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ABSTRACT Traditional human activity recognition (HAR) based on a motion sensor adopts sliding window
labeling and prediction. This method faces the multi-class window problem, which mistakenly labels
different classes of sampling points within a window as a class. In this paper, we propose a novel HAR
method based on U-Net to overcome the multi-class problem, performing activity labeling and prediction of
each sampling point. The motion sensor data collected from the wearable sensors are mapped into an image
with the single-pixel column and multi-channel, and then, it is input into the U-Net network to complete the
pixel-level activity recognition function. We design a complete HAR framework based on U-Net to realize
the dense prediction of motion sensor data, including data preprocessing, dense prediction, and post analysis.
In order to further improve the dense prediction performance, we propose the post-correction algorithm for
the dense prediction results on the basis of the activity misalignment analysis. The extensive experimental
results demonstrate that our U-Net method performs better than the traditional machine learning and deep
learningmethods based on the sliding window prediction. And it also outperforms full convolutional network
(FCN), SegNet, andMask R-CNN based on the dense prediction on the four datasets. Moreover, it also shows
the better robustness and excellent performance of recognition on the short-term activities and minority
classes. We release a new dataset named Sanitation, which includes seven types of daily work activity data
of sanitation workers to evaluate the HAR algorithm’s performance.

INDEX TERMS Human activity recognition, U-Net, neural networks, deep learning.

I. INTRODUCTION

Human activity recognition (HAR) is the key technology
of human-computer interaction and human activity analysis.
The basic task of HAR is to select the appropriate sensor
and deploy it to monitor and capture the user’s activity [1].
HAR can be divided into two categories: video-based HAR
and sensor-based HAR. With the wide use of portable and
wearable sensors in our daily life, HAR based on sensor data
has become a research hotspot, the HAR systems have been
used in sleep state detection [2], behavior monitoring [3], [4],
health monitoring [5], smart home [6], medical care [7], [8]
and so on.
Data collected from the portable and wearable sensors

are usually time series data. Human activity recognition for
time series is a complex process, which usually involves the
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following steps. First, preprocess and segment the time series
data, extract the features of the data, and then classify by using
the classification algorithm. It requires manual extraction of
features for human activity recognition based on traditional
machine learning methods. With the development of deep
learning, deep learning has been widely used in HAR [9],
which can automatically learn and extract features without
the more complicated steps of manual feature extraction.
The workload of feature engineering is greatly reduced by
automatically learning and extracting features [10], [11].
Therefore, deep learning based HAR is superior to traditional
machine learning method, in which Convolutional Neural
Network (CNN) is often used to analyze simple and complex
activities.

Continuous segmentation of input sensor sequence data
is a challenging task since the duration of human activities
is different and the exact boundaries of activities are diffi-
cult to define. At present, both the machine learning-based
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and the deep learning-based HAR methods use fixed sliding
window technology to divide the sensor signal into fixed-
length windows and label all samples in the window with
the labeling strategies. Then the classification algorithm is
applied to generate a predicted label for all samples in each
window [12]. There are two common slidingwindow labeling
strategies [13], one is to select the most frequent sample class
in the window as the label of the window, the other is to select
the sample class of the last time step in the window as the
label of the window. Considering that all samples of a window
may not always share the same label, some samples will be
mislabeled. Both the twomethodsmay lead to incorrect label-
ing, thereby reducing the recognition accuracy. This problem
caused by fixed sliding window segmentation and labeling
is called multi-class window problem [14]. Multi-class win-
dow problem is a common problem in HAR based on the
motion sensor, which has a significantly negative impact on
the recognition of short-term activity sequences. It makes
short-term activity classification challenging. In order to
improve the recognition accuracy, the common method is to
apply a small-size window to segment time series data [15],
which is time-consuming by sacrificing speed in exchange for
accuracy.
The most obvious way to solve the multi-class window

problem is to label and predict the activities based on sam-
pling points directly. Therefore, we adopt dense labeling
by labeling every sampling point instead of sliding window
labeling so as to preserve the correct label information for
each sample and improve the recognition accuracy of the
classifier. The maximum pooling operations in the traditional
CNN architecture result in reducing the resolution of top-
level output and a size mismatch between the output and the
input. Due to the size mismatch, the existing HAR model
based on the CNN architecture cannot achieve dense pre-
diction for each sampling point’s label in the time series
data, only suitable for sliding window prediction. In recent
years, there are several new deep neural network architectures
emerged in the field of image semantic segmentation, such
as the Full Convolutional Network (FCN) [16], U-Net [17],
SegNet [18], Mask R-CNN [19]. These architectures can
realize the image pixel level classification, by introduc-
ing the up-sampling operation, thus achieving the top level
output with the same resolution as the input, namely the
size of input matching with the output. U-Net network is
a more efficient network for the image pixel level classifi-
cation through merging the information of the up-sampling
and down-sampling block, compared with the other archi-
tectures [17]. And multi-channel time series data can be
regarded as a single pixel column, multi-channel image,
we propose the human activity recognition algorithm based
on U-Net, and realize that the input sensor data can be pre-
dicted densely based on the sampling points, so as to solve
the multi-class problem caused by the fixed sliding window
labeling.
The main scientific contributions of this paper can be

summarized as follows:

• We propose a novel HAR framework based on
U-Net to overcome the multi-class problem. To the best
of our knowledge, U-Net network is applied to HAR
for the first time, which includes the down-sampling
and up-sampling operations and achieves dense pre-
diction by predicting each sampling in the time series
data.

• In order to further improve the dense prediction per-
formance, we propose the post-correction algorithm for
the dense prediction results on the basis of the activity
misalignment analysis.

