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Abstract

In recent years, great progress has been made in recognizing human activities in

complete image sequences. However, predicting human activity earlier in a video is still

a challenging task. In this paper, a novel framework named weighted long short-term

memory network (WLSTM) with saliency-aware motion enhancement (SME) is

proposed for video activity prediction. First, a boundary-prior based motion

segmentation method is introduced to use shortest geodesic distance in an undirected

weighted graph. Next, a dynamic contrast segmentation strategy is proposed to

segment the moving object in a complex environment. Then, the SME is constructed

to enhance the moving object by suppressing irrelevant background in each frame.

Moreover, an effective long-range attention mechanism is designed to further deal

with the long-term dependency of complex non-periodic activities by automatically

focusing more on the semantic critical frames instead of processing all sampled frames

equally. Thus, the learned weights can highlight the discriminative frames and reduce

the temporal redundancy. Finally, we evaluate our framework on the UT-Interaction

and sub-JHMDB datasets. The experimental results show that WLSTM with SME

statistically outperforms a number of state-of-the-art methods on both datasets.

Keywords: Activity prediction, Weighted long short-term memory network, Dynamic

contrast segmentation, Saliency-aware motion enhancement

1 Introduction

At present, most of the researches in the field of activity recognition focus on how to

recognize human activity in a complete image sequence [1–3]. However, in practical

applications, people is more desirable that the intelligent system can warn of the

potential risks in advance so as to stop dangerous acts before they cause serious

damage, rather than just recognizing the dangerous activity or detecting the damage

caused by it. So, the activity prediction task aims to recognition human activities with

less video frames. In a broad sense, the prediction task can be seen as a human activity

recognition task with limited observed data. Although great progress has been made in

recognizing activities in complete image sequences [4–6], video-based human activity

prediction in the early stage is still a challenging task.
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Different from the static image classification task, one of the distinctive properties of

video-based activity prediction is the dynamic viewpoint and messy background which

generally existing in video data. The background in a video may contain irrelevant

motion other than the foreground objects that we are actually interested in. Thus, to

engage the foreground motion features deeply inside the learning process, Majd and

Safabakhsh [7] proposed a motion-aware ConvLSTM network for action recognition. A

multiple short-time motion energy image was proposed in [6] to capture human

motion information, which helps the CNNs to learn hierarchical local motion features

from the input image, but the effectiveness of motion-aware module depends on the

video data and the quality of model training. There are also some existing activity rep-

resentation approaches aim to diminish the interference of various visual occurrences

by detecting space-time interest points [8, 9], generating motion trajectories [10], or

segmenting the moving object [11] before the motion features are fed into convolu-

tional neural network (CNN). However, these methods suffer from two common draw-

backs. First, some subtle motion with key information may be lost if the threshold is

oversensitive. Second, it is not easy to extract discriminative features from the selected

action-related regions because these foreground regions may not necessarily be spatially

coherent [12].

In addition, another unique characteristic of video is the variable-length temporal

dimension. Without the guidance of high-level semantic information, the activity repre-

sentations extracted by these approaches cannot selectively express the most relevant

frames in a video [13, 14]. In other words, the methods aforementioned deal with the

frame-level features equally, which may unavoidably increase the redundant noise from

irrelevant frames. To address the problem, Ryoo [15] proposed a video early activity

prediction method based on a Dynamic Bag of Words model which uses encoded fea-

tures to model the characteristics of early observation video. However, the temporal

feature encoding depends on setting parameters manually, so the prediction perform-

ance is difficult to be guaranteed. Du et al. [16] proposed a recurrent network frame-

work based on pose attention for human activity prediction. This was the first time

that human pose was integrated into a recurrent network and future activity was

predicted by the superposition of multiple long short-term memory (LSTM) units.

Although the estimation of human posture improves the prediction accuracy, it is hard

to ensure the accurate of pose estimation in 2D video data, which is not helpful to the

temporal representation of video. Wang et al. [17] extended the generalized time

warping (GTW) algorithm by adding temporal constraints over the warping path to

encourage the matching in the early portion of an activity, but this matching approach

is not sensitive to some periodic human activities like “comb the hair.” Aliakbarian

et al. [18] developed a multistage LSTM human activity prediction framework. This

framework introduced an action-aware module, and constructed a new loss function to

encourage the model to predict the correct activity categories as early as possible,

which demonstrate the effectiveness of LSTM for activity prediction. Coincidentally,

Lan et al. [19] proposed a hierarchical movemes approach to describe human motion

rules at multiple levels by considering the hierarchical characteristics of human activ-

ities. Sun et al. [20] investigated the motion map 3D ConvNet to learn a motion map

for representing an action video clip, and a discrimination network is also introduced

for classifying actions based on the learned motion map.

Weng et al. EURASIP Journal on Image and Video Processing          (2021) 2021:3 Page 2 of 23



Recent work in activity prediction has shown benefits of exploiting advanced deep

learning based structure. Sun et al [21] developed a graph based relational network to

jointly model temporal and spatial interactions among different actors. Wang et al [22]

presented a teacher-student learning framework for early action prediction, which

achieves knowledge distillation by minimizing the local progressive-wise and global

distribution knowledge discrepancy. But how to mine as much action knowledge as

possible from the teacher model is one of the major challenges in such framework.

