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Abstract 

Background: The human activity monitoring technology is one of the most impor-

tant technologies for ambient assisted living, surveillance-based security, sport and 

fitness activities, healthcare of elderly people. The activity monitoring is performed in 

two steps: the acquisition of body signals and the classification of activities being per-

formed. This paper presents a low-cost wearable wireless system specifically designed 

to acquire surface electromyography (sEMG) and accelerometer signals for monitoring 

the human activity when performing sport and fitness activities, as well as in health-

care applications.

Results: The proposed system consists of several ultralight wireless sensing nodes that 

are able to acquire, process and efficiently transmit the motion-related (biological and 

accelerometer) body signals to one or more base stations through a 2.4 GHz radio link 

using an ad-hoc communication protocol designed on top of the IEEE 802.15.4 physi-

cal layer. A user interface software for viewing, recording, and analysing the data was 

implemented on a control personal computer that is connected through a USB link to 

the base stations. To demonstrate the capability of the system of detecting the user’s 

activity, data recorded from a few subjects were used to train and test an automatic 

classifier for recognizing the type of exercise being performed. The system was tested 

on four different exercises performed by three people, the automatic classifier achieved 

an overall accuracy of 85.7% combining the features extracted from acceleration and 

sEMG signals.

Conclusions: A low cost wireless system for the acquisition of sEMG and accelerom-

eter signals has been presented for healthcare and fitness applications. The system 

consists of wearable sensing nodes that wirelessly transmit the biological and acceler-

ometer signals to one or more base stations. The signals so acquired will be combined 

and processed in order to detect, monitor and recognize human activities.

Keywords: Human activity monitoring, Surface electromyography (sEMG), 

Accelerometer, Wearable system, Wireless sensor nodes, Healthcare, IEEE 802.15.4, USB
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Background

Wearable sensors, i.e. sensors that are positioned directly or indirectly on the human 

body, have become very popular in many application fields such as healthcare, sport, fit-

ness, entertainment, ambient assisted living, surveillance-based security, commerce [1].

�ey generate signals, e.g. electromyography (EMG), acceleration, electrocardiog-

raphy (ECG), photoplethysmography (PPG), temperature, that are extremely useful in 

providing accurate and reliable information on people’s activities and behaviors. With 

the progress of the signal processing techniques, more and more information has been 

derived from such biosignals [2–6].

�us, wearable sensors are revolutionizing our life, social interaction and activities in 

the same way that PCs have done in the last decades.

In recent years, advances in mobile electronics systems, sensor technologies, signal 

processing, as well as in communication network protocols have launched a new genera-

tion of healthcare systems. Telehealth and fitness monitoring are some examples of an 

area where integrative research and development in wearable/portable technology are 

performed. As a result, high-capacity, low-power, low-cost, miniature and lightweight 

sensors have been embedded into clothes, belts, shoes, sunglasses, smartwatches and 

smartphones, or positioned directly on the body in order to collect a large amount of 

data such as body position and movement, heart rate, muscle fatigue, and skin tempera-

ture [7, 8].

On the one hand, inertial measurement is the most commonly used method to evalu-

ate the physical activity as it allows to record variations in orientation and easily detect 

body movements. �us, many accelerometry-based wearable systems for the pervasive 

monitoring of activities of daily living (ADL) have been developed. When only one iner-

tial sensor is used to monitor and classify activities, the common location choices are 

the upper arm, the wrist, the waist, and the ankle [9–12]. Waist-located sensors capture 

major body motions, but algorithms using waist data can underestimate overall expend-

iture on activities where the waist movement is uncorrelated to the movement of the 

limbs, e.g. bicycling or arm ergometry. Similar considerations could be done for recent 

techniques based on smartwatch and smartphone data [13–16]. However, they are effec-

tive in monitoring and classifying activities that involve repetitive body motions, such as 

running, cycling, lifting weights, walking, climbing stairs [17].

�erefore, in order to better address the problem of detecting human activities, several 

techniques based on the placement of more accelerometer sensors across the body have 

been recently proposed [18, 19].