• To evaluate the proposed HAR method based on U-Net,
we also apply the existing image semantic segmentation
methods to HAR based on dense prediction as compara-
tive experiments for the first time, including SegNet and
Mask R-CNN. Different from the comparative meth-
ods, the U-Net combines the shallow and deep network
information to offset the information loss caused by
the down-sampling operation, showing better robustness
and recognition performance on the short-term activities
and minority classes.

What’s more, a new dataset named Sanitation is released
to evaluate the HAR algorithm’s performance and benefit the
researchers in this field, which collects seven types of daily
work activity data from sanitation workers.

The structure of the rest of the paper is as follows.
Section II provides an overview of HAR methods. The HAR
algorithm based on U-Net is proposed in Section III. The
experimental results and analysis are presented in Section IV.
The conclusion is given in Section V.

II. RELATED WORK

For the early research of HAR, the feature is manually
extracted from the motion sensor data. Then, the extracted
features are classified by various classification algorithms.
The current machine learning algorithms for HAR can be
divided into two categories: the classification based on dis-
criminative model and the classification based on the gener-
ative model [20].

The classification method of HAR based on discrimina-
tive model mainly includes Support Vector Machine (SVM),
Decision Tree (DT), k-Nearest Neighbor (kNN) and Artifi-
cial Neural Network (ANN). In [21], He and Jin extracted
the autoregressive coefficients of the accelerometer data
as the features of activity recognition and used SVM to
classify human activities, which achieved good recognition
performance on running, standing, jumping and walking.
Fan et al. [22] used the built-in accelerometer to clas-
sify five activities and constructed a location-independent
activity recognition model based on the DT algorithm.
Khan et al. [23] established a hierarchical scheme for the
classification of 15 specific activities, in which the upper
layer uses the autoregressive model of the acceleration sig-
nal to generate the augmented feature vector and the lower
layer processes the eigenvector of the triaxial accelerometer
data through Linear Discriminant Analysis (LDA) and ANN.
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Preece S J et al. constructed the nearest neighbor classifier
to classify and analyzed the daily activities based on accel-
eration data. They adopted a robust individual-based cross-
validation method. The classification accuracy on the best
feature set reached 95% [24].
The classification methods of HAR based on genera-

tive model mainly include HMM and naive Bayes method.
Lester J et al. proposed a dynamic activity recognition
method, capturing temporal regularity and smoothness by
HMM [25]. Lee S et al. proposed a HAR algorithm based
on the semi-Markov random domain for accelerometer data,
and it worked well for complicated activities like eating and
driving a car [26]. Long X et al. proposed a Bayesian clas-
sification algorithm for human physical activity recognition
based on acceleration data, which are collected from a single
tri-axial accelerometer placed on the waist, and it used Prin-
cipal Component Analysis (PCA) to reduce the dimension of
the feature vector. The recognition performance is better than
that of DT [27].
In recent years, deep learning has made great achieve-

ments in static image feature extraction and has been grad-
ually extended to the study of time series data. The deep
learning methods for HAR can be summarized into three
categories. The first category is through using Convolutional
Neural Network to automatically extract features from sensor
data for recognition. Song-Mi Lee et al. proposed a One-
Dimensional CNN to identify human behavior for triaxial
acceleration sensors collected by smartphones, which input
a vector magnitude data transformed by the raw accelerom-
eter data, and the proposed 1D CNN-based method which
reduced the possible rotational interference present in the raw
data, showing the effectiveness compared with the baseline
random forest approach [28]. Panwar M et al. investigated
a deep learning framework for predicting the arm motion in
daily activity by using a hand-mounted triaxial accelerom-
eter. CNN is used to automatically extract useful features.
The average recognition accuracy is better than clustering,
LDA and SVM method [10]. The second category is to
use Recurrent Neural Network (RNN) to capture the time
dependence of sensor data. Guan Y and Ploetz proposed a
HAR model based on Ensembles of deep Long Short Term
Memory, which has achieved a good recognition effect on
Opportunity, PAMAP2 and Skoda datasets [29]. In [30], Edel
andKöppe proposed aHARmodel based on aBinarized Long
Short-TermMemoryNetwork (B-BLSTM-RNN), processing
sensor data gathered from different positions and keeping
invariant to transformations and distortions of the input pat-
terns. The third category is to use a hybrid model to identify
human activity. Ordonez and Roggen D proposed a deep
framework of HAR based on CNN and LSTM hybrid neural
network. The accuracy of recognition on the Opportunity and
Skoda dataset is higher than that on the previous report by
9%. It is suitable for multimodal wearable sensors and can
accurately model the feature of real-time dynamic changes
without using professional knowledge to design features [13].
NY Hammerla and Shane Halloran et al proposed

a HAR scheme based on deep convolution and recurrent
hybrid model for wearable sensor data [31].

More recently, Rui Yao et al. proposed a human activity
recognition algorithm based on FCN [14], which realized
the dense prediction of human activity sequences from wear-
able devices and conducted extensive experiments on three
datasets. It achieved 88.7% with weighted F1-measure on
Opportunity Locomotion dataset, 59.6% onOpportunity Ges-
ture dataset, 89.3% on subject 1 for Hand Gesture dataset,
88.3% on subject 2 for Hand Gesture dataset, and 79.0% on
the self-collected Hospital dataset.

Different from the above work, the U-Net based on HAR
algorithm predicts the labels of each sample in the input
time series data precisely so as to overcome the multi-class
window problem existing in the sliding window method.

III. HAR FRAMEWORK BASED ON U-NET

A. DATA PREPROCESSING

In this part, the considerable details regarding the conduct
of data preprocessing are offered, including data acqui-
sition and standardization, dense labeling, and generating
subsequences.