Zhao and Wildes [23] proposed a Kalman filter mechanism to ameliorate error accu-

mulation over time, which effectively model the temporal characteristics of activities.

From the above analysis, it can be seen that, similar to activity recognition, how to

extract the spatial and temporal information from video is also a crucial problem in

activity prediction. A sequence-to-sequence framework named RU (rolling-unrolling)-

LSTM was proposed in [24], where a multi-modal framework based on LSTM

networks to anticipate future actions which is able to summarize past observations

while making predictions of the future at different time steps. However, without the

guidance of high-level semantic information, the action representations extracted by

these models cannot selectively express the most relevant frames in a video.

In response to the aforementioned challenges, we focus on exploring robust spatio-

temporal feature and proposing a novel framework, named the weighted long short-

term memory (WLSTM) network with saliency-aware motion enhancement (SME) for

spatial and temporal modeling. First, a boundary-prior based moving object segmenta-

tion method is introduced by combining the shortest geodesic distance with a dynamic

contrast segmentation strategy. Then, the SME is constructed to enhance the moving

object by suppressing the irrelevant background motion in each frame. In order to fur-

ther deal with the long-term dependency in complex non-periodic actions, the WLST

M is developed by employing an effective long-range attention mechanism so as to

highlight the discriminative frames and suppress the temporal redundancy. As shown

in Fig. 1, two modalities which have both been enhanced are fed into WLSTM, i.e.,

RGB-SME and OF (optical flow)-SME. Both streams of the WLSTM can be trained

with stochastic gradient descent (SGD). The proposed WLSTM with SME is extensively

validated on two challenging video activity datasets, UT-Interaction [25] and sub-

JHMDB [26]. The effectiveness of our framework is proved when compared with state-

of-the-art methods. Furthermore, to illustrate the effectiveness of each part of our

work, extensive studies are performed to visualize the intermediate processes of WLST

M and SME.

Fig. 1 The overall of the proposed human activity prediction framework
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The main contributions of this paper can be summarized as follows:

� A totally automatic saliency-aware motion enhancement (SME) approach is

proposed to enhance the motion object from complicated background via a

novel boundary prior based motion object segmentation method. It can further

guide the learning procedure of our framework, with more focus on the

important motion regions where human actions are most likely to occur.

� This paper develops a novel deep learning framework for video activity prediction

named weight LSTM (WLSTM). Instead of processing all the frames equally, with a

simple but effective long-range attention mechanism, the WLSTM focuses more heavily

on the semantic key frames and adaptively eliminating temporal redundancy.

The remainder of this paper is organized as follows. In Section 2, the saliency-aware

motion enhancement (SME) and the weighted long short-term memory (WLSTM) are

presented. The experimental results are discussed in Section 3. Finally, the conclusion

is drawn in Section 4.

2 Method

2.1 Saliency-aware motion enhancement

Figure 2 shows an overview of the proposed saliency-aware motion enhancement. First,

each input frame is segmented into superpixels. An undirected weighted graph in

which every superpixel is regarded as one node is constructed in each segmented

frame, and the relationship between superpixels is presented as the edge between two

nodes. In order to extract both appearance and motion information from the action-

related region, two types of the edge (static and motion) are extracted from each frame.

We observe that the moving objects are always surrounded by the superpixels with

large spatiotemporal value of edge. Thus, we define the saliency probability as the

shortest geodesic distance from each superpixel to the frame boundary.

Next, an adaptive threshold is designed to gain the coarse saliency map by dividing

the superpixels into background superpixel set and foreground superpixel set. Mean-

while, a dynamic contrast segmentation strategy is introduced to obtain the accurate

motion regions by computing the geodesic distance of every two superpixels between

background set and foreground set. For those foreground superpixels with larger mean

Fig. 2 Overview of saliency-aware motion enhancement
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geodesic distance from the background superpixels, we regard them as pseudo fore-

ground superpixels then put them into the background set, and vice versa. Finally, the

background in each frame is suppressed by halving the brightness of pixels which are

out of the accurate motion region.

2.1.1 Spatio-temporal edge generation

Given a frame sequence F = {F1, F2, … , Fk}, Pk
i ¼ ðxki ; y

k
i Þ denotes the ith pixel in frame

Fk, where xki and yki represent the abscissa and ordinate of pixel Pk
i , respectively. Con-

sidering the experimental performance and computational efficiency, we calculate the

spatial edge probability map Ê
k

staticðP
k
i Þ ¼ Ê

k

staticðx
k
i ; y

k
i Þ corresponding to the kth frame

Fk and pixel Pk
i using Canny edge operator. Let ωk

i ¼ ðuki ; v
k
i Þ be the optical flow of the

ith pixel in frame Fk, where uki and vki are the horizontal and vertical component, re-

spectively. Then, we calculate the motion gradient Ê
k

motionðω
k
i Þ of the optical flow ωk

i as

Ê
k

motion ωk
i

� �

¼ k∇ωk
i k ¼ k

∂ωk
i

∂uki
þ

∂ωk
i

∂vki
k ð1Þ

Next, we segment the frame into superpixels by SLIC [27]. Y k ¼ fY k
1;Y

k
2; :::;Y

k
ngde-

notes the superpixel set in frame Fk. Given the static edge map Ê
k

static , the edge prob-

ability of the superpixel Y k
n is calculated as the average value of the pixels with the ten

largest edge probabilities in Y k
n . Similarly, the motion gradient magnitude is also ob-

tained using Ê
k

motion . The above steps generate two superpixel-based edge probability

maps, Ek
static and Ek

motion . Then, a spatiotemporal edge probability map Ek(Yk) can be

obtained as the element-wise product of Ek
static and Ek

motion:

Ek Y k
� �

¼ Ek
static∘E

k
motion ð2Þ

The reason why we compute Ek(Yk) is that we consider both static and motion infor-

mation which can provide useful information for moving object detection.

2.1.2 Geodesic distance based dynamic saliency estimation

For each frame Fk, an undirected weighted graph is constructed as gk = {Yk, ek} with

superpixels Yk as nodes and ek(m, n) as the edges between pairs of adjacent superpixels.

Based on the constructed structure, a ∣Yk
∣ × ∣ Yk

∣ adjacency matrix Wk of the graph

is developed, which is defined as the element-wise product of ek(m, n) and wk
mn , where

wk
mn denotes the weight between adjacent superpixels Y k

m andY k
n:

W k ¼ ek m; nð Þ∘wk
mn ð3Þ

wk
mn ¼ kEk Y k

m

� �

− Ek Y k
n

� �

k ð4Þ

where EkðY k
mÞ and EkðY k

nÞ correspond to the spatiotemporal boundary probabilities

of superpixels Y k
m and Y k

n , respectively. To emphasize the foreground moving objects

that have high spatiotemporal edge values or are surrounded by regions with high spa-

tiotemporal edge values, we employ the geodesic distance to compute a coarse object
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probability map. The geodesic distance dgðY
k
m;Y

k
n; g

kÞ between any two superpixels Y k
m

;Y k
n∈Y

k in graph gk is defined as the cumulative weighted shortest path:

dg Y k
m;Y

k
n; g

k
� �

¼ min
X

Y k
n

Y k
m

jW k � ek m; nð Þj

8

<

:

9

=

;

ð5Þ

Based on the definition of the geodesic distance dg, we can see that if a superpixel

is outside the motion region, there possibly exists a path to the frame boundaries

which does not pass through any superpixels. Thus, the geodesic distance of such a

superpixel is relatively small. Conversely, supposing a superpixel is inside the mo-

tion region, the superpixel must be surrounded by superpixels with high spatiotem-

poral edge values, which will increase the geodesic distance to the frame

boundaries. As such, the boundary prior saliency value Skn for each superpixel Y k
n is

computed by

Skn ¼ min
q∈Qk

dg Y k
n; q; g

k
� �� �

ð6Þ

where Qk indicates the superpixels from the four boundaries in each frame Fk. All sa-

liency values in Skn are normalized to [0, 1]. Based on the saliency valueSkn, a coarse sali-

ency map can be obtained by using a self-adaptive threshold which divides the

superpixels into a background set B̂
k
and a foreground set Ô

k
. The self-adaptive thresh-

old θk for each frame Fk is computed by

θk ¼ μ Skn
� �

¼
1

n

X

i∈n

Ski ð7Þ

where μ(⋅) represents the mean value of all superpixels within frame Fk by saliency

value Skn . Then, the superpixels in each frame Fk can be cataloged into the background

and foreground set:

Ô
k
¼ Y k

njS
k
n > θk

� �

B̂
k
¼ Y k − Ô

k
ð8Þ

To obtain the refined foreground region, a dynamic contrast segmentation strategy is

introduced by comparing both the inter and intra geodesic distances between the fore-

ground and background sets. Three kinds of distances, namely, dOO, dOB, and dBB, are

utilized as the measurement for the superpixels Y k ¼ Ô
k
∪B̂

k
in each frame Fk:

dOO ¼ μ
X

Y k
n;Y

k
nþ1∈Ô

k

dg Y k
n;Y

k
nþ1; g

k
� �� �

0

B

@

1

C

A

dOB ¼ μ
X

Y k
n∈Ô

k
;Y k

nþ1∈B̂
k

dg Y k
n;Y

k
nþ1; g

k
� �� �

0

B

@

1

C

A

dBB ¼ μ
X

Y k
n;Y

k
nþ1∈B̂

k

dg Y k
n;Y

k
nþ1; g

k
� �� �

0

B

@

1

C

A

ð9Þ

where dOO denotes the mean geodesic distance between two foreground superpixels.

The higher the geodesic distance value, the closer the relationship between the
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superpixels. Similarly, dOB and dBB are also adopted as the measurement to describe in-

ter and intra relationship among superpixels in one frame. Thus, we define the refined

motion object regions Ok as:

Ok ¼ Y k∈Ô
k
jdOO > dOB

n o

∪ Y k∈B̂
k
jdBB≤dOB

n o

Bk ¼ Y k −Ok
ð10Þ

The main rationale behind Eq. (10) is that both inter and intra differences between

the two superpixel sets are taken into consideration in the proposed dynamic contrast

segmentation strategy.