On the other hand, accurate estimation of biometric parameters when the subjects are 

performing various physical exercises, is often a challenging problem due to the pres-

ence of motion artifacts that corrupt the bioelectric signals recorded from subjects’ wrist 

or arm, such as the surface EMG (sEMG) ones [20]. Referring to this point, data derived 

from a triaxial accelerometer have been demonstrated to be very useful in reducing 

motion artifacts [21].

Lightweight wireless sensor devices can be comfortably worn during ADL (including 

sleep) for monitoring purposes. For elderly people they could be used for the detection 

of alarm conditions generated by unusual behaviours of the person (not getting up from 

bed, no activity during a defined time interval) or changes in routinely activities related 
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to psychomotor pathologies. For healthy people they could be used during sports activi-

ties, for counting exercise routines and repetitions in order to track a workout routine 

as well as determine the energy expenditure of individual movements. Indeed, mobile 

fitness coaching has involved topics ranging from quality of performing such sports 

actions to detection of the specific sports activity [22].

Recent works have demonstrated how the sEMG signal is very helpful in monitoring 

person’s body posture, physical performance, and fitness level [8, 22–26]. �is is due 

to the fact that it can be obtained using intrinsically noninvasive measurement devices 

and is relatively easy to acquire. Indeed, this signal being originated from the electrical 

potentials generated by contracting muscles [27, 28] can be collected simply by contact-

ing electrodes to the skin surface. It is worth to note that the relatively low amplitude of 

the sEMG signal requires a carefully designed, high-input-impedance, low-noise ampli-

fier for processing it before its recording [29]. �e useful bandwidth for the sEMG signal 

is typically below 500 Hz, but suffers from possibly severe motion-induced artifacts at 

frequencies below 5 Hz. �ese low-frequency artifacts must be rejected by the amplifier, 

otherwise the gain stages could saturate.

With the above considerations in mind, combining sEMG and accelerometer sensors 

in a single device allows to obtain all the necessary information for accurately examining 

muscle activity, force, fatigue, directionality and acceleration that are of essential impor-

tance in sports performance evaluation, injury prevention, rehabilitation, and human 

activity monitoring in general [30–35].

�is paper presents a low-cost flexible wireless sEMG system, called WiSE, that is able 

to acquire both sEMG and motion-related signals using ultralight (23 g) wearable wire-

less sensor nodes with a software-selectable bandwidth [36]. A photo displaying a set-

up of the system, composed by a control PC, a base station and four wearable sensing 

nodes, is shown in Fig. 1. A more detailed view of the internal blocks is also reported in 

Fig. 2. 

Fig. 1 WiSE system. A WiSE system showing one base station connected via USB to the control PC, and four 

wearable sensor nodes
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Fig. 2 WiSE system block diagram. A view of the three main WiSE system components highlighting the 

major internal functions
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�e sEMG/inertial sensing nodes are able to acquire, amplify, digitize, and transmit 

the signals to one or more base stations through a 2.4 GHz radio link using a custom-

made communication protocol designed on top of the IEEE 802.15.4 physical layer, in 

order to exploit existing low-cost and low-power transceivers but also to enable the pos-

sibility of higher throughput and better synchronization than the standard would have 

allowed. Additionally, the selectable bandwidth allows to easily configure the sensor 

nodes to capture and process further biological signals such as the ECG signal, as a pos-

sibly useful additional feature [37].

�e base station can be powered either by an external power supply or by its USB 

interface, and contains the RF transceiver for the wireless connection to the mobile 

nodes, a system for simultaneous charging of up to six mobiles nodes, and a 32 bit 

microcontroller for managing purposes.

A control PC, connected through a USB link to the base station(s), runs a user inter-

face software for viewing, recording, and analysing the data.

Table 1 shows a comparison between the key features of this system and those of sev-

eral recent research and commercial implementations.

In [5] a fully wireless, low cost sEMG acquisition system for prosthetic hand control 

has been presented. It is capable of acquiring, by using Otto-Bock 13E200 EMG elec-

trodes, up to 32 channels simultaneously, providing adequate bandwidth and signal res-

olution for complex gesture recognition and prosthetic control.