1) DATA ACQUISITION AND STANDARDIZATION

In our work, the experimental raw data are collected
from the wearable sensor devices, and the obtained two-
dimensional time series data is denoted as XL,C = {(x11,
x12, . . . , x1C ), (x21, x22, . . . , x2C ), . . . , (xL1, xL2, . . . , xLC )},
where L is the length of time series data and C is the number
of sensor channels. Considering that the classifier’s perfor-
mancewill deteriorate when the raw data distribution does not
conform to the standard normal distribution with wide fluc-
tuations. Then, we use z-score normalization to standardize
the raw data:

x ′
ij =

xij − E(xj)
√

D(xj)
(1)

where, xij represents the sampling point in the time series
data, E(xj) represents the mean value of all the sampling
points data under the j-th channel, and

√

D(xj) represents the
standard deviation of all the sampling points data under the
j-th channel.

2) DENSE LABELING

As a terminology, the term ‘‘dense labeling’’ is usually used
for image semantic segmentation. The concept of dense label-
ing was introduced into human activity recognition to distin-
guish recognitionmethods based on slidingwindows by some
researchers [14]. The traditional sliding window labeling
method assigns all samples in the subwindow with one label,
but the samples within one subwindow may not share the
same label, then the multi-class window problem will occur,
as shown in Fig.1. Dense labeling means that the human
activity is recognized on a sample-by-sample basis instead of
a sliding window. To avoid the multi-class window problem,
we adopt the dense labeling method, providing a single label
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FIGURE 1. Sliding window labeling and dense labeling.

for each sample in the time series data, that is, labeling each
timestamp rather than each subwindow. The dense labeling
result is denoted as YL = {a1, a2, . . . , ai, . . . , aL}, where
ai represents the i-th sample’s activity class. The dense
labeling result has the same length of the time series
data.
Fig.1 describes the two different sequence labeling meth-

ods: sliding window labeling and dense labeling. Red solid
line frame represents the current sliding window and red
dashed line frame represents the next one, denoted as S1
and S2, respectively. For example, according to the sliding
window labeling strategy with the most appearing class, all
data of S1 are labeled as class 1.Whereas virtually S1 contains
class 1 and class 2 information. The sliding window labeling
method results in the label information loss of class 2, learn-
ing incorrect context information, and lowering recognition
accuracy. Labeling with the last appearing class also encoun-
ters the same problem.

3) GENERATING SUBSEQUENCES

Considering that the whole long time series data cannot be
regarded as network input, the input continuous time series
data has to be divided into several long subsequences. Each
subsequence is regarded as a training sample. Due to the
overlap between adjacent subsequences, the prediction of
sample labels in overlapping parts may produce ambiguity.
So we adopt the non-overlap fixed-length sliding segmenta-
tion, the t−th subsequence is expressed as {(x, y)|x[1, pt :

pt+N ,C], y[1, pt : pt+N ,Nc]}, whereN is the subsequence
length, Nc represents the number of human activity classes,
pt represents the starting point of the t-th subsequence,
the starting point of the (t + 1)-th subsequence is presented
as pt+1=pt + N .
It is worth noting that the generated subsequences of the

densely labeled data here are different from traditional slid-
ing subwindows. For each training subsequence, the output
labels ŷt has the same length of the input data xt . How-
ever, for the training sliding subwindows, the length of the
output labels is shorter than that of the input data since
all samples in a subwindow just correspond to a single
label.

B. DENSE PREDICTION MODLE BASED ON U-NET

In this section, we firstly apply U-Net for HAR based on
dense prediction to predict every sampling point in time
series data collected by the sensors. Firstly, we will give a
brief introduction of dense prediction and how the U-Net
works for it. Then, the architecture of the U-Net network for
HAR model based on dense prediction is presented.

1) DENSE PREDICTION AND U-NET

In order to avoid the multi-class window problem, we adopt
dense labeling instead of window labeling. Our method is to
train the densely labeled data and predict each sampling point
of the input sequence. The prediction of each sample’s label
is called dense prediction. The traditional CNN architecture
is suitable for the window labeling prediction, which outputs
a single prediction label for each segment of window data.

U-Net is the development and extension on CNN. Olaf
Ronneberger et al. proposed an end-to-end U-Net network to
achieve pixel level classification in microscopic images [17].
The U-Net structure consists of two paths. One is the encoder
(down-sampling) path on the left side to capture contextual
information, which is composed of several down-sampling
blocks. Each block includes convolution, pooling, activation
and so on. The other is the decoder (up-sampling) path on the
right side for improving the resolution of the network layer
gradually by up-sampling, which consists of the same num-
ber of the up-sampling blocks as the down-sampling block.
By stacking the up-sampling block and the corresponding
down-sampling block on the left side, the shallow and deep
network information can be merged to offset the loss of infor-
mation caused by the previous pooling operation. Finally,
when the resolution of the network output layer and input
layer is the same, the pixel level classification is realized.

As for the two-dimensional time series data that we input,
the first dimension is the sample sequence time dimension.
The second dimension is the number of channels of the
sensor, that is, the number of sensor data axes. So it can be
regarded as a single pixel column and multi-channel image
which is input into the U-Net network. Each sampling point
of the time series data can be predicted bymeans of the ability
of the U-Net pixel level classification.