2.1.3 Moving object enhancement

Based on the classified superpixels Yk in each frame Fk, the corresponding saliency map

is computed by binarizing the values Skn in the coarse saliency map. If Sknði; jÞ∈B
k , then

Sknði; jÞ ¼ 0; otherwise, Sknði; jÞ ¼ 1. Next, we suppress the background pixels in Fk to

improve the importance of foreground moving objects. We first transform Fk from the

RGB color space to the HSI color space, halving the I component of background re-

gions where Sknði; jÞ ¼ 0, then perform the opposite operation to reverse the frame back

to the RGB color space. As a result, an SME-based frame can be obtained and is de-

noted RGB-SME. To construct the OF-SME, we halve the magnitude outside the

saliency-aware region of the optical flow in each frame Fk. Figure 3 visualizes the

saliency-aware motion enhancement intermediate procedures.

2.2 Weighted LSTM network

2.2.1 Long short-term memory unit

LSTM consists of a series of memory cells, each containing an internal state ct, which

stores information about the input sequence xt from time 1 to time t. As shown in

Fig. 4, these gates are activated by non-linear functions which enable LSTM to model

human activity in dynamic environments at different time steps.

LSTM has the following gate control structure:

Fig. 3 Visualization of the saliency-aware motion enhancement intermediate procedures. From left to right in

the first row: source video frame, optical flow, static edge map, and motion edge map. From left to right in the

second row: spatio-temporal edge map, saliency map, foreground motion mask, and enhanced video frame
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1) Input gate it controls the degree of input information into memory cells to affect

the state of the tth memory cell ct:

it ¼ σ wxixt þ whiht − 1 þ wcict − 1 þ bið Þ ð11Þ

where σ(·) is the sigmoid activation function; wxi, whi , and wc I are weight matrices;

and bi is the bias.

2) Forget gate ft regulates the previous state ct-1 of memory cells to control the

activation of the current state ct:

f t ¼ σ wxf xt þ whf ht − 1 þ wcf ct − 1 þ b f

� �

ð12Þ

where wxf, whf, and wcf are the weight matrices, and bf is the bias. ct is represented as

ct ¼ f tct − 1 þ itct − 1=2 ð13Þ

where ct − 1/2 is the pre-state of memory cells.

ct − 1=2 ¼ it tanh wxcxt þ whcht − 1 þ bcð Þ ð14Þ

where tanh(·) is the hyperbolic tangent activation function, wxc and whc are weight

matrices, and bc is the bias.

3) Output gate ot controls the output of information from memory cells which will

affect the future state of LSTM memory cells:

ot ¼ σ wxoxt þ whoht − 1 þ wcoct þ boð Þ ð15Þ

where wxo, who, and wco are the weight matrices and bo is the bias. Finally, the output

of an LSTM unit can be represented as:

Fig. 4 Structure of an LSTM unit
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ht ¼ ot tanh ctð Þ ð16Þ

2.2.2 Weighted LSTM for human activity prediction

In the training process of WLSTM, the complete features {(x1, x2,…, xT), y} of the ob-

servable image sequence can be obtained from the base convolutional neural network.

The goal of our work is to train the WLSTM to predict future activities with partially

observable features {(x1, x2,…, xt), t < T} from RGB-SME and OF-SME. Therefore, a

sequence-to-sequence prediction approach is utilized in the training process of WLST

M. Given a training sample fðx1; x2;…; xT Þ j;Y jg
N

j¼1
, a weighted LSTM unit is intro-

duced to learn the complete image sequence features (X1, X2,…, XT) with correspond-

ing label (y1, y2,…, yT). In this way, the WLSTM can predict the future activity label y

for incomplete image sequences in the testing process. In addition, in the process of

constructing the WLSTM, an effective weighted mechanism is proposed in this paper;

it makes LSTM units pay more attention to key frames in image sequences and

adaptively removes temporal redundancy so as to better solve the problem of long-

term dependence of video frames in activity prediction. The overall framework of the

proposed WLSTM is shown in Fig. 5.

No matter what the activity is, there are always some segments or video frames that

are irrelevant, redundant, or confusing. The main content of these clips shifts from

humans to some irrelevant moving objects which may interfere the model training. In

this paper, a weighted LSTM frame is proposed to connect the inception with batch

normalization (BN-Inception) [28] network, making video frames with different visual

contents play different roles in the result of the activity prediction. The weights of two

modalities are calculated by the output of BN-Inception xt at time t and LSTM unit

h�t − 1at time t−1:

α�t ¼ exp tanh wxαxt þ whαh
�
t − 1 þ bα

� �� �

ð17Þ

where exp(·) is the exponential function, wxα and whα are weight matrices, and bα is

the bias. Then, the input xt' of WLSTM at time t is weighted by the basic feature xt

and contribution factorα�t .

