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Abstract

In this paper, we present a novel approach of human

activity prediction. Human activity prediction is a proba-

bilistic process of inferring ongoing activities from videos

only containing onsets (i.e. the beginning part) of the activ-

ities. The goal is to enable early recognition of unfinished

activities as opposed to the after-the-fact classification of

completed activities. Activity prediction methodologies are

particularly necessary for surveillance systems which are

required to prevent crimes and dangerous activities from oc-

curring. We probabilistically formulate the activity predic-

tion problem, and introduce new methodologies designed

for the prediction. We represent an activity as an integral

histogram of spatio-temporal features, efficiently modeling

how feature distributions change over time. The new recog-

nition methodology named dynamic bag-of-words is devel-

oped, which considers sequential nature of human activities

while maintaining advantages of the bag-of-words to handle

noisy observations. Our experiments confirm that our ap-

proach reliably recognizes ongoing activities from stream-

ing videos with a high accuracy.

1. Introduction

Human activity recognition, an automated detection of

events performed by humans from video data, is an im-

portant computer vision problem. In the past 10 years, the

field of human activity recognition has grown dramatically,

corresponding to societal demands to construct various im-

portant applications including smart surveillance, quality-

of-life devices for elderly people, and human-computer in-

terfaces. Researchers are now graduating from recogniz-

ing simple human actions such as walking and running

[16, 4, 2, 10, 6], and the field is gradually moving towards

recognition of complex realistic human activities involving

multiple persons and objects [12, 17, 18].

Particularly, in the past 5 years, approaches utilizing

spatio-temporal features obtained successful results on ac-
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Figure 1. A comparison between the activity classification prob-

lem and the activity prediction problem. In contrast to the clas-

sification task, a system is required to infer the ongoing activity

before fully observing the activity video in the prediction task.

tivity recognition in real-world environments [16, 4, 10, 6,

12, 17]. Motivated by the success of scale-invariant local

patch features in object recognition, these approaches ex-

tract sparse local features from the 3-D XYT video volume

formed by concatenating image frames along time axis. The

bag-of-words paradigm that ignores locations of features

has been widely adopted by many approaches, successfully

classifying actions (e.g. videos in [16, 2]).

However, most of the existing activity recognition ap-

proaches are missing an important aspect of human activ-

ity analysis. Most previous researchers including those dis-

cussed focused only on the after-the-fact detection of hu-

man activities (i.e. classifying activities after fully observ-

ing the entire video sequence), making the approaches un-

suitable for the early detection of unfinished activities from

video streams. In many real-world scenarios, the system

is required to identify an intended activity of humans (e.g.

criminals) before they fully execute the activity. For ex-

ample, in a surveillance scenario, recognizing the fact that

certain objects are missing after they have been stolen may

not be meaningful. The system could be more useful if it

is able to prevent the theft and catch the thieves by predict-



ing the ongoing stealing activity as early as possible based

on live video observations. Similarly, if an autonomous ve-

hicle wants to avoid an accident, its vision system is re-

quired to predict the accident which is about to occur and

escape from it before any damage is caused. Even though

one may extend traditional sequential models such as hid-

den Markov models (HMMs) to roughly approximate the

prediction problem, they are unsuitable for modern high-

dimensional features which provide a sparse discontinuous

representation of the video. A development of a new ac-

tivity prediction methodology which is able to recognize an

ongoing (i.e. unfinished) activity from a video only contain-

ing early part of the activity (i.e. onsets) is necessary.

In this paper, we provide a formal definition of the activ-

ity prediction as an inference of the ongoing activity given

temporally incomplete observations (Figure 1). The focus

of this paper is the introduction of the paradigm of the ac-

tivity prediction and the presentation of new methodologies

designed for the prediction. Our objective is to enable the

construction of an intelligent system which will perform

early recognition from live video streams in real-time. We

formulate the prediction problem probabilistically, and dis-

cuss the novel methodologies to solve the problem by esti-

mating the activity’s ongoing status efficiently.