2) NETWORK ARCHITECTURE

The proposed dense prediction network architecture is
adapted from the U-Net architecture presented by Olaf
Ronneberger. Our network inputs two-dimensional time
series data collected by the sensor. It can be regarded as a
single pixel column and multi-channel image with the size
of (1,N ,C), where N represents the sampling points of the
input subsequence, C represents the number of the sensor’s
channels. Our network architecture consists of the encoder
network and the decoder network. Each down-sampling block
is composed of two convolutional layers with a kernel size
of 1 × Sc and a pooling layer with a kernel size of 1 × Sp.
The size of the feature map remains the same by setting the
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FIGURE 2. Network architecture of the U-Net for HAR.

appropriate filling after each convolution operation. And it
is activated by the Restricted Linear Unit (ReLU) function.
Then the size of the feature map is reduced by half after the
pooling operation. The number of feature maps in each block
of the encoder network is constant, but the number of feature
maps at the next block is twice than that of the previous one.
Each up-sampling block of the decoder network corresponds
to the down-sampling block in the same level of the encoder
network, which is mainly composed of one up-convolutional
layer with a kernel size of 1 × Sp and two convolutional
layers with a kernel size of 1 × Sc. The output feature map
of the convolution operation doubles the size of the output
feature map so that it has the same resolution as the output
feature map of the corresponding down-sampling block to
achieve the merging. Then two convolution operations and
the activation of the ReLU function are performed. After the
last block of the decoder network, we add a Dropout layer to
prevent overfitting. Finally, by mapping each feature vector
to the corresponding class through a convolutional network
with a kernel size of 1 × 1 and Softmax classifier, the dense
prediction results of the input time sequence are obtained and
the dimension is (1,N ,Nc).
Considering that the network output should have the same

size as the input, each convolutional layer adopts the same
padding.We adopt the same settings of the convolution kernel
size Sc, the pooling kernel size Sp and its stride, and the filters’
number f as in [17], where Sc is set to 3, Sp is fixed to 2, its
stride is set to 2, and f is set to 32. The value range of the
subsequence lengthN depends on the network structure.N =

k · 2L , where k ∈ N+, L is the number of the pooling layers

which is also the number of U-Net blocks. The length of the
subsequence can be set longer to speed up the training speed.
The deeper the network is, the stronger the feature extraction
ability will be, but the computational complexity will also
increase. As for the parameter tuning of the network block
number and the subsequence length, we select the optimal
parameters based on the validation procedures on WISDM
dataset. The subsequence length is set to 224, the network
block number is set to 5. Considering the good robustness
of the deep network, the network settings of our U-Net are
consistent across all datasets. We will further discuss the
influence of network depth and subsequence length on each
dataset in Section IV-E. The proposed network structure is
shown detailedly in Fig.2.

3) NETWORK TRAINING

The input feature map of each layer in the network can be
regarded as a three-dimensional tensor of 1 × wl × fl size.
wl represent the length of the input feature map of layer l.
fl represents the number of the input feature maps in layer l.
The i-th input data vector in a particular layer is denoted xi.
Then yi denotes the corresponding output vector of the layer.
It can be calculated by (2),

yi = f ({xi+i′}− ki−1
2 ≤i′≤

ki−1
2
) (2)

where the size of the convolution kernel is represented
by ki. f (�) represents the type of layer: matrix multiplica-
tion of convolutional layer, maximum pooling operation, up-
convolution, nonlinear operation with activation function and
etc. yi is the output of layer l and the input of layer l + 1.
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FIGURE 3. Different types of activity misalignments occurred in dense
prediction results.

Its size can be expressed as 1 × wl+1 × fl+1, among which
wl+1 = (wl − ki)/si + 1. The stride of kernel movement is
represented by si. By performing proper filling operations on
input feature maps, the output feature map can have the same
resolution as the input feature map.
Given a set of input sequences and labels, the goal of net-

work training is to estimate the appropriate parameters (W , b)
of U-Net network to achieve accurate dense prediction. This
is achieved by minimizing the loss values of all samples
from each subsequence in the training dataset. The negative
logarithmic likelihood function as the loss function can be
written as follows:

l(x, y;W , b) =
∑N

j
l ′(x, yj;W , b) (3)

where l ′(x, yj;W , b) = − log(p(yj|x,W , b)) represents the
loss function of the j-th sample in a subsequence.

C. RESULTS ANALYSIS AND POST CORRECTION

To analyze and evaluate the continuous activity recognition
on time series data, the activity-based misalignment measure
is proposed in [32], where the HAR model focuses on the
classification of the interesting classes and the NULL class,
all the misalignment types are related to the wrong classi-
fication of the NULL class. Different from the evaluation
of the HAR model in [32], the HAR model based on dense
prediction is aimed at the multi-class recognition problem in
which the NULL class is just regarded as a common class like
the other activity classes, so that the misalignment types are
related to the misclassification of all classes and are mainly
divided into four types: Overfill, Underfill, Fragmentation,
and Substitution, as shown in Fig.3. Overfill is defined as
the misalignment errors that the recognition result of the
next activity begins before the end of the previous activity.
Underfill denotes the misalignment that the next activity has
already started, but the dense prediction results still remain
the previous activity class. Fragmentation measures the errors
that misclassified as the other activities in the middle of one
uninterrupted activity class. Substitution represents the errors
of assigning wrong classes distinct from the previous and
the next activity class, which usually occurs during the two
activities transition period.
In order to further improve the performance of dense pre-

diction model, we propose a post-correction algorithm to
correct the misalignment errors in dense prediction results.
Considering that the errors of Overfill and Underfill are dif-
ficult to be observed in the dense prediction results without

knowing the groundtruth, our algorithm focuses on correct-
ing the two types of errors: Fragmentation and Substitution.
According to the continuity of activity, each activity frame
in the dense prediction results can be represented as a con-
tinuous activity window AWi = {y[B : F]|∀y = ai},
where B and F denote as the start and end index of activity
class ai. According to the duration of the action, when the
length of the continuous activity window AWi is less than
the given threshold length ρL , AWi may be the misaligned
sequence, and we introduce the error correction window to
represent the possible misalignment sequence, denoted asW .
The error type ofW is determined by the definitions of Frag-
mentation and Substitution. If W belongs to the Fragmen-
tation errors, all recognition results output by U-Net model
within W will be corrected to the activity class adjoined W
directly by the post-correction algorithm. As for the Substi-
tution error, our algorithm corrects all results withinW to the
adjacent activity class before or after the window. Consider-
ing that the boundary and adjacent prediction probability of
W play an important role in determining the activity class
for correcting Substitution errors, we define the boundary
correlation coefficient for the correction window, denoted as:

ρ(pi, pj) = pi · p
T
j (4)

where pi and pj represent the two adjacent probability vectors
for each class in the boundary of W . When the correlation
coefficient of the start boundary denoted as ρ(pB−1, pB) is
greater than that of the end boundary denoted as ρ(pF , pF+1),
all results in the error correction window will be corrected
into the adjacent activity class before the window, or other-
wise corrected into the class after the window. The whole
flowchart for the proposed post-correction algorithm is
shown in Fig.4.

