Doppler signatures

(θ = 78.7◦, φ = 0◦ ).

The maximum micro-Doppler shift in the radar echo can be

written as

{fd}max =
fcarrierv cos θ

c
, (18)

where {fd}max denotes the maximum Doppler shift, and

fcarrier denotes the carrier frequency of the radar, v and c

the target instantaneous motion velocity and speed of light

respectively, as well as θ and φdenotes the radar inclination

and rotation angles, which is illustrated in Fig.3.

The micro-Doppler shift can be expressed with respect to

the maximum micro-Doppler shift as

{fd} = {fd}max sin(2πfv + ψ), (19)

where {fd} denotes the Doppler shift, and fv denotes the

motion frequency of the body part, as well as ψ denotes the

initial phase.

Considering (18) and (19), the radar returns from the whole

body can be modeled as the sum of the contributions from the

different body parts (legs, arms, torso, etc.) as shown in (20).

q∑

p=1

fdp =

q∑

p=1

fcarriervp cos θp
c

sin(2πfvp + ψp), (20)

where q denotes the number of body parts considered to model

radar signatures, whereas vp and θp denote the instantaneous

motion velocity and radar inclination angle of the p-th parts

of the body respectively, and meanwhile fvp and ψp denote

the motion frequency and the initial phase of the p-th parts of

the body respectively.

By sampling contributions at various fixed instants in

time and integrating the radar cross section of the different

body parts, the micro-Doppler signature-spectrogram is re-

constructed one slice at a time, which is inspired by Victor.

C. Chen’s book [24]. However, the classical Boulic model

[27, 28] parameter is not used in this case, instead the

motion data is directly extracted from the CMU MoCap

Database [25] that recorded live human motions. The complex

movements and realistic physical interactions can be recreated

in a physically/anatomically accurate manner, such as sec-

ondary motions, weight and exchange of forces. This ensures

more realistic simulations. The Cartesian coordinate extraction

from ASF/AMC files from the database was produced via

the HDM05 ASF/AMC parser [26]. The radar has a pulse

repetition frequency (PRF) of 1kHz, a carrier frequency of

5.8GHz and[x = 0, y = 2, z = 10] meters for the radar

position as shown in Fig. 3 giving a velocity ambiguity of

±12.9m · s−1. The range resolution is 2cm in the simulation.

The simulation produces range data with the appropriate phase

delay for Doppler processing [1]. The details of the algorithm

can be found both in [19, 20, 24].

First, it is assessed using simulations from 3 activities,

including 2 kinds of walks (normal and fast with long strides)

and running. These activities are moving along the radar radial

line of sight as shown in Fig. 3. Fig. 4 illustrates the raw range

data (a, b and c), ACFs (d, e, and f), spectrograms (g, h, i)

of these activities showing snapshots of 1.008 seconds. The

subfigures from every column of the Fig. 4 originate from one

piece of simulated data. All these three kinds of raw range

data simulated from the CMU MoCap database, which are

numbered as subject#07(Trial#01), subject#08(Trial#01), and

subject#09(Trial#01) in the database.

The spectrograms are produced by employing a Short-Time

Fourier Transform (STFT) over the 128 frequency bins of the

raw range data accumulated over time. The STFT is executed

via the function (tfrstft.m) from the tftb toolbox [29] with a

Hamming window over the length of the signal.

In these subfigures, the MoCap data sampling frequency

is 120Hz, and therefore, it is interpolated to obtain 1kHz
to match the pulse repetition frequency used for the physical

radar setup in Section IV. This modality will ensure that our

proposed method can extract features autonomously and test

its robustness against noise.

From the spectrogram subfigures, discriminating between

walking and running can be done visually from the Doppler

bandwidth. This can be explained because the micro-Doppler

shift mean, maximum micro-Doppler shift and velocity fea-

tures (analytically extracted) are distinctive between walking

and running activities. However, it is harder to evaluate empir-

ically the difference between walking normally and walking

fast with long strides. For this reason, features will be extracted

from the radar data to perform automatic classification. It

should be noted that the features extracted in our proposed

method are derived from the ACF rather than the spectrogram.
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Fig. 4: Raw range data (a), ACF (d) and spectrogram (g) of walk with normal strides from the subject#07(Trial#01) in CMU

MoCap Database; raw data (b), ACF (e) and spectrogram (h) of fast walk with long strides from the subject#08(Trial#01)

in CMU MoCap Database; and raw data (c), ACF (f) and spectrogram (i) of the run from the subject#09(Trial#01) in CMU

MoCap Database, the radar was positioned as described in Fig. 3.

