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Abstract 

We present a novel approach for human activity recognition. The 
method uses dynamic texture descriptors to describe human movements in 
a spatiotemporal way. The same features are also used for human 
detection, which makes our whole approach computationally simple. 
Following recent trends in computer vision research, our method works on 
image data rather than silhouettes. We test our method on a publicly 
available dataset and compare our result to the state of the art methods. 

1 Introduction 
Human activity recognition has become an important research topic in computer vision 
in recent years. It has gained a lot of attention because of its important application 
domains like video indexing, surveillance, human computer interaction, sport video 
analysis, intelligent environments etc. All these application domains do have their own 
demands, but in general, algorithms must be able to detect and recognize various 
activities in real time. Also as people look different and move differently, the designed 
algorithms must be able to handle variations in performing activities and handle various 
kinds of environments. 

Many approaches for human activity recognition have been proposed in the literature 
[4, 12]. Recently there has been a lot of attention towards analysing human motions in 
spatiotemporal space instead of analysing each frame of the data separately. 

Blank et al. [1] used silhouettes to construct a space time volume and used the 
properties of the solution to the Poisson equation for activity recognition. Ke et al. [7] 
build a cascade of filters based on volumetric features to detect and recognize human 
actions. Shechtman and Irani [19] used a correlation based method in 3d whereas 
Kobyashi and Otsu [10] used Cubic Higher-order Local Autocorrelation to describe 
human movements. 

Interest point based methods that have been quite popular in object recognition have 
also found their way to activity recognition. Laptev et al. [11] extended the Harris 
detector into space time interest points and detected local structures that have 
significant local variation in both space and time. The representation was later applied 
to human action recognition using SVM [17]. Dollár et al. [3] described interest points 
with cuboids, whereas Niebles and Fei-Fei [13] used a collection of spatial and spatial 
temporal features extracted in static and dynamic interest points. 
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Figure 1. Illustration of a person running and the corresponding xt and yt planes from a 
single row and column. The different frames correspond to the xy planes. 

Kellokumpu et al. [7] used a texture description to characterize Motion History 
Images and showed that a collection of local features can form a very robust description 
of human movements. We build on this idea and extend the idea of using histograms of 
local features into a spatiotemporal space. Furthermore, following recent trends in 
computer vision, we propose a method that is designed to work with image data rather 
than silhouettes. The method is based on using a dynamic texture descriptor, Local 
Binary Patterns from Three Orthogonal Planes (LBP-TOP), to represent human 
movements. The LBP-TOP features have successfully been used for facial expression 
recognition [22]. Niyogi and Adelson [14] proposed the use of xt slices for detecting 
contours of walking people. We propose a method for human detection that uses the 
LBP-TOP features (the same features we use for human motion description), making 
the combined approach computationally simple. 

The rest of the paper is organized as follows. Section 2 introduces the dynamic 
texture descriptors. Section 3 describes their application to human detection and activity 
recognition. We show experimental results in Section 4 and conclude in Section 5. 

2 Dynamic Texture Descriptors – LBP-TOP 
LBP operator [15] describes local texture pattern with a binary code, which is obtained 
by thresholding a neighborhood of pixels with the gray value of its center pixel. An 
image texture can be described with a histogram of the LBP binary codes. LBP is a gray 
scale invariant texture measure and it is computationally very simple which makes it 
attractive for many kinds of applications. The LBP operator was extended to a dynamic 
texture operator by Zhao and Pietikäinen [22], who proposed to form their dynamic 
LBP description from three orthogonal planes (LBP-TOP) of a space time volume. 
Figure 1 shows the spatiotemporal volume of a person running from left to right. It also 
illustrates the resulting xt and yt planes from a single row of and column of the volume 
as well as the first and last xy planes that are the frames themselves. The LBP-TOP 
description is formed by calculating the LBP features from the planes and concatenating 
the histograms. 