In [38] a wireless biosignal acquisition system, employing ZigBee wireless technol-

ogy, has been presented. It consists of two components: an intelligent electrode and a 

data acquisition host. �e active electrode amplifies biosignals such as EMG or ECG and 

streams the data at up to 2 kSps.

In [1] a wearable wireless low power sensor node which is able to support medical 

and health care applications is presented. �e node is capable of acquiring filtering and 

amplifying the ECG and the sEMG signals. �en a microcontroller acquires the data via 

the ADC, runs the respiration and heart rate algorithms and sends them to a host PC 

through Bluetooth in the EMG and 802.15.4 in the ECG acquisition mode with an over-

all power consumption of 169.3 mW and 100.7 mW, respectively. �e sample rate of the 

ADC was fixed at 256 Hz, and the host PC used a USB dongle with a coordinator with 

SimpliciTI protocol for the ECG and a Bluetooth dongle for the EMG transmission.

Table 1 Key feature comparison of the developed system with similar devices

Device Signals Power [mW] Size  [mm2] Weight [g] # Ch Sampling 
Freq. 
[kHz]

Brunelli et al. [5] sEMG 96 N.A. N.A. 1–32 N.A.

Kobayashi [38] sEMG/ECG 220 N.A. 12 ≤ 4 ≤ 2

Magno et al. [1] ECG/sEMG 169.3 N.A. N.A. 1 0.256

Yousefian et al. [39] sEMG 16.2 N.A. N.A. 1–2 2

BITalino [40] sEMG 13.2 754 2 1 N.A.

BTS FREEEMG [41] sEMG N.A. N.A. 13 20 1

KineMyo [42] sEMG N.A. N.A. 30 ≤ 12 1.5625

TRIGNO [43] sEMG 65 999 14 1 N.A.

This device sEMG/ECG/ temp./acc. 50 978 23 4 2
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In [39] the implementations of both one-channel and two-channel sEMG sensors 

with a low-cost MCU with 2  kHz sampling frequency and 12-bit precision have been 

proposed.

Finally, in [40–43] four commercial devices capable of acquiring only sEMG signals are 

also reported.

�is paper is organized as follows. After an overall description of the WiSE system, its 

main features are presented. In order to show how the proposed system could monitor 

human activity, some results related to the recognition of simple exercises are reported 

and discussed. Finally, some conclusions end this work.

System implementation

�e WiSE system is composed of the following main components:

•  Mobile nodes—these are the signal acquisition units with an embedded wireless 

transceiver.

•  Base station—a USB wireless receiver with integrated charger for the mobile nodes.

•  PC software—a user interface software with system diagnostic, signal live-view, 

recording and analysis capabilities.

�e mobile node consists of an active electromyography sensor, a 3-axes linear accel-

erometer, electrode contact impedance monitoring circuit, and a microcontroller 

with an integrated wireless transmitter used to digitize the signals and transmit them 

to the base station connected through a custom protocol. �e sEMG sensor, the heart 

of the system, includes a low-noise and programmable gain stage to adapt the signal 

acquisition chain to different muscles types. �e signal so amplified is then fed into 

a 10 bit ADC to be digitally transmitted. �e accelerometer also has selectable gain, 

with a full-scale sensitivity of either ±  4 or ±  12  g. Finally, a distributed software-

defined phase-locked-loop (PLL) was designed into the protocol to enable the pos-

sibility of synchronizing all the nodes to within a microsecond from the base station 

clock, enabling accurate multi-muscle signal acquisition. More details on the elec-

tronical implementation of the system and circuits can be found in [29].

�e base station is in charge of coordinating acquisition times and transmission 

time slots for all the dependent nodes. It is capable of receiving the signals from up to 

4 simultaneously active mobile nodes using only a single IEEE 802.15.4 radio channel, 

thanks to the high bandwidth efficiency of the custom-made radio protocol.