The frequency of original MoCap data is 120 Hz, and

the motion data is sliced into small sets of 1.008s - giving

121 samples per set. In general, the maximum micro-Doppler

frequency shift is produced by the foot swing when walking

and running in the radial direction. The resulting Doppler

bandwidth may span several hundred Hertz at 5.8GHz and

more with higher carrier frequencies. To fulfil the Nyquist-

Shannon theorem for the micro-Doppler signature, the sam-

pling frequency needs to be greater than twice the maxi-

mum Doppler frequency. Hence, the original MoCap data

at 120Hz is violating Shannon-Nyquist theorem and would

create aliasing in the Doppler domain, which would make

mDs analysis, rather complicated. To address this issue, the

MoCap data was interpolated to obtain a 1kHz sampling

frequency (±12.9m · s−1 in velovity with a carrier frequency

of 5.8GHz), matching the experimental Doppler sampling

frequency (see section IV). It should be noted that the features

used in our method are derived from the ACF rather than from

spectrograms, hence the careful analysis of the interpolation

effect on the spectrograms is not performed within the scope

of this paper.

After interpolation, each slice now has 1008 samples. 120

datasets data were recorded from three classes with subjects

07, 08, and 09 from the CMU Mocap database. In the 3

activities (normal walk, fast walk and run), the people move

along the positive direction of the z-axis, and the radar position

was set to [x = 0, y = 2, z = 10] meters to simulate

radar returns at 5.8GHz. From the MoCap data 120 radar

returns were generated, this is not large enough to evaluate

machine learning techniques. To generate a larger dataset, data

augmentation is applied, and 100 different AGWN were added

to the radar returns per signal noise ratio (SNR) levels. The

different AWGN led to different and independent samples,

a total of 12000 different data sets of radar signatures were

recorded finally per SNR levels.

To assess the performance of ICNNRF, the numerical results

were compared against other classification techniques. These

classification techniques can be separated into 3 strategies.

• feature-based classifiers from mDs.

• our iterative CNNs (ICNN) method followed by various

classifiers.

• a single CNNs with the ACF segments as input.

All the methods from the first strategy use the micro-

Doppler shift mean, maximum micro-Doppler shift and the

speed of walk or run as the specified features. The energy

threshold was set at 93% to calculate the maximum micro-

Doppler shift from the spectrogram. In the first and second

strategies, the studied classifiers are LDA, QDA, KNN(K =
3), Boosting (AdaBoostM2), Bagging, RF, SVM (kernel: 2-

order polynomial function with auto kernel scale, and its

box constraint is 1 with true standardization). In strategy 3,

the different ACF segments selection as the input for deep

learning can produce various CNNs accuracies. The mean and

maximum of the CNNs accuracies represent the average and

best CNNs accuracies respectively for the same ACF signal

with different segments selection. The accuracy performance

of various techniques is illustrated in Fig. 5. Thereinto, the

accuracies in Fig.5 is the average of the accuracies from the 3



7

-20 -15 -10 -5 0 5 10 15 20

SNR(dB)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u
ra

c
y

LDA

QDA

KNN

Bagging

Boosting

SVM

RF
CNNs_Mean

CNNs_Max

ICNNLDA

ICNNQDA

ICNNKNN

ICNNBagging

ICNNBoosting

ICNNSVM

ICNNRF
ICNNRF_Mean

Fig.5: Average classification accuracy of 10 loops of 3 activities (walk, fast walk and run) dependence on SNR of the considered

classification techniques. The ICNN and CNNs based methods extract features on their own while the others LDA, QDA, KNN

Bagging, Boosting, SVW and RF as standalone techniques use 3 features for classification (micro-Doppler shift mean, maximum

micro-Doppler shift and the speed of walk or run as the specified features). The radar echo is simulated by the all trials of the

subject#07, subject#08, and subject#09 in the CMU MoCap Database.

activities (walk, fast walk and run) using various classification

methods, which are all based on the average of 10 loops, i.e.