The original LBP operator was based on a circular sampling pattern but different 
neighbourhoods can also be used. Zhao and Pietikäinen proposed to use elliptic 
sampling for the xt and yt planes: 
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where gc is the gray value of the center pixel (xc, yc) and gp are the gray values at the P 
sampling points: (xc-Rxsin(2πp/Pxt), yc, tc-Rtcos(2πp/Pxt)) for xt plane and similarly (xc, yc 

-Rysin(2πp/Pyt), tc-Rtcos(2πp/Pyt)) for yt plane. Rd is the radius of the ellipse to direction 
of the axis d (x, y or t). As the xy encodes only the appearance, i.e., both axes have the 
same meaning, circular sampling is suitable. The values gp for points that do not fall on 
pixels are estimated using bilinear interpolation. 

In this work we consider only the usage of the temporal planes, namely the xt and yt 
planes. The reason for this is the variability in the appearance of humans and different 
environments. The xy plane contains a lot of useful appearance information but it 
should be noted that the temporal planes do also encode some of the low level 
appearance information. 

3 Dynamic Texture Method for Human Motion 
Description 
In this section we introduce a novel approach for human activity recognition. We use 
the LBP-TOP descriptors to locate a bounding volume of human in xyt space and then 
use the same features for describing human movements. Finally the temporal 
development of the features is modelled using Hidden Markov Models (HMMs). 

3.1 Human Detection 

Many approaches to human activity recognition rely on background subtraction for 
extracting the location and shape of people in video sequences. As the background 
subtraction is the first stage of processing in many human activity recognition systems, 
it has a huge effect on the overall performance of such systems. Also, many background 
subtraction methods are computationally expensive and memory demanding. This limits 
their possible usage in systems requiring processing at video rate.  

We tackle the problem of computation cost by using the same features for both 
human detection and activity recognition. Usually background subtraction is done by 
modelling the pixel color and intensities [9, 20]. A different kind of approach was 
presented by Heikkilä and Pietikäinen [5] who introduced a region based method that 
uses LBP features from a local neighbourhood. They performed the subtraction by 
extracting the features in each frame. Unlike their work, we do not consider the image 
plane itself but instead the temporal planes xt and yt. 

We adopt the idea of codebooks [9] in our approach and represent each local 
neighbourhood with a set of codes C. As observed by Heikkilä and Pietikäinen [5], the 
thresholding operation in the LBP feature extraction can be vulnerable to noise when 
pixel values of a neighborhood are close to one another. Therefore a bias is assigned to 
the center pixel which means that the term s(gp – gc) in Eq. (1) is replaced with the term 
s(gp – gc + a). Thus, our background model consists of codebook C and the bias a for 
each pixel for both the temporal planes. 

We process the incoming data in overlapping volumes of duration ∆t that is defined 
by Rt, i.e., ∆t = 2Rt+1. Each volume has a center frame that forms the center pixels for 
the feature calculation and each frame acts as a center frame on its turn. If the observed 
LBP code of a pixel  neighborhood of the input volume does not match the codes in the 



 

 
 

 

    

    

    

    

Figure 2. Illustration of LBP patterns that represent no motion. The two images on the 
left illustrate a state a static scene containing no motion and a resulting xt plane. The bit 
patterns illustrate the resulting codes that do not describe any motion. Consider nearest 
neighbor interpolation for the simplicity of the illustration and also note the bias on the 
center pixel. 

corresponding codebook, the neighbourhood around the center pixel is determined to 
belong to an object. The result from xt and yt planes can be combined using the logical 
and operator. With this method, we can extract the bounding volume (3D equivalent to 
a bounding box in 2D) of a human in each space time volume. 

For the current application, the detection part is not adaptive. The method is capable 
of extracting the rough human location and this is enough for our system. The proposed 
detection method can be extended to be adaptive to changes in the background and that 
topic is under investigation though out of the scope of this paper. We present 
preliminary experimental results in Section 4. 

3.2 Activity Description 

The previously introduced dynamic LBP features are used for human activity 
description and the input for activity recognition are the dynamic LBP features 
calculated from the detected human xyt volumes. However, a couple of points need 
addressing to enhance the performance of the features. 