All of the node functionalities, as well as the base station’s, can be remotely moni-

tored and controlled from the same PC by means of a GPL-licensed software that 

provides full control of the WiSE system. �is software provides a user interface that 

enables real-time acquisition, recording and analysis of sEMG data and system diag-

nosis. It currently runs under Windows and both Linux x86 and x64 flavors, and pro-

vides the following functionalities:

•  Support of up to 4 base stations simultaneously connected to the PC and up to 4 

active sensors per base station
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•  Configuration of the mobile nodes for real-time signal acquisition (number of 

nodes, radio channel, gain)

•  Real-time display of acquired data on the PC monitor

•  Real-time diagnosis of nodes and base station status

•  Data storage in EDF/EDF+ format and plain text files for later processing

•  Off-line display of multiple saved tracks and annotations

•  Data analysis of stored tracks.

It is structured into three main panels, each one containing its own specific features.

1. Acquire: �is panel, shown in Fig. 3, allows the automatic start-up of the WiSE sys-

tem, enabling real-time capture and monitoring of the signal. �e PC is responsi-

ble for sending, via USB, the commands needed by the base station to wake up the 

requested nodes, normally in a deep stand-by mode, and to enable them to transmit 

the acquired data. When the start-up procedure is completed, usually in a few sec-

onds, the measurement starts, and the user can see the real-time traces of the cap-

tured signals on the main panel. It is also possible change the gain, number of traces, 

scale and type of signal to be displayed on-the-fly, and easily manage stored data and 

metadata. Different scenarios to categorize different measurement setups can also be 

created.

2. Analyze: In this panel, shown in Fig. 4, the analysis of the signals can be performed. 

�e chosen format for data storage is the European Data Format (EDF), which is 

a simple and flexible format for the exchange and storage of multichannel biologi-

cal and physical signals, commonly used also by many commercial devices. �is 

functionality is achieved using EDFbrowser and the associated library EDFlib [44]; 

together they provide a C/C++ open source, free and multiplatform framework 

containing functions for reading/writing and displaying data in EDF format.

Fig. 3 Acquire. Screenshot of acquire function of graphical interface
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 �is panel allows the user to open previously saved projects. �e signals can then be 

analyzed with several processing tools (filters, statistical analysis, ...) and the annota-

tions can be edited. For example, in the lower left pane as shown in Fig. 4, the sEMG 

spectrum can be seen.

3. Settings: �is panel, shown in Fig. 5, allows a complete diagnostic of the devices that 

compose the measurement system to be carried out. �e Settings panel contains a 

“nodes” section and a “base stations” section, so the user can easily select the specific 

device for which the real-time monitoring of the functional parameters is desired. 

Specifically, for remote nodes, the software provides several functions such as: charg-

ing control, reset, setting MAC addresses and RF channel.

Fig. 4 Analyze. Screenshot of analyze function of graphical interface

Fig. 5 Settings. Screenshot of settings function of graphical interface



Page 71 of 118Biagetti et al. BioMed Eng OnLine 2018, 17(Suppl 1):132

Methods

To demonstrate the effectiveness of the proposed system in detecting the type of 

exercise being performed by a subject, a simple experiment was set up. �ree sen-

sors were worn by the experimenter on the upper arm, as displayed in Fig.  6. �e 

electrodes were placed on the biceps brachii, deltoideus medius, and triceps brachii 

muscles by following, for their location and orientation, the SENIAM [45] recom-

mendations. �e sensor nodes, which contain the accelerometers, were also aligned 

along the arm direction, with their “Y” direction parallel to the muscle.

�e subjects involved in the experiment where all volunteers who gave their writ-

ten informed consent in participating in the experiment after having been instructed 

on the tasks to be performed. In particular, they where asked to perform, according 

to their fitness conditions, sets of between 10 to 12 repetitions of biceps curls, lateral 

raises, and vertical raises. In between the latter two, an isometric contraction was to 

be held for a few seconds. All the exercises were performed with a 3 kg dumbbell.