IV. EXPERIMENT

This section focuses on the experiments of HAR using
U-Net. Compared with other algorithms on different datasets,
the experiments evaluate the effectiveness of applying U-Net
to HAR. Firstly, the datasets and experimental configurations
used in the experiments are introduced. Then, a new unified
evaluation index is proposed to suit the dense labeling scene.
Finally, the performance of each algorithm on each dataset is
compared synthetically.

A. DATASET

In this paper, we conduct experiments on the four
datasets, including WISDM dataset [33], UCI HAPT dataset
(HAPT) [34] UCI OPPORTUNITY Gesture dataset (OPP
Gesture) [35] and the self-collected Sanitation dataset. All the
datasets provide the densely labeled data which contain every
sampling’s label. The brief introduction of four datasets for
HAR is shown in Table 1, and more information of the first
three datasets can be found in their original papers.
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TABLE 1. The brief introduction of five datasets for human activity recognition.

FIGURE 4. Flowchart of the post-correction algorithm.

In the following, we introduce the self-collected Sanitation
dataset.1 The self-collected Sanitation dataset is collected
from the open environment. A triaxial accelerometer worn in
a wrist smartwatch is used to collect seven types of daily work
activity data of sanitation workers. The sampling frequency
is 25 Hz. These seven types of activity are: Walk, Run,
Sweep, Bsweep (sweep using a big broom), Clean, Dump and
Daily activities (like sitting and smoking). The whole dataset
contains 266555 samples, in which each sample contains X,
Y, and Z three-axis acceleration values. The proportion of
various types of activity samples is shown in Fig.5. We also

1https://ieee-dataport.org/documents/sanitation-dataset

FIGURE 5. Percentage of activity of the Sanitation dataset.

provide the preprocessed dataset by dividing the whole time
series data into 5026 windows by sliding window segmen-
tation and generating 57 features for each window data.
The time-domain and frequency-domain features are both
extracted.

B. EXPERIMENT CONFIGURATION

In order to train U-Net network, the learning rate is set
to 0.001, the training batch size is set to 32, and the training
epoch is set to 100. The dropout rate is set to 0.2. The network
is optimized and updated by the Adam algorithm.

To evaluate the effectiveness of our U-Net method, we also
conduct the comparative experiments of the HAR meth-
ods based on sliding window prediction and dense predic-
tion, using machine learning and deep learning on the four
datasets. We adopt the simple cross validation on the four
datasets. The whole dataset is randomly divided into the train-
ing set and the testing set, in which the training set accounts
for 70%. We split the validation set from the training set,
and the split ratio is 0.3. The performance on the validation
set is used to select the optimal parameters of traditional
machine learning methods and tune the hyper-parameters of
deep learning methods. Considering that the deep learning
method can extract feature automatically, the raw data of
the four datasets can be feed to the deep networks without
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feature engineering. The optimal hyper-parameters of each
deep network are determined by the validation procedures
on WISDM dataset. The setting of each deep network is
consistent in the four datasets. The implementations of all
comparative methods are based on the descriptions in their
papers and we have released the codes online.2

We compare the proposed U-Net method with the follow-
ing two HAR baselines based on machine learning, namely
SVM [34] and DT [22]. Machine learning-based HAR meth-
ods rely on feature engineering. Both WISDM dataset and
HAPT dataset include the raw data and the extracted features
data. 242 features from OPP Gesture dataset and 57 features
from Sanitation dataset are extracted manually, including the
means, variances and so on. The extracted features datasets
are available online.2

• SVM. In this paper, SVM with radial basis function
(RBF) kernel is used. The validation procedure on each
dataset is used to tune the penalty parameter c on a scale
from 0 to 10. We adopt the One-versus-One Strategy
(OVO) to construct a set of binary classifiers and achieve
multi-class classification on the four datasets.

• DT. In this baseline, we adopt the Gini impurity as the
criteria and choose the best split at each node on the four
datasets.

The three deep HARmethods based on the sliding window
method are also conducted on the datasets as the compar-
ative experiments, including CNN [10], LSTM [30], and
CovLSTM [13]. Similar to the U-Net parameter setting,
the optimal length of sliding subwindow is set to 96 according
to the validation results.

• CNN. The CNN architecture consists of three 1D convo-
lutional layers, three 1D max-pooling layers, and three
fully connected layers in this paper. In each convolu-
tional layer, the kernel size is fixed to 3 and its stride is
set to 1. The number of filters in the convolutional layer
in order is 64, 128, and 256. Each convolutional layer
is followed by a max-pooling layer where the pooling
size is 4 and its stride is 2. The same padding is adopted.
At the top level, a softmax function is employed.

• LSTM. In this paper, the LSTM architecture contains
two layers of forward recurrent LSTMunits, followed by
a fully connected layer and a softmax layer. The number
of hidden units is set to 32.

• CovLSTM. This architecture combines two convolu-
tional layers and two LSTM layers with 32 hidden units.
In each convolutional layer, the kernel size is 5, its stride
is 1, the number of filters is 32, and the same padding
is used. At the top level, a fully connected layer and a
softmax function are employed.