10 Monte Carlo Test result. The radar echo is simulated by

the all trials of the subject#07, subject#08, and subject#09 in

the CMU MoCap Database.

In Fig.5, the SNR levels were tested from −20 to 20dB. For

every SNR level, our ICNN strategy applied(p = 0.3) as the

holdout cross validation partition parameters. The training set

is selected randomly 70% (8400 samples) of the total sample

base (12000 samples) at a given SNR level to learn features,

and the test set is 30% (3600 samples) of the total samples.

The accuracy at a given SNR level is obtained by averaging

the performance via a 9-fold cross validation. For the other

strategies, the holdout cross validation (p=0.3) partition is

applied in the training and testing partition. All the final results

are the average of 10 loops.

Furthermore, based on LeNet-5 CNNs framework inspired

from Deep Learn Toolbox [16] which was described in Section

II, the same parameters were set to obtain the CNNs label and

ICNN features, which include learning rate, batch size, epoch

number, input size, and the details from 5-layer fully connected

feedforward CNNs framework. The learning rate parameter is

set to 1, the batch size is 120 and learning is running for

10 epochs. The sample (i.e., ACF) length is 2015(2K − 1),
because the 1.007-second of data has 1008 samples(K) after

interpolation. Herein, we select 44 × 44 as the input matrix

size for the deep learning, and by updating the matrix with

one new sample on every iteration 79 features are extracted

using the ICNN framework.

It is difficult to obtain the maximum accuracy of the CNNs

method because we do not know which segment of the

ACF signal can produce the best accuracy via CNNs. Hence,

the CNNs performance should mainly be the performance

displayed by the mean of the CNNs accuracy. In this article,

our ICNN strategy can be considered as a cascade of many

CNNs. Owing to (15), the whole ACF was used for the ICNN,

and thus all the information of the ACF can be gained via

the outputs of the ICNN. Our ICNN strategy outperforms

other strategies, because features from the other strategies are

incomplete, which is consistent with Fig. 5. The black-dashed

line in Fig. 5 demonstrates the average accuracy of ICNNRF

with SNR changing between −20 and 20dB. ICNNRF yielded

an average accuracy of 88.74% and peak accuracy of 100%

at −10 and 15dB respectively.

IV. MEASUREMENTS AND DISCUSSION

In this section, the data were collected using an off-the-shelf

frequency-modulated continuous wave (FMCW) radar system

in an indoor meeting room at the School of Engineering of the

University of Glasgow, where multiple pieces of furniture such

as chairs, tables, cupboards, blackboards, and computers were

present, as shown in Fig. 6 left. The radar Ancortek SDR-kit

580AD was operated at 5.8GHz, with an instantaneous band-

width of 400MHz (spatial resolution 37.5cm) and a chirp

duration of 1ms yielding an unambiguous Doppler frequency

range of ±500Hz(±12.9m · s−1),which was sufficient to

capture the whole human micro-Doppler signature for indoor

activities. The transmitted power of the radar was +19dBm,

and two linearly polarized Yagi antennas with a gain equal to

17dBi and beam width of 24◦ in azimuth and elevation were

used. The antennas were located at a height of approximately

1.2m to aim at the torso of the human subjects, which provided

the strongest contribution to the micro-Doppler signature. The

separation between the transmitter and receiver antennas was

approximately 40cm as shown in Fig. 6 right. The radar was in

a corner of the room to have good visibility of the area where
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Fig. 6: left) Simplified sketch of the laboratory in room 633 James Watt South Building in University of Glasgow; right)

example of radar setup in lab conditions as used to generate data for [20].

the human subjects were moving. In both cases in room 633

and [20], the radar set up was identical.