To better highlight the benefits of the combined approach, an automatic classifi-

cation experiment was also performed on the data so recorded. �e accelerometric 

signals and the sEMG signal were preprocessed independently to extract relevant fea-

tures as detailed next, then a KNN classifier was trained using data from two subjects 

participating in the experiment and tested on the other subjects.

Since the aim is differentiating amongst different motions of the upper arm, the rota-

tion vector was extracted for each node. To this end the accelerometric signals were first 

low-pass filtered with a cut-off frequency of 0.625 Hz. Let a(t) be one such filtered sig-

nal. From a(t) we estimate the acceleration due to gravity alone, ĝ , by averaging it when 

no movement occurs. �en the signal is sliced into overlapping windows an(t) each 8 s 

long. In each window the extrema of the movement are sought by finding the maxima of 

the function

Fig. 6 Recording setup. Photograph of the recording setup with the wireless electromyograph sensors worn 

on the upper right arm with their electrodes placed on the biceps brachii, deltoideus medius, and triceps brachii 

muscles
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where an(t) denotes the time average of an(t) . �e maxima of dn(t) are clustered in 

two groups corresponding to the endpoints of the movement, and their averages c1n , c
2
n 

are computed within these groups. �e groups are numbered so that c1n is the one cor-

responding to the rest condition, i.e., the one closest to the estimated ĝ . �e rotation 

vector rn is then defined as the normalized cross product between these two averages, 

multiplied by the angle between them, so that it is expressed in radians:

where α is found by solving the system

It can be noted that the value of k is irrelevant in solving the equations, anyway for sake 

of completeness 1/k = �c1n� �c2n�.

�e processing of the sEMG signal is more straightforward. First, the mean absolute 

value (MAV) is computed by low-pass filtering the absolute value of the sEMG signal 

with an identical cut-off frequency of 0.625  Hz. �e filtered signal is normalized by 

dividing it by its average. Let us call e(t) this signal. As before, e(t) is sliced in overlapping 

windows en(t) identical to those used for the accelerometric signals. For each window, 

let pn be the mean of the peak values of the signal en(t) . We take as features both the 

averaged en(t) and the peak-to-mean ratio rn = pn/en(t).

Finally, these features were tested with an automatic classifier, based on a KNN 

recognizer.

Results

For reference, the signals measured on one subject are shown in Figs. 7, 8, and 9.

Figure 10 shows the rotation vectors extracted from the signals previously reported. 

It is apparent that the rotation vector is indeed close to zero when the upper arm is still 

(during biceps curls, first segment, and isometric contractions, third segment), and is 

close to π/2 when lateral or vertical raises are performed.

Figure 11 shows such features for the same signals analyzed before. �e most prominent 

feature is the peak-to-mean ratio rn , denoted with stars. It is apparent that, for the isomet-

ric contraction, rn is very close to unity since the muscle is continuously held flexed, and 

only somewhat higher for exercises where the muscle never really reaches a rest condi-

tion, as in the biceps curls where the biceps brachii must always sustain the weight.

Confusion matrices from the experiment are reported in Tables 2, 3, and 4 using accel-

erometer-derived features alone, sEMG-derived features alone, and all of the features, 

respectively. Each row of these tables reports the classification results for each kind of 

exercise, labeled BC for biceps curls, LR for lateral raises, VR for vertical raises, and IM 

for the isometric contraction. Hence, the column labels represent the estimated exercise 

types, whilst the row labels are the true ones.

(1)dn(t) =

∥

∥an(t) − an(t)
∥

∥

(2)rn = α

c
1
n × c

2
n

∥

∥c1n × c2n

∥

∥

,

(3)

{

sin α = k
∥

∥c1n × c2n

∥

∥

cosα = k (c1n · c2n)
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Discussion