To evaluate the effectiveness of the proposed U-Net
method, we also conduct comparative experiments with HAR
methods based on dense prediction, namely FCN [14], Seg-
Net [18], and Mask R-CNN [19], among which SegNet and

2https://github.com/zhangzhao156/Human-Activity-Recognition-Codes-
Datasets

Mask R-CNN are first applied to HAR. The comparative
methods adopt the same data preprocessing procedure as our
U-Net method, the subsequence length also keeps consistent
with the U-Net’s setting, except the Mask R-CNN.

• FCN. In this baseline, we reproduce a 2D convolutional
layer and a 2D max-pooling layer four times, where the
convolutional kernel size is 1 × 3, the pooling size is
1 × 4, the pooling stride is 1 × 2 and the number of
convolutional filters is 32. A convolutional layer with
kernel size of 1×1 is employed, followed by a 2D decon-
volutional layer to implement the up-sampling operation
and achieve the same length as the input.

• SegNet. The SegNet architecture consists of the encoder
and the decoder network. The encoder network contains
13 convolutional layers which correspond to the first
13 convolutional layers in theVGG16 network, followed
by a max-pooling layer with the pooling size of 1 × 4
and its stride of 1× 3. Each convolutional kernel size is
1 × 3. The preserved max-pooling indices are utilized
by MaxUnpooling operation in the decoder network.
The decoder has the same architecture with the encoder,
except the MaxUnpooling operation. The number of the
filters in the first convolutional layer is set to 64.

• Mask R-CNN. Considering that the Mask R-CNN
network contains two branches for object detection
and image semantic segmentation respectively, among
which the Mask branch is used for semantic segmenta-
tion of the proposal image regions with a size of 28×28,
we apply the Mask branch network to HAR for the
first time and realize dense prediction. The subsequence
length is set to 28. The Mask network has a similar
architecture with FCN and contains a stack of four con-
secutive convolutional layers with kernel size of 1 × 3,
a deconvolutional layer with kernel size 1 × 2, and a
convolutional layer with kernel size of 1× 1. Before the
Mask network, we construct a simple CNN network as
the backbone, which includes a convolutional layer and a
pooling layer with its pooling stride of 1×2. The number
of filters is set to 32.

In addition, the threshold length ρL is set to 25, 25, 10 and
20 on the WISDM, Sanitation, OPP Gesture and HAPT
dataset for the evaluation of the post-correction algorithm’s
performance.

The hardware used in the experiment is equipped with
an NVIDIA GeForce GTX 1060 6G GPU. The program-
ming language used in the experiment is Python3.6.4. The
implementations of machine learning methods are based on
sklearn. The deep learning frameworks we used are Tensor-
flow and Keras.

C. UNIFIED EVALUATION INDEX

The algorithms based on the sliding window method divide
the time series data into several subwindows and predicts a
single label for each subwindow, including SVM, DT, CNN,
LSTM, and CovLSTM. The evaluation indexes for them are
calculated by comparing the given label and the predicted
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label for each subwindow. Whereas the evaluation indexes
for dense prediction are obtained by comparing the given
label and the predicted label for each sampling point in
the whole time series data, including FCN, SegNet, Mask
R-CNN, and U-Net. Due to the difference of the evaluation
index calculation method between the sliding window-based
algorithm and the dense prediction-based algorithm, a unified
model evaluation index is defined. The dense labeling evalu-
ation index calculation method is adopted uniformly. For the
sliding window-based algorithm, each predicted label in the
sliding window prediction results is assigned to all sampling
points within the corresponding subwindow. Then the sam-
pling points’ labels in all subwindows are connected together
and the sliding window prediction results are converted to
the dense prediction results. Considering that the overlap
between successive subwindows for the sliding window-
based algorithm will lead to multi-class prediction conflicts
when assigning the predicted label to the sampling points
within the overlap, thus we set the overlap to 0 in all sliding
window segmentation.
To evaluate the performance of the proposed dense predic-

tion method based on U-Net and the comparison methods,
the evaluation indexes are shown as follows:

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(5)

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

F1-Score =
2 ∗ Precision ∗ Recall

Precsion + Re call
(8)

Fw-Score =
∑

i

wi · F1-Scorei (9)

where TP is true positive, TN is true negative, FP is false
positive, and is false negative.wi is the proportion of samples
with label i.

D. EXPERIMENT RESULTS

We summarize the performance of the nine algorithms on
four datasets and mark the highest score in bold, as shown
in Table 1. The results clearly indicate that our U-Net method
achieves the highest scores on all datasets in terms of Accu-
racy (Acc) and Fw-Score (Fw). U-Net outperforms the com-
parative methods. Most notably, for the OPP Gesture dataset
with a large number of short-term activities, the accuracy
of the U-Net method is up to 94.7%, 3.3% higher than
the second highest score, while the accuracies of the sliding
window-based HAR methods are all not ideal and lower
than 90%. Even though LSTM and CovLSTM have proven
to be of good performance in time series recognition and
perform well in all the experiments except on OPP Gesture
dataset, but U-Net still has a slight advantage over LSTM and
CovLSTM. Furthermore, U-Net achieves far higher accuracy
than LSTM and CovLSTM on OPP Gesture. The reason is
that LSTM and CovLSTM adopt the sliding window method,

which brings the multi-class window problem and reduces
accuracy, especially in short-term activity recognition. Our
U-Net method is based on dense prediction and avoids the
multi-class problem, thus it further improves the recognition
accuracy and is also more suitable for short-term activity
recognition. For WISDM dataset with six kinds of simple
long-term activities, our U-Net method still has an advantage
over the other methods, 1.6% higher than the second highest
accuracy. This proves that U-Net method is not only suit-
able for simple long-term activity recognition, but also more
suitable for short-term activity recognition, showing strong
robustness.