This paper introduces two new human activity predic-

tion methodologies which are able to cope with videos from

unfinished activities. These methods compute the poste-

rior probability of ‘which activity has progress to which

point of the activity’, based on the observations available

at the time. 3-D XYT spatio-temporal features strong to

noise, changing background, and scale changes are adopted.

We designed the activity prediction approach called integral

bag-of-words, modeling how feature distributions of activ-

ities change as observations increase. Integral histogram

representations of the activities are constructed from train-

ing videos. In addition, the new recognition methodology

named dynamic bag-of-words approach is developed, ex-

tending the prediction algorithm to consider the sequential

structure formed by video features. Structural similarities

between activity models and incomplete observations are

computed using our dynamic programming algorithm.

2. Previous works

Many researchers have studied human activity recogni-

tion since early 1990s [1].

As discussed in the introduction, approaches utilizing lo-

cal spatio-temporal features have been popularly studied in

the last 5 years [16, 4, 10, 6, 12, 17]. These features are

shown to be invariant to affine transformations and robust to

lighting changes, making the approaches following the bag-

of-words paradigm strong to noise and changing environ-

ments. The approaches were designed to perform after-the-

fact classification of activities, assuming that each video be-

ing tested contains a complete execution of a single known

activity. There also have been previous works attempted to

recognize activities based on video segments (e.g. a sin-

gle frame [9]), which may make decisions before fully ob-

serving the activities. However, even though they obtained

successful results on recognizing simple actions, they were

limited in recognizing more complex activities (e.g. inter-

actions in [13]) composed of similar body gestures.

On the other hands, previous recognition approaches us-

ing sequential state models (e.g. HMMs) [3, 8] displayed

an ability to infer the intermediate status of human actions.

For example, [3] modeled each human action as a sequence

of hidden states generating posture features per frame, in

order to enable early recognition of actions. The limitation

of the previous sequential approaches is that they were un-

suitable for the prediction of high-level activities with noisy

observations and concurrent movements. By their nature,

HMMs relied on per-frame body features of a human, and

thus had difficulties processing realistic videos with chang-

ing backgrounds, dynamic lighting conditions, multiple ac-

tors, and/or unrelated pedestrians.

Recognition approaches using hierarchically organized

models (e.g. stochastic context-free grammars [5]) were

able to process high-level human activities by recognizing

their sub-events. Particularly, Ryoo and Aggarwal’s sys-

tem representing human activities in terms of logical predi-

cates [15] was able to analyze the progress status of activi-

ties based on the sub-event detection results. However, they

were unable to make an appropriate analysis if human activ-

ities share similar sub-events (e.g. pointing vs. punching).

Recognizing complex activities at their early stage was dif-

ficult for the previous approaches.

An important contribution of this paper is the systematic

formulation of the concept of activity prediction, which has

not been studied in depth in previous research. This paper

presents novel methodologies that reliably identify unfin-

ished activities from video streams by analyzing their on-

sets. Our experiments confirm that our approach is able to

correctly predict ongoing activities even when the videos

containing less than the first half of the activity is provided,

in contrast to the previous systems.

3. Problem formulation

In this section, we probabilistically formulate the activity

prediction problem. We first present our probabilistic inter-

pretation of previous human activity classification problem

briefly. Next, we formulate the new problem of human ac-

tivity prediction, while contrasting it with the previous ac-

tivity classification problem.

3.1. Human activity classification

The goal of human activity classification is to categorize

the given videos (i.e. testing videos) into a limited number



of classes. Given a video observation O composed of im-

age frames from time 0 to t, the system is required to select

the activity label Ap which the system believes to be con-

tained in the video. Various classifiers including K nearest

neighbors (K-NNs) and support vector machines (SVMs)

have been popularly used in previous approaches. In ad-

dition, sliding windows techniques were often adopted to

apply activity classification algorithms for the localization

of activities from continuous video streams.