The experimental data collected from five volunteers and

seven different activities are analyzed. The subjects who took

part in the experiment included 3 male and 2 female volun-

teers, with body parameters such as height and weight ranging

from 160 − 185cm and 55 − 75kg respectively. The seven

activities were (I) walking; (II) moving arm faster towards

radar, slower away; (III) sitting and standing; (IV) circling arm

forwards; (V) clapping; (VI) bending to pick up an object and

standing back up; and (VII) moving arm slower towards radar,

faster away. The walks were performed from just in front of

the radar to 6 m, whereas the other movements were performed

on the spot at a distance of approximately 5 m from the radar

system.

In the first measurement in this paper, seven activities of

the same subject are analyzed to investigate the effect of the

input matrix size and epoch number on the performance of

our ICNN strategy. In the second experiment considered in this

paper, data from all seven subjects performing the same type of

walking are examined to assess the classification performance.

In Fig. 7, every row shows a different activity; each row

presents the range data, the ACF and the mDs for that specific

activity. Our ICNN method uses the ACF as input as opposed

to traditional feature-based classification using mDs. To assess
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Fig.7: From left to right) The measured range data, ACFs, and mDs of 7 activities, from top to bottom) (I) walking; (II) moving

arm faster towards radar, slower away; (III) sitting and standing; (IV) circling arm forwards; (V) clapping; (VI) bending to

pick up an object and standing back up; and (VII) moving arm slower towards radar, faster away.
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Fig.8:Average classification sensitivity performance of deep learning method based on various side lengths of input matrices

over 10 loops.

the classification performance of the ICNNRF, two tests were

performed activity and individual/person classifications.

Due to the application of a 4th order moving target indicator,

the number of range samples available goes down to 997

samples in length, and hence the ACF signal length is 1993.

The spectrogram generation function and parameters are the

same as those in Section III, i.e., Matlab function (tfrstft.m)

[29]. For the proposed strategy, the holdout cross-validation

(p = 0.3) partition is applied by selecting 70% of the data to

learn features, and then 9-fold cross-validation partitioning is

used for the for final training and testing. The final accuracy

is based on the average of every fold accuracy of 9-fold cross

validation partition. The confusion matrix is the summary

of every fold confusion matrices of 9-fold cross validation

partition. For the other strategy, the holdout cross-validation

(p = 0.3) partition is applied in selecting 70% of the total

samples for training and 30% of those for testing. The results

of all trials from both holdout and 9-fold cross validation

partitions are the average of 10 loops.

The sensitivity measures the proportion of positives that are

correctly identified. The equations of the metrics are described

in the appendix. The first objective of the measurement is

to investigate the input matrix size and epoch number effect

on the sensitivity performance of the ICNN strategy. Seven

different activities are measured. Every class has 960 samples,

and hence the total sample number is 6720. 4704 samples are

chosen as the training set to learn the features, while the other

2016 samples are tested by 9-fold cross-validation.

Figs. 8 shows that the different side lengths of input

matrices those are displayed in Table I, effect on the sensitivity

performance. Fig. 9 indicates the time it took the ICNN part

to learn the features. The batch size is 24 and the network

is trained over 25 epochs. The other parameters are the same

as for simulations. The time displayed in Fig. 9 is the time

required to train all the CNNs in the ICNN architecture. For

input size 44 × 44, the iteration number is 57 resulting in
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Fig.9: Elapsed time on ICNN training against input side length,

i.e. the time to train one CNNs multiplied by the number of

iterations.

8.9062 hours of training in total.

From the results, the larger CNNs input matrix, the better

CNNs maximum sensitivity (red dashed in Fig.8). Because we

do not know which segment of the ACF can produce the max-

imum sensitivity using CNNs, the mean CNNs sensitivity is a

significant parameter. Different input matrix sizes and feature

numbers produce different processing times. The processing

time is equal to the iteration number (i.e. feature number)

multiplied by processing time for each matrix. The matrix

processing time increases as the input matrix side length

increases, but the iteration number decreases with increased

matrix size since the ACF signal length is fixed. Hence, the

processing time shown in Fig. 9 does not vary monotonously.

The sensitivity of the proposed ICNNRF method is robust

against varying input matrix sizes changing between 16× 16
and 44 × 44 with different feature numbers and outperforms

the CNNs maximum sensitivity alone. In the following mea-

surements, an input side length of 44×44 is selected as it is the

best trade-off between classification performance and training

time to compare the different supervised learning classifiers

after the ICNN.