It can be found that although FCN, SegNet, and Mask
R-CNN can also realize dense prediction, U-Net’s perfor-
mance is still better than that of these comparative meth-
ods. Most notably, FCN, SegNet, and Mask R-CNN perform
better on OPP Gesture and HAPT dataset than the sliding
window-based methods, which further proves the advantage
of dense prediction. For WISDM and Sanitation dataset,
the performance of FCN and Mask R-CNN are even worse
than that of CNN. The FCN architecture used in [14] is to add
one up-sampling layer after the traditional CNN architecture,
the low-resolution feature map produced by CNN is directly
linearly expanded so that the output has the same size as the
input and realizes dense prediction. So does theMask R-CNN
used in this paper. Theoretically, the dense prediction results
of FCN and Mask R-CNN are rough and not as good as
U-Net and even worse than traditional CNN based on sliding
window prediction. Our experimental result is consistent with
this theoretical conclusion.

Compared with FCN, the SegNet architecture in this paper
expands the output size of the decoder network gradually,
by adopting multiple deconvolution operation and utilizing
the memorized max-pooling indices from the correspond-
ing encoder feature map. More useful information from the
encoder network is utilized in the decoder network, thus,
SegNet performs better than FCN on the four datasets.
However, its performance is still worse than that of U-Net.
Unlike the SegNet method for dense prediction, our U-Net
utilizes the high-resolution feature map information from
the encoder instead reusing pooling indices only, this indi-
cates that the entire features from the encoder contain fine-
grained information which plays an important role in dense
prediction.

Remarkably, SVM sometimes performs better than the
deep learning methods based on the sliding window predic-
tion. For example, the performance of SVM is even better
than that of CNN and CovLSTM on HAPT dataset, but
the performance of SVM is not stable enough with inferior
robustness.

In order to show the differences between these algorithms
more clearly, it is necessary to calculate the evaluation index
on its different classes of each dataset. For the sake of brevity
and without losing generality, F1-score on different classes is
selected as evaluation index only. Fig. 6 shows F1-Score on
different classes of the four datasets for the nine algorithms.
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FIGURE 6. The F1-scores on different classes of the U-Net method and the comparison methods on four datasets. (a) WISDM Dataset.
(b) Sanitation Dataset. (c) HAPT Dataset. (d) OPP Gesture Dataset.

In general, our U-Net method still performs better than
other algorithms for specific classes classification. Most
notably, as for Sanitation dataset, our F1-Score is 0.998 and
0.905 for Run and Walk, in contrasts, the second highest
F1-Score for Run is 0.906 achieved by SVM, and that for
Walk is 0.78 achieved by CNN. Considering that Run and
Walk are both the minority classes of Sanitation dataset
shown in Fig.5, which account for 1.5% and 3.5% respec-
tively. This also proves that our U-Net method is also suitable
for the unbalanced dataset with reliable performance on the
minority classes. From Fig. 6 (d), the traditional machine
learningmethods can hardly recognize these short-term activ-
ities on OPP Gesture dataset with an F1-score of almost zero

on these activities, leading to the lower recognition accuracy
and Fw-score shown in Table 2. In contrasts, our U-Net
method shows an absolute advantage in specific short-term
activities recognition. For the six common activities of HAPT,
there is a little difference of F1-Score between U-Net and
other deep learning-based comparative methods, but for six
types of transition activities of HAPT, U-Net has obvious
advantages over them in F1-score. Though FCN outperforms
our U-Net method in activity Sit_to_Stand and Lie_to_Sit,
the performance is not stable and still has the potential for
significant improvement. This shows that U-NET can detect
more details of the transition activities and has more stable
performance.
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TABLE 2. The Accuracies and Fw-Scores of the U-Net method and the comparison methods on four datasets.

E. PERFORMANCE ANALYSIS

To further evaluate our U-Netmethod, we conduct the activity
misalignment analysis, the parameter sensitivity analysis and
computation analysis for the proposed method.

1) MISALIGNMENT AND POST-CORRECTION ANALYSIS

We perform activity misalignment analysis on the dense pre-
diction results obtained by our proposed U-Net method on
the four datasets, comparing with the other deep learning
methods, including LSTM, CNN, CovLSTM, FCN, SegNet,
and Mask R-CNN. The obtained experimental results are
shown in Figure 7. For the four datasets, U-Net has the higher
accuracy and shows a significant reduction on Underfill,
Overfill, Substitution, and Fragmentation errors, compared
with the deep learning methods based on sliding window
prediction, such as LSTM, CNN, and CovLSTM. Especially
for the OPP Gesture data, the Underfill and Overfill error
rates of LSTM are 5.54% and 2.74%, while U-Net has the
lower error rates of Underfill and Overfill, which account for
1.42% and 1.39%, respectively. As we know, the errors of
Underfill and Overfill are caused by the inability to identify
the activity boundary correctly. This indicates that U-Net
has an advantage over LSTM in identifying the boundary
of activities more accurately, since the sliding window-based
HARmethodwill result in the loss of useful activity boundary
information while U-Net will preserve more boundary infor-
mation by dense labeling and its specific network architecture
of combing the shallow and deep network information. This is
why U-Net performs better than LSTM, especially for short-
term activity recognition. Though FCN, SegNet, andMask R-
CNN can be also used for dense prediction, the error rates of
Underfill, Overfill, Substitution, and Fragmentation on each
dataset are always higher than those of U-Net. In particular,
there are a large number of substitution and fragmentation
errors in the self-collected Sanitation dataset, which leads to
a sharp decrease in the accuracy of FCN and Mask R-CNN.
Since theMask R-CNN has similar network architecture with
FCN, the misalignment error rates are also similar to FCN.
The errors of Substitution and Fragmentation account for