Probabilistically, the activity classification is defined as

a computation of the posterior probability of the activity Ap

given a video O with length t. In most cases, the video dura-

tion t is ignored, assuming it is independent to the activity:

P (Ap | O, t) = P (Ap, d
∗ | O)

=
P (O | Ap, d

∗)P (Ap, d
∗)∑

i P (O | Ai, d∗)P (Ai, d∗)

(1)

where d∗ is a variable describing the progress level of

the activity, which indicates that the activity is fully pro-

gressed. As a result, the activity class with the maximum

P (Ap, d
∗ | O) is chosen to be the activity of the video O.

The probabilistic formulation of activity classification

implies the classification problem assumes that each video

(either a training video or a testing video) provided to the

system contains a full execution of a single activity. That is,

it assumes the after-the-fact categorization of video obser-

vations rather than analyzing ongoing activities, and there

have been very few attempts to recognize unfinished activi-

ties.

3.2. Human activity prediction

The problem of human activity prediction is defined as

an inference of unfinished activities given temporally in-

complete videos. In contrast to the activity classification,

the system is required to make a decision on ‘which activ-

ity is occurring’ in the middle of the activity execution. In

activity prediction, there is no assumption that the ongoing

activity has been fully executed. The prediction method-

ologies must automatically estimate each activity’s progress

status that seems most probable based on the video observa-

tions, and decide which activity is most likely to be occur-

ring at the time. Most of the previous classification methods

are not directly applicable for this purpose, since they only

support the after-the-fact detections.

We probabilistically formulate the activity prediction

process as:

P (Ap | O, t) =
∑

d

P (Ap, d | O, t)

=

∑
d P (O | Ap, d)P (t | d)P (Ap, d)∑

i

∑
d P (O | Ai, d)P (t | d)P (Ai, d)

(2)
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Figure 2. Example 3-D spatio-temporal features (left) and visual

words (right) from a hand-shake video. Features grouped into an

identical visual word are described with the same color.

where d is a variable describing the progress level of the ac-

tivity Ap. For example, d = 50 indicates that the activity Ap

has been progressed from the 0th frame to the 50th frame

of its representation. That is, it describes that the activity

prediction process must consider various possible progress

statuses of the activities for all 0 ≤ d ≤ d∗. P (t|d) repre-

sents the similarity between the length of the observation t

and that of the activity progress d.

The key of the activity prediction problem is the ac-

curate and efficient computation of the likelihood value

P (O|Ap, d), which measures the similarity between the

video observation and the activity Ap having the progress

level of d. A brute force method of solving the activity pre-

diction problem is to construct multiple probabilistic clas-

sifiers (e.g. probabilistic SVMs) for all possible values of

Ap and d. However, training and maintaining hundreds of

classifiers to cover all progress level d (e.g. 300 SVMs per

activity if the activity takes 10 seconds in 30 fps) requires a

significant amount of computational costs. Furthermore, the

brute force construction of independent classifiers ignores

sequential relations among the likelihood values, making

the development of robust and efficient activity prediction

methodologies necessary.

4. Prediction using integral bag-of-words

In this section, we present our human activity prediction

methodology named integral bag-of-words. The major dif-

ference between the approach introduced in this section and

the previous approaches is that our approach is designed

to efficiently analyze the status of ongoing activities from

video streams. In Subsection 4.1, we first discuss the video

features used. Next, our new probabilistic activity predic-

tion methodology is presented in Subsection 4.2.

4.1. Features and visual words

Our approach takes advantage of 3-D space-time local

features to predict human activities. A spatio-temporal fea-

ture extractor (e.g. [16, 4]) detects interest points with

salient motion changes from a video, providing descriptors

that represent local movements occurring in a video. The

feature extractor first converts a video into the 3-D XYT



volume formed by concatenating image frames along time

axis, and locates 3-D volume patches with salient motion

changes. A descriptor is computed for each local patch by

summarizing gradients inside the patch.

Once local features are extracted, our method clusters

them into multiple representative types based on their ap-

pearance (i.e. feature vector values). These types are called

‘visual words’, which essentially are clusters of features.