Fig. 5 The overall framework of the proposed weighted LSTM (WLSTM)
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x0t ¼ α�t xt ð18Þ

In the process of multi-modality fusion, the weighted output of two modalities of the

basic network BN-Inception is not concentrated directly fðx
0

1; x
0

2; :::; x
0

T Þ; ðz
0

1; z
0

2; :::; z
0

T Þg

. Instead, a continuous temporal feature is constructed by an LSTM unit, and then the

time-coded feature fðhsp1 ; h
sp
2 ; :::; h

sp
T Þ; ðh

te
1 ; h

te
2 ; :::; h

te
T Þg is fed into a fully connected

spatio-temporal feature fusion layer. Finally, the activity at this time is predicted by a

softmax layer, which is as follows:

h
sp
t ; c

sp
tð Þ ¼ LSTM x

0

t ; h
sp
t − 1; c

sp
t − 1

� 	

ð19Þ

htet ; c
te
t

� �

¼ LSTM z
0

t ; h
te
t − 1; c

te
t − 1

� 	

ð20Þ

et ¼ tanh W f h
sp
t ; h

te
t

� �

þ b f

� �

ð21Þ

yt ¼ softmax W yet þ by
� �

ð22Þ

where W∗ is the weight matrix, b∗ is a bias, ct is the state vector of the memory cells

at time t, and yt is the activity label at time t. Finally, the video activity of frame t+1 is

predicted:

ytþ1 ¼
1

T

X

i≤T

yi: ð23Þ

In order to predict earlier the activities occurring in video, we add a time penalty

term to the original cross-entropy function; this makes the network loss increase with

increasing time in the training process, so the WLSTM can be guided to repair the

training error as soon as possible:

loss ¼
X

N

j¼1

X

T

t¼1

− e − T − tð Þ log ykj

� 	

ð24Þ

where N is the number of samples and T is the video sampling time.

3 Experimental results and discussion

3.1 Datasets

In order to verify the effectiveness of the proposed video activity prediction framework,

two challenging video datasets, UT-Interaction [25] and sub-JHMDB [26], were se-

lected for experiments. Figure 6 shows some sampled frames in these datasets.

UT-Interaction is a human activity dataset, which can be further subdivided into UT-

Interaction Set 1 and UT-Interaction Set 2. Two subdatasets both contain 60 videos in-

cluding six kinds of activities: shake hands, hug, kick, point, punch, and push. In this

paper, we used 10-fold leave-one-out cross validation per set to get our experimental

results on the UT-Interaction dataset. Each 10-fold cross validation extracts one-tenth

of all samples as the test set, and the remaining samples are used as the training set.

The test sets are selected 10 times, and the samples are different each time.

The sub-JHMDB dataset collects video data from a wide range of sources and in-

cludes 316 videos showing 12 activities: catch, climb stairs, golf, jump, kick ball, pick,

pull up, push, run, shoot ball, swing baseball, and walk. There are 19 to 42 video
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samples for each activity, and the total number of samples is 316. Each video sample

contains 15 to 40 frames of 320 × 240 pixels in size. Three kinds of train-test splits are

given in the dataset, and the first train-test split was adopted for the experiment.

3.2 Implementation details

In the data preprocessing stage, the TVL1 optical flow algorithm [29] was adopted. Specif-

ically, the optical flow was discretized into the range of [0, 255] to guarantee data

consistency with RGB frames. Then, the proposed SME was implemented on both data-

sets to generate RGB-SME and OF-SME as the input of the base network. In the selection

of a convolutional network for basic feature extraction, we chose the publicly available in-

ception with batch normalization network (BN-Inception) as our base network from [28]

because of its good performance in terms of efficiency and accuracy. During the training

phase, we adopted the mini-batch SGD optimizer by setting the momentum to 0.9 and

batch size to 128. For spatial modality (RGB-SME), we initialized the network using pre-

trained models from ImageNet; the learning rate was first set to 0.001, and then reduced

to 1/10 every 1500 iterations. The training process finally stopped after 3500 iterations.

For temporal modality (OF-SME), we used the cross-modality pre-training strategy pro-

posed in [30] by utilizing the learned spatial models to initialize the temporal stream. The

learning rate was initialized to 0.005, which was reduced by a factor of 10 after 12,000 and

16,000 iterations. The maximum number of iterations was set to 18,000. For data aug-

mentation, we utilized the random horizontal flipping and scale jittering technique to re-

duce the risk of overfitting. The WLSTM training parameters mainly included the batch

size, learning rate, and optimizer. According to [30], we set the batch training size of the

model to 128; the initial learning rate was 0.003, which was halved every 15,000 iterations;

and the Adam optimizer was selected. In the WLSTM testing phase, each complete video

in the above dataset was divided into 10 subvideos with different observation ratios using

equal observation ratio increments. For different subvideos with different observation

ratios, we set sample interval T = 3 for sampling and activity prediction. Finally, more

importance was given to the temporal stream by setting its weight to 1.5 and that of the

spatial stream to 1 for the fusion of two streams.