the largest proportion of misalignments occurred in U-Net

dense prediction results of various datasets. The two mis-
alignment errors are the main causes of U-Net misclassifica-
tion. And FCN, SegNet, andMask R-CNN also face the same
problem as dense prediction methods. The post-correction
algorithm we proposed in Section III-C is mainly aimed at
the correction of these two types of errors. We apply the
post-correction method for the dense prediction results of
U-Net, FCN, SegNet, and Mask R-CNN on four datasets
and analyze the misalignment errors, the obtained results
are shown in Fig.7, denoted as U-Net_PC, FCN_PC, Seg-
Net_PC, and MaskRCNN_PC respectively. Compared with
the original dense prediction results of the four methods,
U-Net_PC, FCN_PC, SegNet_PC, andMaskRCNN_PC have
improved the accuracy on each dataset and reduced the Frag-
mentation error rate significantly, which proves the effective-
ness of the proposed post-correction method for the dense
prediction-based HAR methods. In particular, FCN_PC and
MaskRCNN_PC demonstrate the largest improvement in
Sanitation datasets. But the improvement of OPP Ges-
ture and HAPT dataset is small. As for the OPP Gesture,
the accuracy of U-Net is 94.75%, while the accuracy of
U-Net_PC is 94.78%. Although the Fragmentation error
rate for U-Net_PC decreases, the Underfill error rate for
U-Net_PC still increases. Therefore, the accuracy of U-Net
increases slightly using the post-correction algorithm. The
reason is that determining the optimal shortest threshold of
the activity length is difficult due to too many short-term
activities in OPP Gesture dataset.

2) PARAMETER SENSITIVITY ANALYSIS

In order to evaluate the effect of different settings (net-
work depth, subsequence length) on our proposed approach,
we conduct several experiments on the four datasets, in which
the U-Net’s settings keeps the same as what are shown in
Section III-B(2), except the network depth or the subsequence
length. Our U-Net network architecture consists of the same
number of the down-sampling blocks and the up-sampling
blocks. The more blocks it contains, the deeper the network
will be. We investigate the performance of our U-Net net-
work with different numbers of U-Net blocks to evaluate the
influence of different network depths, the results are shown
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FIGURE 7. Activity misalignment and the post-correction performance analysis on four datasets.

FIGURE 8. Test performance of U-Net with different block number and sequence length. (a) Network depth. (b) Subsequence length.

in Fig.8(a). For WSIDM and Sanitation, the recognition Fw-
Score improves with the increase of block number. Especially
on WISDM, U-Net with the block number of 5 achieves the
highest Fw-Score and has a tendency to remain stable. For
HAPT and OPP Gesture, U-Net with the block number of 5
also achieves the highest Fw-Score, but the overall fluctuation
range is small with the increase of block number. It proves
that it’s optimal to set the network block number to 5 in this
paper. We also investigate the effect of our approach with the
different subsequence length on the four datasets. The results
are shown in Fig.8(b). ForWISDM, the recognition Fw-Score
firstly improves with the increase of the subsequence length
and achieves the highest when the subsequence length grows
to 244 sampling points, then it decreases. U-Net with the sub-
sequence length of 224 also achieves the highest Fw-Score on

the other datasets and the results are not greatly affected by
the length of the subsequence, showing the effectiveness of
our design and great robustness.

3) COMPUTATION ANALYSIS

The prediction time consumption of each method on different
datasets is used to evaluate the computational complexity.
What really affects the prediction efficiency of the model is
not the training time, but the actual prediction speed. Even if
the model training time is short, as long as the prediction time
is too long, it is not an efficient model. As shown in Table 3,
it is the prediction time consumption of nine algorithms on
four datasets. The time unit is in seconds (s).

It can be found that SVM takes a longer time on HAPT
dataset and OPP Gesture dataset, indicating that the time
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TABLE 3. The prediction time consumption (s) of the U-Net method and the comparison methods on four datasets.

efficiency of SVM is not very high. Especially the DT’s
prediction time is very short because it only needs to perform
branch judgment according to each feature. CNN, LSTM,
CovLSTM, FCN, SegNet,Mask R-CNN, andU-Net use GPU
to accelerate the prediction speed in all experiments, which is
not the same as the traditional algorithms that run on CPU.
We find that the prediction time of CNN, FCN, U-Net,
Mask R-CNN, and SegNet increase in turn. In addition,
U-Net’s prediction time is less than 1 second, which can be
further improved on better performance machines. Remark-
ably, although Mask R-CNN has a similar architecture with
FCN, the prediction time of Mask R-CNN is significantly
longer than that of FCN. This is because its subsequence
length is 28, much shorter than that of FCN, thus leading
to the extension of prediction time. It proves that longer
subsequence can speed up the inference speed. In addition,
SegNet has a good performance on the four datasets, but it
takes a longer time since its encoder network contains more
convolutional layers and more kernels than U-Net.

V. CONCLUSION

In this paper, we propose a HAR method based on motion
sensor using U-Net. Different from the existing machine
learning-based and deep learning-based HARmethods which
use the sliding window labeling and prediction, our U-Net
method overcomes the multi-class window problem inherent
in the sliding window method and realizes the prediction of
each sampling point’s label in time series data. The experi-
mental results demonstrate that our U-Net outperforms all the
comparative methods on the four datasets with better perfor-
mance on short-term activity recognition and better robust-
ness. Although our U-Net method is designed for human
activity recognition base on the activity sensor data, our
U-Net method has the potential to realize dense prediction for
the other types of time series data, our research will provide
the foundation for applying U-Net method to the recognition
of other types of time series data.
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