We use k-means clustering algorithm to form visual words

from features extracted from sample videos. As a result,

each detected feature in a video belongs to one of the k vi-

sual words. Figure 2 shows example features and words.

4.2. Integral bag­of­words

Integral bag-of-words is a probabilistic activity predic-

tion approach that constructs integral histograms to repre-

sent human activities. In order to predict the ongoing activ-

ity given a video observation O of length t, the system is

required to compute the likelihood P (O|Ap, d) for all pos-

sible progress level d of the activity Ap. What we present in

this subsection is an efficient methodology to compute the

activity likelihoods by modeling each activity as an integral

histogram of visual words.

Our integral bag-of-words method is a histogram-based

approach, which probabilistically infers ongoing activities

by computing the likelihood P (O|Ap, d) based on feature

histograms. The idea is to measure the similarity between

the video O and the activity model (Ap, d) by comparing

their histogram representations. The advantage of the his-

togram representation is that it is able to handle noisy ob-

servations with varying scales. For all possible (Ap, d), our

approach computes the histogram of the activity, and com-

pares them with the histogram of the testing video.

A feature histogram is a set of k histogram bins, where

k is the number of visual words (i.e. feature types). Given

an observation video, each histogram bin counts the num-

ber of extracted features with the same type, ignoring their

spatio-temporal locations. The histogram representation of

an activity model (Ap, d) is computed by averaging the fea-

ture histograms of training videos while discarding features

observed after the time frame d. That is, each histogram bin

of the activity model (Ap, d) describes the expected number

of corresponding visual word’s occurrences, which will be

observed if the activity Ap has progress to the frame d.

In order to enable the efficient computation of likeli-

hoods for any (Ap, d) using histograms, we model each ac-

tivity by constructing its integral histogram. Formally, an

integral histogram of a video is defined as a sequence of fea-

ture histograms, H(Ol) = [h1(Ol), h2(Ol), ..., h|H|(Ol)],
where |H| is the number of frames of the activity video Ol.

Let vw denote the wth visual word. Then, a value of the wth

histogram bin of each histogram hd(Ol) is computed as:

hd(Ol)[w] = |{f | f ∈ vw ∧ tf < d}| (3)

t = 1 

Observed video O: 

Integral histogram H: 

t = 17 t = 24 t = 31 t = 35 t = 42 t = 53 

Figure 3. An example integral histogram representing a kicking

video. An integral histogram models how histogram distribution

changes over time. Each histogram bin counts the number of fea-

tures grouped into its visual word.

where f is a feature extracted from the video Ol and tf is

its temporal location. That is, each element hd(Ol) of the

integral histogram H(Ol) describes the histogram distribu-

tion of spatio-temporal features whose temporal locations

are less than d. Our integral histogram can be viewed as a

temporal version of the spatial integral histogram [11].

Figure 3 shows an example integral histogram. Essen-

tially, an integral histogram is a function of time describ-

ing how histogram values change as the observation dura-

tion increases. The integral histograms are computed for all

training videos of the activity, and their mean integral his-

togram is used as a representation of the activity. The idea is

to keep track of changes in the visual words being observed

as the activity progress.

The constructed integral histograms enable us the pre-

diction of human activities. Modeling integral histograms

of activities with Gaussian distributions having a uniform

variance, the problem of predicting the most probable ac-

tivity A∗ is enumerated from Equation (2) as follows:

A∗ = argmax
p

∑

d

P (Ap, d | O, t)

= argmax
p

∑
d M(hd(O), hd(Ap))P (t | d)∑

i

∑
d M(hd(O), hd(Ai))P (t | d)

(4)

where

M(hd(O), hd(Ai)) =
1√
2πσ2

e
−(hd(O)−hd(Ai))

2

2σ2 . (5)

Here, H(Ai) is the integral histogram of the activity Ai,

and H(O) is the integral histogram of the video O. An

equal prior probability among activities is assumed, and σ2

describes the uniform variance.