Fig. 6 Some sampled frames from UT-Interaction and sub-JHMDB
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3.3 Experimental results analysis

As shown in Table 1, Table 2, and Table 3, the results of the WLSTM in predicting hu-

man activities are presented in this section. Three modalities are used to test the accur-

acy of the proposed activity prediction framework, namely, RGB-SME, OF-SME, and

two-modality fusion with temporal and spatial information. The experimental results

show that two-modality fusion as the input achieved superior prediction accuracy on

all three datasets. The video prediction accuracy values with two-modality fusion on

the UT-Interaction set 1 and UT-Interaction set 2 [25] datasets are 3.2% and 3.0%

higher than that with single-input modality, respectively, and 5.7% higher than single

input on the sub-JHMDB [26] dataset. It can also be seen from Table 1 and Table 2

that with only half the input video, the WLSTM in this paper achieves 95.0% and

90.2% prediction accuracy on UT-Interaction sets 1 and 2, respectively. This means that

when the observation ratio is only 0.5, the prediction accuracy of the WLSTM can

reach 95.3% of the complete video activity recognition accuracy, which is very encour-

aging. Figure 7 shows the activity prediction results for the three data sets when the test

video clips were subvideos of different lengths. It is not difficult to see that with the in-

crease of the subvideo observation ratio, the accuracy of activity prediction of the three

modes was improved.

In Fig. 7, the accuracy of activity prediction on the three datasets with different subvi-

deo lengths is presented. The video observation ratio interval of the subvideo is set to

[0.1, 1]. It is not difficult to see that with the increase of the subvideo observation ratio,

the accuracy of activity prediction of all three modalities is improved. The highest pre-

diction performances achieved are 98.3%, 95.1%, and 78.1% on UT-Interaction sets 1

and 2 and sub-JHMDB, respectively. Although UT-Interaction sets 1 and 2 have identi-

cal activity categories, the prediction accuracy of UT-Interaction set 2 is slightly lower

than that of set 1 because the background of UT-Interaction set 1 is a parking lot with

constant light, which simplifies the background while eliminating the interference

caused by illumination. Meanwhile, the background in set 1 is mostly static, with no

camera jitter. UT-Interaction set 2, however, has a complex background of grassland

and tree branches, including background moves (for example, trees move) and contain

more camera jitter. So, the accuracy of optical flow is affected in set 2 due to the com-

plex conditions which leads to a degradation in OF-SME performance. That is why

OF-SME can outperform RGB-SME with 50% of the clips in set 1 where it need 70% in

set 2.

Moreover, the WLSTM (two-modality fusion) proposed in this paper achieves about

50% prediction accuracy on all three datasets when the video observation ratio is only

0.1, which also shows the effectiveness of the WLSTM in video activity prediction tasks.

In addition, it can be seen that RGB-SME has better robustness, and its prediction ac-

curacy curve shows almost no change under different video observation ratios. Mean-

while, when the video observation ratio is less than 0.4, the prediction accuracy of the

Table 1 Prediction accuracy comparison of different modalities on UT-Interaction set 1 (%)

Modality Accuracy with half videos Accuracy with full videos

RGB-SME 87.6 93.8

OF-SME 93.1 96.4

Two-modality fusion 95.0 98.3
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OF-SME is poor, and with the increase of the video observation ratio, the prediction

accuracy is greatly improved. We conjecture that this is because the optical flow reflects

the motion information within adjacent frames. Under a low observational ratio, it is

easy to misclassify activity because of the similarities between short-term actions. In

summary, WLSTM predicts human activities in the early stage of video, and the fusion

of two modes (RGB-SME and OF-SME) can effectively improve the prediction per-

formance of early and complete activities.

From the confusion matrix in Fig. 8, we can see the predicted results of early

and complete human activities. In UT-Interaction set 1, hug and punch could be

accurately identified in the early stage of activity, and the accuracy of other activ-

ities reached more than 90%. When the video observation ratio was 1.0, the aver-

age accuracy reached 98.3%, and the push action can be recognized accurately. In

UT Interaction set 2, the prediction accuracies of both early and complete videos

are lower than those of set 1 because of the increased noise. However, our method

still maintains good prediction performance. The prediction accuracies of early and

complete activity are 66.8% and 78.1%, respectively. On the sub-JHMDB dataset,

the proposed WLSTM is able to accurately predict golf, pull up, push, and swing

baseball in the early stage. The corresponding accuracies are 100%, 92%, 90%, and

86%, respectively. The prediction accuracies of catch, climb stairs, jump, kick ball,

pick, run, shoot ball, and walk are relatively low: 67%, 67%, 38%, 33%, 75%, 20%,

67%, and 67%, respectively. This is because the activities in the sub-JHMDB dataset

are more challenging than those in the UT-Interaction dataset, so the prediction

performance is relatively low.