As we do not use silhouette data but rather an approximated bounding volume that 
contains the human, our input also contains some background information as well as the 
static human body parts. The appearance of these regions in the volume only depends 
on the structure of the scene and the clothing of the person and does not contain any 
useful information for motion description. Consider the images illustrated in Figure 2. 
Static parts of the images produce stripe like patterns for the xt and yt planes. As we 
wish to obtain a motion description, we can define (or learn by observing static scenes) 
those stripe patterns in the LBP representation and remove the corresponding bins from 
the histogram. The stripe patterns are always the same for a given LBP kernel only their 
relative appearance frequency depends on the scene structure. Figure 2 also illustrates 
these LBP codes for an eight point neighbourhood. Cutting off these bins reduces the 
histogram length for an eight point neighbourhood into 240 bins instead of 256, but 
more importantly, it also improves the motion description. 



 

Feature histogram of a bounding volume  

Figure. 3. Illustration of the formation of the feature histogram from a bounding 
volume. 

The dynamic LBP features calculated over the whole bounding volume area encode 
the local properties of the movements without any information about their local or 
temporal locations. For this reason we partition the volume into subvolumes and form 
the feature histogram by concatenating the subvolume histograms. Using the subvolume 
representation we encode the motion on three different levels: pixel-level (single bins in 
the histogram), region-level (subvolume histogram) and global-level (concatenated 
subvolume histograms).  

To obtain a rough spatial definition of human movements, we divide the detected 
bounding volume through its center point into four regions. This division roughly 
separates the hands and legs of the person in most viewpoints when the ∆t is small or 
the person does not move much. Using more blocks would of course allow a more 
detailed description but would also produce more local histograms and make the whole 
histogram too long. Using too many blocks could also make the system too sensitive for 
stylistic variation of performing activities.  

The subvolume division and the formation of our feature histogram are illustrated in 
Figure 3. All the subvolume histograms are concatenated and the resulting histogram is 
normalized by setting its sum equal to one. 

3.3 Hidden Markov Model 

As described earlier, we extract the dynamic features from a space time volume of short 
duration. We then model the development of our features using HMM. Our models are 
briefly described next but see tutorial [16] for more details on HMMs. In our approach 
a HMM that has N states Q={q1,q2,...,qN} is defined with the triplet λ = (A,π,H), where 
A is the NxN state transition matrix, π is the initial state distribution vector and the H is 
the set of output histograms.  

The probability of observing an LBP histogram hobs is the texture similarity between 
the observation and the model histograms. Histogram intersection was chosen as the 
similarity measure as it satisfies the probabilistic constraints. Thus, the probability of 
observing hobs in state i at time t is given as: 



h
t

h
t+1

a23

a 11 a 22 a 33

a 12

 
 

Figure 4. Illustration of the temporal development of the feature histograms and a 
simple HMM. This example shows a 3 state left-to-right HMM. 
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where st is the state at time step t, and hi is the observation histogram in state i. The 
summation is done over the bins.  

Figure 4 illustrates how the features are calculated as time evolves and a simple left-
to-right HMM. We can use different kind of model topologies to model different kind 
of movements. Circular models are suitable for modelling repetitious movements like 
walking and running, whereas left-to-right models are suitable for movements like 
bending for example. 

HMMs can be used for activity classification by training a HMM for each action 
class. A new observed unknown feature sequence Hobs={hobs1,hobs2,…hobsT} can be 
classified as belonging to the class of the model that maximizes P(Hobs| λ), the 
probability of observing Hobs from the model λ. The model training is done using EM 
algorithm and the calculation of model probabilities can be done using forward 
algorithm. 

4 Experiments 
We demonstrate the performance of our method by experimenting with the Weizmann 
dataset [1]. The dataset has become a popular benchmark database [1, 2, 6, 8, 13, 18, 
21] so we can directly compare our results to others reported in the literature. 

The dataset consists of 10 different activities performed by 9 different persons. 
Figure 5 illustrates the activities. In the following subsections we show experimental 
results on human detection, feature analysis and human activity classification. 

4.1 Detection 

To get our background model we need to learn the codebook and bias for each pixel on 
two spatiotemporal planes. We train our model with the frames where there is no 
subject in the space time volumes. 