The proposed method is able to compute the activity

likelihood for all d with O(k · d∗) computations given the

integral histogram of the activity. The time complexity

of the integral histogram construction for each activity is



O(m·log m+k ·d∗) where m is the number of total features

in training videos of the activity. That is, our approach re-

quires significantly less amount of computations compared

to the brute force method of applying previous classifiers.

For instance, the brute force method of training SVMs for

all d takes O(n ·k ·d∗ ·r) computations where n is the num-

ber of training videos of the activity and r is the number of

iterations to train a SVM.

5. Prediction using dynamic bag-of-words

In this section, we present a novel activity recognition

methodology, dynamic bag-of-words, which predicts hu-

man activities from onset videos using a sequential match-

ing algorithm. The integral bag-of-words presented in the

previous section is able to perform an activity prediction by

analyzing ongoing status of activities, but it ignores tempo-

ral relations among extracted features. In Subsection 5.1,

we introduce a new concept of dynamic bag-of-words that

considers human activities’ sequential structures for the pre-

diction. Subsection 5.2 presents our dynamic programming

implementation to predict ongoing activities from videos.

5.1. Dynamic bag­of­words

Our dynamic bag-of-words is a new activity recogni-

tion approach that considers the sequential nature of hu-

man activities, while maintaining the bag-of-words’ ad-

vantages to handle noisy observation. An activity video

is a sequence of images describing human postures, and

its recognition must consider the sequential structure dis-

played by extracted spatio-temporal features. The dynamic

bag-of-words method follows our prediction formulation

(i.e. Equation (2)), measuring the posterior probability of

the given video observation generated by the learned activ-

ity model. Its advantage is that the likelihood probability,

P (O|Ap, d), is now computed to consider the activities’ se-

quential structures.

Let ∆d be a sub-interval of the activity model (i.e. Ap)

that ends with d, and let ∆t be a sub-interval of the observed

video (i.e. O) that ends with t. In addition, let us denote

the observed video O more specifically as Ot, indicating

that O is obtained from frames 0 to t. Then, the likelihood

between the activity model and the observed video can be

enumerated as:

P (Ot | Ap, d) =
∑

∆t

∑

∆d

[P (Ot−∆t | Ap, d−∆d)

P (O∆t | Ap,∆d)]

(6)

where O∆t corresponds to the observations obtained during

the time interval of ∆t, and Ot−∆t corresponds to those

obtained during the interval t−∆t.

The idea is to take advantage of the likelihood computed

for the previous observations (i.e. P (Ot−∆t | Ap, d−∆d))
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Figure 4. The matching process of our dynamic bag-of-words.

to update the likelihood of the entire observations (i.e.

P (Ot|Ap, d)). This incremental likelihood computation not

only enables efficient activity prediction for increasing ob-

servations, but also poses a temporal constraint that obser-

vations must match the activity model sequentially.

Essentially, the above-mentioned recursive equation is

dividing the activity progress time interval d into a set

of sub-intervals D = {∆d1,∆d2, ...,∆dq} with varying

lengths and the observed video O into a set of sub-intervals

T = {∆t1,∆t2, ...,∆tq}. The likelihood is being com-

puted by matching the q pairs of sub-intervals (∆dj ,∆tj).
That is, the method searches for the optimal D and T that

maximize the overall likelihood between two sequences,

which is measured by computing similarity between each

(∆dj ,∆tj) pair. Figure 4 illustrates such process.

The motivation is to divide the activity model and the

observed sequence into multiple segments to find the struc-

tural similarity between them. Notice that the duration

of the activity model segment (i.e. ∆d) to match the

new observation segment (i.e. O∆t) is dynamically se-

lected, finding the best-matching segment pairs to com-

pute their similarity distance recursively. The segment

likelihood, P (O∆t|Ap,∆d), is computed by comparing

their histogram representations. That is, the bag-of-words

paradigm is applied for matching the interval segments,

while the segments themselves are sequentially organized

based on our recursive activity prediction formulation.