3.4 Evaluation of saliency-aware motion enhancement

In Section 2.1, we introduced the saliency-aware motion enhancement (SME)

method where we use a geodesic distance based dynamic saliency estimation for

motion region detection. In order to evaluate the impact of motion region detector

on the performance of human activity prediction, the motion region is also de-

tected by optical flow (OF), HOG-based human detector [31], and Gaussian mix-

ture model (GMM) [32]. Then, we compare the activity prediction performances

with half videos among these three methods on UT-Interaction and sub-JHMDB

Table 2 Prediction accuracy comparison of different modalities on UT-Interaction set 2 (%)

Modality Accuracy with half videos Accuracy with full videos

RGB-SME 84.7 91.5

OF-SME 75.2 92.6

Two-modality fusion 90.2 95.1

Table 3 Prediction accuracy comparison of different modalities on sub-JHMDB (%)

Modality Accuracy with half videos Accuracy with full videos

RGB-SME 55.4 71.1

OF-SME 56.7 73.8

Two-modality fusion 66.8 78.1
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Fig. 7 Accuracy comparison of different modalities for three datasets. a UT-Interaction set 1. b UT-Interaction

set 2. c Sub-JHMDB
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datasets. Figure 9 illustrates the comparison result and example frames on two

datasets from different motion detectors. It is obvious that the proposed SME ob-

tains competitive performance on both two datasets. The reasonable explanation

for this phenomenon is that motion detection is the foundation of all subsequent

work. So, the quality of WLSTM based feature encoding is highly depending on

the integrity of motion information. For most action clips in UT-Interaction, the

motion region is relatively clear and easy to be detected by the four motion detec-

tors. Whereas for some action clips in sub-JHMDB, the objects are relatively weak

and the background is complex which leads to false detection, thus increases the

difficulty of activity prediction.

Fig. 8 Comparison of confusion matrices for three datasets (two modalities). a UT-Interaction set 1. b UT-

Interaction set 2. c Sub-JHMDB
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Fig. 9 Comparison of motion detectors. a Prediction accuracy on UT-Interaction. b Prediction accuracy on

sub-JHMDB. c Example frames of different motion detectors. From left to right: original, optical flow, HOG

human detector, GMM, and proposed SME
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3.5 Ablative studies

In this section, to verify the effectiveness of the proposed saliency-aware motion en-

hancement (SME) and weight LSTM (WLSTM) network, various ablative experiments

were performed using different settings on two datasets: RGB+OF+LSTM (setting 1),

RGB+OF+WLSTM (setting 2), RGB-SME+OF-SME+LSTM (setting 3), and RGB-

SME+OF-SME+WLSTM (setting 4). Experimental results on two datasets are shown in

Table 4 and Table 5, respectively. The accuracy of the UT-Interaction dataset is the

average of set 1 and set 2. The best value in the table is presented in bold. The experi-

mental results show that the setting 4 (RGB-SME+OF-SME+WLSTM) obtains the su-

perior performance among four settings on both two datasets. From Table 4, we can

see the weighted module plays a more important role on UT-Interaction dataset. The

accuracy of setting 1 and setting 3 is basically the same (81.0/89.6 vs 81.6/90.2). We

speculate that this is because the video background of UT-Interaction dataset is rela-

tively simple, so whether to use SME or not has little effect on prediction accuracy,

whereas on sub-JHMDB dataset, both SME and weighted module provide strong con-

tribution to the prediction accuracy. It is not hard to find out that without any of SME

or weighted module may leads to a decline on prediction accuracy.

3.6 Comparison with state-of-the-art methods

By some extent, the proposed framework can be seen as a kind of spatiotemporal atten-

tion. Therefore, we compared our method with these SOTA methods which have spa-

tiotemporal attention model to further evaluate the effectiveness of our method;

experiments were performed using the WLSTM on the UT-Interaction dataset and

sub-JHMDB dataset. The results of video activity prediction on the UT-Interaction

dataset were compared with those of Hierarchical-M [19], TGTW [17], HSOM [13],

Dynamic BOW [15], multi-stage LSTM [18], P-TS [21], and RU-LSTM [24]. The re-

sults of video activity prediction on the sub-JHMDB dataset were compared with those

of PDP [14], confidence-DT [33], WSF-DS [34], RPAN [16], DRN [22], and RGN [23].

The accuracies of activity prediction were tested in the case of half video and full video

with observation ratios of 0.5 and 1.0, respectively. The prediction results are shown in

Table 6 and Table 7. The accuracy of the UT-Interaction dataset is the average of those

Table 4 Ablative study on UT-Interaction dataset (%)

Settings SME Weighted module Accuracy with half videos Accuracy with full videos

Setting 1 x x 81.0 89.6

Setting 2 x ✓ 88.5 92.1

Setting 3 ✓ x 81.6 90.2

Setting 4 ✓ ✓ 92.6 96.7

Table 5 Ablative study on sub-JHMDB dataset (%)

Settings SME Weighted module Accuracy with half videos Accuracy with full videos

Setting 1 x x 48.9 59.2

Setting 2 x ✓ 59.3 63.4

Setting 3 ✓ x 61.5 69.7

Setting 4 ✓ ✓ 66.8 78.1
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of set 1 and set 2 and the best value in the table is presented in bold. It can be seen that

the WLSTM (two modalities) proposed in this paper achieves promising results on

both datasets, and the prediction accuracy exceeds those of most of the state-of-the-art

methods. Among these results, 92.6% prediction accuracy is achieved on the UT-

Interaction dataset in the early stage of video behavior, and the average performance is

15.8% better than that of other similar methods. In full video recognition, the WLSTM

achieves 96.7% recognition accuracy, which is ahead of the other methods. For sub-

JHMDB dataset, our method has a good prediction accuracy of 66.8% in the early stage

and 78.1% in the recognition of the complete video. These data show that the human

activity prediction method proposed in this paper is effective under various conditions.