In the background model training we calculate the codebook for each pixel with all 
bias values between amin  and  amax, and we choose the codebook (and the corresponding 



     

     

Figure 5. Illustration of the movement classes in the Weizmann database. Starting from 
the upper left corner the movements are: Bending, Jumping jack, Jumping, Jumping in 
place (‘Pjump’), Gallop sideways (‘Side’), Running, Skipping, Walking, Wave one 
hand (‘Wave1’) and Wave two hands (‘Wave2’) 

 

 

Figure 6. Illustration of the human detection performance. The last image on the right 
illustrates the bias for yt plane feature calculation for the scene viewed next to it. The 
binary result images illustrate the center pixels of the input volume that have been 
determined to not belong to background and the detected bounding volume. 

a) with the smallest number of codes. If codebook size is the same with multiple bias 
values, we choose the one with smallest bias. In our experiments we used amin=3, amax=8 
and eight point neighbourhoods with radii Rx=1, Ry=2 and Rt=1 which means ∆t=3. 
Figure 6 gives examples on the performance. 

It should be noted that the learning method is preliminary and not optimal. But as 
mentioned earlier, the development of the detection part is out of the scope of this paper 
and under current work. 

4.2 Feature Analysis and Activity Classification 

First we want to illustrate how the proposed features themselves can describe the 
characteristics of different movements. We first calculated the LBP-TOP features for 
the dataset and for each movement we summed the histograms over the duration of the 
activity and normalized the histogram sum into one. This representation of the 
movements does not contain any temporal information. 

Result of feature analysis is illustrated in Figure 7a where each row and column 
represent the similarity of one sample to all other samples. Histogram intersection was 
used as a similarity measure. The parameters used for the illustration are Rt=1, Rx=1, 
Ry=2 and Pxt=Pyt=8. It can clearly bee seen that even without any temporal information 
the features form clusters and different movements are somewhat separable. 
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 (a)  (b)  

Figure 7. (a) Illustration of similarity of movements in the database, darker regions 
show higher similarity (b) the classification result. 

We performed the activity classification experiments on the Weizmann dataset using 
HMM modelling and leave one out cross validation. The HMM topologies were set to 
circular for all cyclic activities and left-to-right models were used in other cases. We 
used HMMs with seven states and were able to classify 95.6% of the examples 
correctly using the same parameters as in the previous Subsection. Figure 7b shows the 
confusion matrix of the classification. 

Results achieved by others on this database are summarized in Table 1. From the 
image based approaches Boiman and Irani [2] report the best overall recognition result, 
but their test set does not include the Skipping class. It is easy to see from the confusion 
matrix in Figure 7b that this extra class causes all but one of the mistakes we make in 
the test set. We also run the test without the skipping class and were able to classify 
98.7% of the movements correctly. To our knowledge, our method gives the best results 
on the database when image data is used as an input and is also very competitive against 
approaches that are based on silhouette data. 

Table 1. Results reported in the literature for the Weizmann database. The columns 
represent the reference, input data type, number of activity classes, number of 
sequences and finally the classification result 

reference input act seq result 
Our method image data 10 

(9) 
90 

(81) 
95.6% 

(98.7%) 
Scovanner et al. 2007 [18] image data 10 92 82.6% 
Boiman and Irani 2006 [2] image data 9 81 97.5% 
Niebles et al 2007 [13] image data 9 83 72.8% 
Kellokumpu et al 2008 [8] silhouettes 10 90 97.8% 
Wang and Suter 2007 [21] silhouettes 10 90 97.8% 
Ikizler and Duygulu 2007 [6] silhouettes 9 81 100.0% 



5 Conclusions and Future Work 
We have proposed a novel dynamic texture based method for human activity 
recognition. We extract LBP-TOP features in spatiotemporal space and use them to 
detect human bounding volumes and to describe human movements. The method is 
computationally simple and utilizes image data rather than silhouettes, which makes it a 
suitable method for many applications. We have shown that our preliminary detection 
method can find human regions in spatiotemporal data and we show excellent results on 
human activity classification on a popular benchmark database. 

As future work, we plan to develop the detection part and make it more accurate and 
adaptive to changes in the background. Also, as the xy plane contains much useful 
information we intend to examine how the data from the xy plane could be efficiently 
fused into the description. 
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