Video segment matching using integral histograms. Our

dynamic bag-of-words method takes advantage of integral

histograms for computing the similarity between interval

segments (i.e. P (O∆t|A,∆d)). Integral histograms enable

efficient constructions of the histogram of the activity seg-

ment ∆d and that of the video segment ∆t for any possible

(∆d,∆t). Let [a, b] be the time interval of ∆d. The his-

togram corresponding to ∆d is computed as:

h∆d(Ap) = hb(Ap)− ha(Ap) (7)

where H(Ap) is the integral histogram of the activity Ap.

Similarly, the histogram of ∆t is computed based on the

integral histogram H(O), providing us h∆t(O).



Using the integral histograms, the likelihood probability

computation of our dynamic bag-of-words is described with

the following recursive equation. Similar to the case of in-

tegral bag-of-words method, the feature histograms of the

activities are modeled with Gaussian distributions.

Fp(t, d) =
∑

∆t

∑

∆d

[Fp(t−∆t, d−∆d)·

M (h∆t(O), h∆d(Ap))]

(8)

where Fp(t, d) is equivalent to P (Ot | Ap, d).

5.2. Dynamic programming algorithm

In this subsection, we present a dynamic programming

implementation of our dynamic bag-of-words method to

find the ongoing activity from the given video. We con-

struct the maximum a posteriori (MAP) classifier of decid-

ing which activity is mostly likely to be occurring.

Given the observation video O with length t, the activity

prediction problem of finding the most probable ongoing

activity A∗ is expressed as follows:

A∗ = argmax
p

∑
d Fp(t, d)P (t | d)P (Ap, d)∑

i

∑
d Fi(t, d)P (t | d)P (Ai, d)

. (9)

That is, in order to predict the ongoing activity given an

observation Ot, the system is required to calculate the like-

lihood Fp(t, d) (i.e. Equation (8)) recursively for all activity

progress status d.

However, even with integral histograms, brute force

searching of all possible combination of (∆t,∆d) for a

given video of length t requires O(k · (d∗)2 · t2) compu-

tations: In order to find A∗ at each time step t, the system

must compute Fp(t, d) for d∗ number of possible d. Fur-

thermore, computation of each Fp(t, d) requires the sum-

mation of Fp values of all possible combination of ∆t and

∆d, as we described in Equation (8).

In order to make the prediction process computation-

ally tractable, we design an algorithm that approximates the

likelihood Fp(t, d) by making its ∆t to have a fixed dura-

tion. The image frames of the observed video are divided

into several segments with a fixed duration (e.g. 1 second),

and they are matched with the activity segments dynami-

cally. Let u be the variable describing the unit time duration.

Then, the activity prediction likelihood is approximated as:

F ′
p(u, d) = max

∆d
F ′
p(u− 1, d−∆d)M(hũ(O), h∆d(Ap))

(10)

where ũ is a unit time interval between u− 1 and u.

Our algorithm sequentially computes F ′
p(u, d) for all u.

At each iteration of u, the system searches for the best-

matching segment ∆d for ũ that maximizes the function F ′,

as described in Equation (10). Essentially, our method in-

terprets a video as a sequence of ordered sub-intervals (i.e.
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Figure 5. A figure illustrating the process of our dynamic program-

ming algorithm. The algorithm iteratively fills in the array to ob-

tain the optimum likelihood.

ũ) where each of them is represented with a histogram of

features in it. As a result, F ′
p(u, d) provides us an efficient

approximation of the activity prediction likelihood, measur-

ing how probable the observation O is generated from the

activity (i.e. Ap) progressed to the dth frame.

A traditional dynamic programming algorithm that cor-

responds to the above recursive equation is designed to cal-

culate the likelihood. The goal is to search for the optimum

activity model divisions (i.e. ∆d) that best describes the

observation, matching them with the observation stage-by-

stage. Figure 5 illustrates the process of our dynamic pro-

gramming algorithm to compute the likelihood of the ongo-

ing activity from an incomplete video. The time complexity

of the algorithm is O(k · (d∗)2) for each time step u, which

is in general much smaller than t.