The effect of different epoch number on the performance
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Fig.10: Average classification sensitivity performance of deep learning methods based on the number of epochs over 10 loops.

TABLE II: The Average of Accuracies, Sensitivities and Specificities of 7 Activities from the same Subject

Method LDA QDA KNN(K=3) Bagging Boosting SVM RF

Sensitivity 0.3285 0.3905 0.5471 0.5264 0.3998 0.4644 0.5839
Accuracy 0.8081 0.8259 0.8706 0.8647 0.8285 0.8470 0.8811
Specificity 0.8881 0.8984 0.9245 0.9211 0.9000 0.9107 0.9306

Method ICNNLDA ICNNQDA ICNNKNN(K=3) ICNNBagging ICNNBoosting ICNNSVM ICNNRF

Sensitivity 0.8272 0.8145 0.7890 0.8911 0.8427 0.9286 0.9703
Accuracy 0.9506 0.9470 0.9397 0.9689 0.9551 0.9796 0.9915
Specificity 0.9712 0.9691 0.9648 0.9819 0.9738 0.9881 0.9951

Note: The parameters in the iterative CNNs strategy : Input Matrix size= 44× 44, EpochNum=25

TABLE III: The ICNNRF Confusion Matrix of 7 Activities from the same Subject

I II III IV V VI VII Class Name Sensitivity Accuracy Specificity

I 286 1 0 1 0 0 0 walking 0.9931 0.9960 0.9965
II 1 279 1 4 0 0 3 moving arm fast 0.9688 0.9891 0.9925
III 1 0 283 3 0 0 1 sitting and standing 0.9826 0.9945 0.9965
IV 1 1 3 276 2 3 2 circling arm 0.9583 0.9866 0.9913
V 1 1 2 0 283 0 1 clapping 0.9826 0.9960 0.9983
VI 1 1 0 2 0 283 1 bending 0.9826 0.9960 0.9983
VII 1 9 0 5 1 0 272 moving arm slower 0.9444 0.9881 0.9954

Note: Input Matrix size= 44× 44, EpochNum=25

is shown in Fig.10. The batch size is 24, and the other

parameters are the same as the simulations. It is apparent that

an increasing number of epochs yields improved sensitivity.

Furthermore, ICNNRF learns faster than other methods, reach-

ing better performances with fewer epochs. Table II presents

the mean accuracy, sensitivity, and specificity for different

classifiers; they are the average over from seven activities and

10 loops.

Table III displays the confusion matrix of the seven activi-

ties, the sensitivity, accuracy and specificity per activity using

ICNNRF. The activities II, IV and VII have a lower accuracy

than others, because they are all arm movements which are

very similar from the radar point of view. If the activities

were quite distinct then, the performances would be higher

but we made the classification challenging on purpose to test

the ICNNRF potential.

To evaluate the subject classification performance, five sub-

jects performing the same activity (normal walking forward

and backward) are measured. Every class has 960 samples,

and hence the total sample number is 4800. 3360 samples

are chosen as the training samples for training the unknown

features via (p = 0.3)holdout cross-validation, while the other

1440 samples are tested by 9 groups of 9-fold cross-validation.

In this case, the input matrix size of the deep learning is still

44× 44. The batch size is 24 and the network is trained over

25 epochs. The other parameters are the same as simulations.

Because the volunteers perform actions along the radar radial

line of sight with the fixed position, the inclination and rotation

angles (i.e., θ = 90◦ and φ = 0◦) are the same for all

activities. Hence, the small subject variations produced by

the aspect angles can be ignored as the target aspect angle

with respect to the radar does not vary as he/she moves

towards/away from the radar and the variability of trajectories

during the experiment was negligible. Table IV shows the

confusion matrix of the classification of 5 subjects and their

respective sensitivities, accuracies, specificities obtained by
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TABLE IV: The Confusion Matrix for the Classification of 5 Subjects Performing Normal Walking for ICNNRF and