As can be seen, availability of the accelerometric signals greatly simplifies the task of 

detecting the various phases of the exercise, which are highlighted in different colors 

after having been manually segmented and labeled in Figs. 7, 8, and 9. �is would have 
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Fig. 7 Biceps brachii signals. Three-axis accelerometer signals (a) and sEMG signal (b) simultaneously 

acquired from the sensor applied to the biceps brachii during the exercise, consisting in 10 biceps curls, 11 

lateral raises, an isometric contraction, and 11 vertical raises
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been much harder to do on the sEMG signal alone, and acceleration information also 

helps discriminate between the concentric and eccentric phases, an important but 

complicated task if the sEMG is to be used to evaluate muscle fatigue [27]. Of course, 
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Fig. 8 Deltoideus medius signals. Three-axis accelerometer signals (a) and sEMG signal (b) simultaneously 

acquired from the sensor applied to the deltoideus medius during the exercise, consisting in 10 biceps curls, 

11 lateral raises, an isometric contraction, and 11 vertical raises
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Fig. 9 Triceps brachii signals. Three-axis accelerometer signals (a) and sEMG signal (b) simultaneously 

acquired from the sensor applied to the triceps brachii during the exercise, consisting in 10 biceps curls, 11 

lateral raises, an isometric contraction, and 11 vertical raises
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acceleration is not of much use in evaluating the isometric contraction (third segment, 

in purple), which, on the other hand, clearly stands out in the sEMG track relative to 

the biceps brachii muscle being exerted. It is thus apparent how the combination of the 

two types of sensors will help in achieving a more complete picture of the activity being 

performed.

Analyzing the confusion matrix reported in Table 2, it is clear that the accelerometer-

derived features alone cannot easily separate BCs from IMs, as in both cases the upper 

arm is supposed to stay still. �is produces a not-very-satisfying recognition overall 

accuracy of just 58.3%.

�ese two exercises are instead very well separated using sEMG features, as can be 

seen in Table 3. Still, the overall accuracy is only 69.1%, because sEMG alone cannot dis-

tinguish very well between LRs and VRs.

�e situation clearly improves combining the two feature types, as shown in Table 4. 

Some confusion is still present between lateral raises and vertical raises, as the muscles 

activation patterns are quite similar and so are the angles the accelerometer can meas-

ure, but the combination of the two features is a clear improvement. �e system can 
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Fig. 10 Acceleration-derived features. The components of the rotation vector extracted from accelerometric 

data from the sensors mounted on the different muscles



Page 77 of 118Biagetti et al. BioMed Eng OnLine 2018, 17(Suppl 1):132

achieve an overall accuracy of 85.7%, which, considering the somewhat meager training 

material used, can be considered a good result. We can only suppose that, by increasing 

the amount of training material, the accuracy will improve.
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Fig. 11 sEMG-derived features. Circles denote the MAV mean within the window, normalized with respect 

to the whole signal MAV mean, and is thus an index of the average contraction level of the muscle for the 

specific exercise. Stars denote the ratio between the mean of the peak values within the window and the 

window mean. It is an index of involvement of the muscle in performing the movement

Table 2 Recognition with accelerometer data

This table reports the confusion matrix resulting from a classifier trained and tested to only use features extracted from the 

accelerometers, with an overall accuracy of 58.3%

BC LR VR IM

BC 0 0 0 23

LR 0 26 0 0

VR 0 10 8 0

IM 2 0 0 15
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Conclusion

In this paper a wireless system for sEMG and accelerometer signal acquisition has 

been presented for healthcare and fitness applications. �e system consists of up to 

four base stations and several wearable sensing nodes that wirelessly transmit the bio-

logical and accelerometer signals to the base stations using a custom protocol based 

on IEEE 802.15.4 standard. Each base station, that can handle a number of wireless 

transmitters depending on the type of signal being acquired, is connected via USB 

to a control PC running a user interface software for data analysis and storage. �e 

custom protocol allowed a high data rate compared to similar devices using the same 

physical layer and a very precise synchronization, with microsecond resolution, 

between the different nodes connected to a base station. �e signals gathered from 

the sensor nodes can be combined and processed in order to detect, monitor and rec-

ognize the human activity being performed. �e experimental results demonstrated 

that combining the collection of motion and muscle detection data, and integrating 

their attributes gives a more comprehensive understanding of human activity.
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