6. Experiments

In this section, we implement and evaluate our human

activity prediction methodologies while comparing them

with other previous classification works. The methods’ abil-

ity to perform early detection of activities is tested with the

public video dataset containing high-level multi-person in-

teractions. We confirm the advantages of our approaches on

inferring ongoing activities at their early stage.

6.1. Dataset

For our experiments, we used the segmented version

of the UT-Interaction dataset [13] containing videos of six

types of human activities: hand-shaking, hugging, kick-

ing, pointing, punching, and pushing. The UT-Interaction

dataset is a public video dataset containing high-level hu-

man activities of multiple actors. The dataset is composed

of two different sets with different environments (Figure

6), containing a total of 120 videos of six types of human-

human interactions. Each set is composed of 10 sequences,

and each sequence contains one execution per activity. The

videos involve camera jitter and/or background movements

(e.g. trees). Several pedestrians are present in the videos



Snapshot from the UT-Interaction set #1 Snapshot from the UT-Interaction set #2 

Figure 6. Example snapshots from the UT-Interaction dataset.

as well, preventing the recognition. The UT-Interaction

dataset was used for the human activity recognition con-

test (SDHA 2010) [14], and it has been tested by several

state-of-the-art methods [17, 18, 19].

We chose a dataset composed of complex activities hav-

ing sufficient temporal durations, instead of testing our sys-

tem with videos of periodic and instantaneous actions. Even

though the KTH dataset [16] and the Weizmann dataset [2]

have been popularly used for the action classification in pre-

vious works, they were inappropriate for our experiments:

Their videos are composed of short periodic movements

which only require few frames (e.g. a single frame [9]) to

perform a reliable recognition.

6.2. Experimental settings

We implemented two human activity prediction systems

based on the two methods presented in this paper: the in-

tegral bag-of-words (BoW) method and the dynamic BoW

method. We adopted the cuboid feature descriptors [4] as

spatio-temporal features used by the systems. In principle,

our proposed approaches are able to cope with any spatio-

temporal feature extractors as long as they provide XYT lo-

cations of the features being detected. Extracted features

were then clustered into 800 visual words (i.e. k = 800),

and integral histograms were constructed.

In addition, we implemented several previous human ac-

tivity classification approaches to compare them with our

methods. Four types of previous classifiers using the same

features (i.e. cuboid features) were implemented: We im-

plemented (i) a brute-force prediction approach of con-

structing SVMs for all progress levels (BP-SVMs) [7] and

(ii) a basic voting-based approach that casts a probabilistic

vote for each spatio-temporal feature. In addition, in order

to show the limitation of the previous classification frame-

work, we implemented (iii) Bayesian classifiers with Gaus-

sian models and (iv) standard SVMs, which are designed to

classify videos assuming that they contain full activity exe-

cutions. The testing was performed by applying the learned

classifiers to the videos containing ongoing activities.

Throughout our experiments, the leave-one-sequence-

out cross validation setting was used to measure the per-

formances of the systems. There are 10 sequences (each se-

quence contains 6 videos) for each UT-Interaction dataset,
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Figure 7. Activity recognition performances with respect to the

observed ratio, tested with the UT-Interaction dataset #1 (top)

and #2 (bottom). A higher graph suggests that the corresponding

method is able to recognize activities more accurately and earlier

than the ones below it. Our dynamic BoW showed the best per-

formance by considering sequential relations among the feature

points. BP-SVMs, which require a large amount of computations,

also showed a fair performance. However, it generated inferior re-

sults particularly when making early decision. We are also able

to observe that the per-feature-voting approach is able to recog-

nize human activities at relatively early stage than the other basic

classifiers (e.g. SVMs), but it display worse performances overall

because of the characteristics of the activities in the UT-Interaction

dataset (i.e. they share many gestures, generating similar features).

and thus 10-fold cross validation is performed. That is, for

each round, videos in one sequence was selected as the test-

ing videos, and videos in the other sequences were used for

the training. Integral histograms were constructed from the

training videos to recognize activities in the testing videos.