Corresponding Accuracies, Sensitivities and Specificities for Each Subject Resulting from the Average of 10 Loops

Subject I Subject II Subject III Subject IV Subject V Sensitivity Accuracy Specificity

Subject I 280 3 4 1 0 0.9722 0.9868 0.9905
Subject II 6 280 1 1 0 0.9722 0.9882 0.9922
Subject III 5 3 278 2 0 0.9653 0.9889 0.9948
Subject IV 0 2 0 286 0 0.9931 0.9944 0.9948
Subject V 0 1 1 2 284 0.9861 0.9972 1.0000

Note: Input Matrix size= 44× 44, EpochNum=25

TABLE V: The Average Accuracies, Sensitivities and Specificities over 10 Loops of the Classification of 5 Subjects Performing

Normal Walking using Various Algorithms

Method LDA QDA KNN(K=3) Bagging Boosting SVM RF

Sensitivity 0.2806 0.3313 0.5162 0.5508 0.2833 0.3518 0.6374
Accuracy 0.7122 0.7325 0.8065 0.8203 0.7133 0.7407 0.8550
Specificity 0.8201 0.8328 0.8791 0.8208 0.8208 0.8380 0.9094

Method ICNNLDA ICNNQDA ICNNKNN(K=3) ICNNBagging ICNNBoosting ICNNSVM ICNNRF

Sensitivity 0.8874 0.8652 0.9102 0.9139 0.9267 0.9499 0.9778
Accuracy 0.9549 0.9461 0.9641 0.9656 0.9707 0.9800 0.9911
Specificity 0.9718 0.9663 0.9776 0.9785 0.9817 0.9875 0.9945

Note: The parameters in the iterative CNNs strategy : Input Matrix size= 44× 44, EpochNum=25

ICNNRF when they perform normal walking. Table V sum-

marizes the average accuracies, sensitivities, and specificities

of the classification of 5 subjects using different algorithms

averaged over 10 loops.

In this case, our ICNNRF still obtains the best accuracy

(99.11%), sensitivity (97.78%) and specificity (99.45%), and

the sensitivities of the feature-specified classifiers have a sen-

sitivity lower than 63.74% (Table V). This table demonstrates

that the proposed method has a strong ability to classify the

different subjects from the same activity.

V. CONCLUSION

In this paper, a novel ICNN strategy which uses range

data ACF to classify activities or subjects automatically and

accurately was presented. It is a two-stage algorithm that uses

first ICNN to extract features automatically without image pre-

processing or tuning of parameters, and then RF to perform

classification. The proposed algorithm does not generate spec-

trograms through the Short Time Fourier Transform but uses

directly the ACF of the complex range data as input to the

CNNs section of the processing chain.

The proposed algorithm is validated on both simulated and

experimental data. ICNNRF outperforms other methods on

accuracy and is shown to be more robust to varying SNR

levels over the simulated data set including 3 activities (walk,

fast walk and run) based on real motion data stored in the

CMU MoCap Database. Experimentally, even for 7 activities

from the same subject, or for the same activity walk from 5

subjects, ICNNRF outperforms the other considered classifica-

tion methods with 97.03% sensitivity for activity classification

and 97.78% for subject classification. The performance of

the ICNN strategy is better than that of the other alternative

strategies with incomplete features gained. Moreover, the ro-

bustness of ICNNRF method against varying input matrix size

changing between 16×16 and 44×44 has been demonstrated,

as well as its faster learning rate and improved performance

with increasing epochs. Hence, the proposed ICNNRF method

is more versatile, flexible and robust than CNNs alone as little

considerations need to be given to the selection of the signal

segment size for classification. The ICNNRF performance

surpasses that of the other ICNN plus classifier.

In this paper, we have studied the model reliability of our

proposed ICNNRF algorithm with respect to SNR, input size

and training time. The classification robustness is a very im-

portant to characterize, especially with respect to operational

parameters such as the aspect angle to the line of sight of

the radar and the range resolution. This will be performed in

future work along the line of the interesting paper [30] which

looks at robustness in simulation is studying the accuracy

performance dependence on transmit frequency, range and

Doppler resolution, antenna-target geometry, signal-to-noise

ratio, and dwell time. That work shows a gradual degradation

of performance from 0◦ to 90◦ aspect angle, however we

need to consider that the antenna beam width is directive and

that the energy received also decreases as the aspect angle

changes [8]. A more thorough investigation on the aspect angle

considering inclination and rotation is warranted in order to

gauge how it affects the choice of classifiers, features and

how different actions might be better classified with different

antenna placements in order to maximize classification perfor-

mance.