Owing to the use of graph neural network, DRN [22] gains 71.8% in the prediction task.

However, with the increase of video observation ratio, the final recognition perform-

ance does not exceed WLSTM. It is noteworthy that RPAN had the highest accuracy

for complete video recognition, slightly higher than WLSTM’s 78.1%. We conjecture

that this is because an attention model of human posture is embedded in RPAN, which

improves the recognition accuracy. However, when the video observation ratio is rela-

tively low, the prediction accuracy of RPAN is affected by inaccurate estimation of hu-

man posture.

Figure 10 shows a comparison of the activity prediction accuracy under different

video observation ratios. The activity prediction method proposed in this paper

achieved good results in both datasets, and its prediction performance in the early stage

of video surpassed that of all other methods used for comparison. On the UT-

Interaction dataset in particular, the WLSTM (two modalities) had a lowest prediction

accuracy of 78.4%, a highest prediction accuracy of 96.7%, and a prediction accuracy of

92.6% when the video observation ratio was only 0.5. It is noteworthy that this method

Table 6 Prediction accuracy comparison on UT-Interaction (%)

Method Accuracy with half videos Accuracy with full videos

Hierarchical-M [19] 82.3 88.4

TGTW [17] 72.1 89.5

HSOM [13] 84.0 93.8

Dynamic BOW [15] 66.1 78.5

Multi-stage LSTM [18] 79.3 90.0

P-TS [21] 89.7 94.6

RU-LSTM [24] 91.4 95.3

WLSTM (two modalities) 92.6 96.7

Table 7 Prediction accuracy comparison on sub-JHMDB (%)

Method Accuracy with half videos Accuracy with full videos

PDP [14] 49.2 52.3

Confidence-DT [33] 48.5 50.2

WSF [34] 55.6 73.8

RPAN [16] 64.4 78.6

DRN [22] 71.8 77.3

RGN [23] 66.0 78.0

WLSTM (two modalities) 66.8 78.1
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maintains high prediction accuracy when the video observation ratios of the two data-

sets are between 0.5 and 1.0.

3.7 Experimental result visualization

In order to verify the effectiveness of SME in the prediction process, Figure 11 shows

the visualization of SME on the two datasets. Each video frame corresponds to an activ-

ity. The three images in each group from left to right are the original video frame, the

Fig. 10 Prediction accuracy comparison under different video observation ratio. a UT-Interaction. b Sub-JHMDB
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saliency image, and the SME-based moving object enhancement. In this paper, eight

types of human activities are randomly selected from the UT-Interaction (left column)

and sub-JHMDB (right column) datasets for visualization. Most of the videos in the

sub-JHMDB datasets are polluted by intense background motion or other noise to

some extent. All video frames are pre-processed using the SME proposed in this paper,

in which the foreground moving area is made brighter than the background. This also

shows that the pre-processed video frames retain more areas with visual information,

which can make the convolution operations more focused on these regions. Most of

the video frames in the UT-Interaction dataset have a static background, and moving

objects can also be well segmented. These visualization results show that the proposed

SME performs well in most cases.

Meanwhile, we also observe that the proposed SME is not very effective in the face of

small scale motion, which is one of our future research directions. On the other hand,

when processing the background pixels, we only reduce the brightness of these pixels

by half. Pixels in background set still retain small amount of information, which plays a

certain role in the subsequent prediction task. In addition, in the process of feature

encoding by WLSTM, the weights of video frames with less information are lower.

Therefore, the impact of this problem on the accuracy of prediction is relatively small.

To analyze the importance of learned weights in WLSTM, Fig. 12 shows the learned

weights in different video frames. The WLSTM gives priority to the recognition of key

video frames (the most representative stages) by assigning higher weights to specific

activities (frames with red border). On the contrary, the weights of video frames with

less information are lower, which is similar to the natural observation of human eyes.

Comparing with the runners on the sports field, WLSTM places higher weights on the

frames with foot and kick because the video frames containing the action of kick have

higher classification importance for kickball. When the activity is simple, such as pull,

the weight distribution of the WLSTM is relatively average.

Fig. 11 Visualization of saliency-aware motion enhancement. a Perform well. b Perform poorly
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4 Conclusion

This paper proposed a weighted LSTM (WLSTM) network and saliency-aware motion

enhancement (SME) to suppress the background noise of video frames, which can

effectively reduce the interference of spatially and temporally redundancy. Experiments

on two challenging datasets demonstrated the effectiveness of our method. This effect-

iveness is mainly attributed to the fully automatic moving object enhancement method

and the weights of the sampled video frames. The former makes the convolution pay

more attention to action-related regions, while the latter provides an effective solution

to solve the long-term dependence between frames.

In the future work, we will consider some end-to-end learning frameworks and

further explore the impact of spatial-temporal attention models for video activity

prediction, especially focus on the models which are real time and able to deal with the

multi-scale motion extraction.
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