This testing/training video selection process was repeated

for 10 rounds, measuring the average recognition accuracy.

6.3. Results

In order to test the systems’ ability to predict ongoing

activities at their earlier stage, we measured the systems’

recognition performances for classifying videos of incom-

plete activity executions. The experiments were conducted

with 10 different observation ratio settings, from 0.1 to 1.



Let c denote the length of an original video containing a

fully executed activity. Then, the setting with an observed

ratio of x indicates that the video provided to the system is

formulated by segmenting the initial x ·c frames of the orig-

inal video. For example, the systems’ performances at ob-

served ratio 0.5 describe the classification accuracies given

testing videos only having the first halves of the activities.

The observed ratio of 1 indicates that all testing videos con-

tain full executions of the activities, making the problem a

conventional activity classification problem.

Figure 7 illustrates the performance curves of the imple-

mented systems. Its X axis corresponds to the observed ra-

tio of the testing videos, while the Y axis corresponds to the

activity recognition accuracy of the system. We have av-

eraged the systems’ performances for 20 runs, considering

that the visual word clustering contains randomness.

The figure confirms that the proposed methods are able

to recognize ongoing activities at earlier stage of the activi-

ties, compared to the previous approaches. For example, in

dataset #1, the dynamic BoW is able to make a prediction

with the accuracy of 0.7 after observing only first 60% of

the testing video, while the BP-SVMs must observe the first

82% to obtain the same accuracy. In addition, our integral

BoW and dynamic BoW are computationally more efficient

than the previous brute-force approaches (e.g. BP-SVMs).

The time complexity to construct activity models in our two

methods is O(m · log m+k ·d∗) while that of the BP-SVMs

is O(n · k · d∗ · r), as discussed in Subsection 4.2.

Table 1 compares the classification accuracies measured

with the UT-Interaction #1. Each accuracy in the table can

be viewed as the highest performance one can get using the

method with the optimum parameters and visual words. To-

gether with the classification accuracies given videos con-

taining full activity executions, the table lists the prediction

accuracies measured with the videos of the observed ratio

0.5. We are able to observe that our approaches perform

superior to the previous methods given the videos with the

observed ratio 0.5, confirming that they predict ongoing ac-

tivities earlier. In the traditional classification task (i.e. full

videos), our approach performed comparable to the state-

of-the-arts results.

Our algorithms run in real-time with our unoptimized

C++ implementation, except for the adopted feature extrac-

tion component. That is, if appropriate features are pro-

vided to our system in real-time, the system is able to ana-

lyze input videos and predict ongoing activities in real-time.

7. Conclusion

In this paper, we introduced the new paradigm of human

activity prediction. The motivation was to enable the early

detection of unfinished activities from initial observations.

We formulated the problem probabilistically, and presented

two novel recognition methodologies designed for the ef-

Table 1. Recognition performances measured with the UT-

Interaction dataset #1. The classification accuracies of our ap-

proaches and the previous approaches are compared. Most of the

listed classification approaches used 3-D spatio-temporal features.

In addition, [17] took advantage of automatically extracted bound-

ing boxes of persons.

System Accuracy w. half videos Accuracy w. full videos

Dynamic BoW 70.0 % 85.0 %

Integral BoW 65.0 % 81.7 %

Waltisberg et al. [17] - 88.0 %

Cuboid + SVMs [14] 31.7 % 85.0 %

BP-SVM [7] 65.0 % 83.3 %

Yu et al. [18] - 83.3 %

Yuan et al. [19] - 78.2 %

Cuboid + Bayesian 25.0 % 71.7 %

ficient prediction of human activities. The experimental

results confirmed that the proposed approaches are able to

recognize ongoing human-human interactions at their much

earlier stage than the previous methods.
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