The influence of range measurement accuracy on performed

classification should be considered. In this paper, in simulation

we have used 2cm and 37.5cm in experiments obtaining over

99% accuracy in both cases. In [31], preliminary results on a

novel implementation of the radar return simulations for Wind

turbines shows richer information in the resulting spectrograms

using a simulation that emulates radar pulses to obtain multi-

domain information. Furthermore, in [32], two radar systems

a continuous wave (CW) radar operating in K-band and an

FMCW radar operating in C-band are used for the classifica-

tion of ten indoor human activities. The classification accuracy

of the CW radar was 10% lower than that of the FMCW

radar. This would indicate that varying range resolution (or

lack thereof) has an influence on classification accuracy and

richer information in spectrograms can enhance classification.
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However, further investigation is necessary to determine the

exact dependence on range resolution and confirm the initial

findings.
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APPENDIX A

STATISTICAL MEASURES OF THE PERFORMANCE

To analyze the performance of classification methods, 3

kinds of statistical measures is applying in this paper, including

the accuracy, sensitivity, and specificity [33, 34], which can be

expressed as

Accuracy =
TP + TN

TP + FP + FN + TN
, (21)

Sensitivity =
TP

TP + FN
, (22)

Specificity =
TN

FP + TN
, (23)

which yield

P = TP + FP , (24)

N = TN + FN, (25)

where P denotes the number of positive samples, and N

denotes the number of negative samples. TP denotes number

of true positive (labeled correctly). FP denotes number of

false positive, (other activity labeled as the activity under test

a.k.a false alarm). Furthermore, TN denotes number of true

negative, (correct rejection), and FN denotes number of false

negative (missed detections).

REFERENCES

[1] Chen,V. C., et al., “Micro-Doppler Effect in Radar: Phenomenon, Model,
and Simulation Study”, IEEE Trans. Aerosp. Electron. Syst., vol.42, no.1,
pp.221, 2006.

[2] Cippitelli, E., et al., “Radar and RGB-Depth Sensors for Fall Detection:
A Review”, IEEE Sensors J., no.17, vol.12, pp.3585-3604, 2017.

[3] Chen, V. C., et al., “Analysis of Radar Micro-Doppler Signature with
Time-Frequency Transform”, Proc. of the IEEE Workshop on Statistical

Signal and Array Processing (SSAP) , Pocono, PA, 2000, pp.463-466.
[4] Chen, V. C., et al., “Time-Frequency Transforms for Radar Imaging and

Signal Analysis”, Norwood, MA: Artech House, 2002.
[5] Fioranelli,F., et al., “Multistatic Human Micro-Doppler Classification of

Armed/Unarmed Personnel”, IET Radar, Sonar & Navigation, vol.9, no.7,
pp.857-865, 2015.

[6] Fioranelli, F., et al., “Performance Analysis of Centroid and SVD
Features for Personnel Recognition using Multistatic Micro-Doppler”,
IEEE Geosci. Remote Sens. Lett., vol.13, no.5, pp.725-729, 2016.

[7] Kim Y., et al., “Human Detection and Activity Classification Based on
Micro-Doppler Signatures Using Deep Convolutional Neural Networks”,
IEEE Geosci. Remote Sens. Lett., vol.13, no.1, pp.8-12, 2016.

[8] Kim, Y., et al., “Hand Gesture Recognition Using Micro-Doppler Signa-
tures with Convolutional Neural Network”, IEEE Access, vol.4, pp.7125-
7130, 2016.

[9] Kim, B. K., et al., “Drone Classification using Convolutional Neural
Networks with Merged Doppler Images”, IEEE Geosci. Remote Sens.

Lett., vol.14, no.1, pp.38-42, 2016.
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