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Abstract—In this paper, we develop a novel method for view-based recognition of human action/activity from videos. By observing just

a few frames, we can identify the activity that takes place in a video sequence. The basic idea of our method is that activities can be

positively identified from a sparsely sampled sequence of a few body poses acquired from videos. In our approach, an activity is

represented by a set of pose and velocity vectors for the major body parts (hands, legs, and torso) and stored in a set of

multidimensional hash tables. We develop a theoretical foundation that shows that robust recognition of a sequence of body pose

vectors can be achieved by a method of indexing and sequencing and it requires only a few pose vectors (i.e., sampled body poses in

video frames). We find that the probability of false alarm drops exponentially with the increased number of sampled body poses. So,

matching only a few body poses guarantees high probability for correct recognition. Our approach is parallel, i.e., all possible model

activities are examined at one indexing operation since all of the model activities are stored in the same set of hash tables. In addition,

our method is robust to partial occlusion since each body part is indexed separately. We use a sequence-based voting approach to

recognize the activity invariant to the activity speed. Experiments performed with videos having eight different activities show robust

recognition with our method. The method is also robust in conditions of varying view angle in the range of � 30 degrees.

Index Terms—Human activity recognition, multidimensional indexing, sequence recognition, human body part tracking, EXpansion

Matching (EXM).

æ

1 INTRODUCTION

HUMAN activity recognition from video streams has a
wide range of applications such as human-machine

interaction, choreography, sports, security surveillance,
content-based retrieval, etc. Depending on the environment,
human activity may have different forms ranging from
simple hand gestures to complex dances. In this paper, we
focus on human activity recognition based on angular poses
and velocities of the main human body parts. Even though
we briefly explain the method for body part tracking and
other related issues, the main contribution of this paper is a
novel recognition method of human activity that is more
efficient than prevailing methods.

The human body’s pose frequently gives an indication of
the action that takes place. In Fig. 1, we present an example
of a simple activity. It is not hard to determine that the
activity depicted is of walking. One can classify the activity
just by looking at Fig. 1. This classification does not require
a full video sequence and only three samples are sufficient
to classify the activity with high certainty. This is the idea
that led us to develop our indexing-based method.

In our work, we are focusing on gross activities (such as
walking, jumping) that entail motion of major body parts,
i.e., the arms, legs, torso, and head. Human activity can be
described as a temporal sequence of pose vectors that

represent sampled poses of these body parts. Our principle
of recognizing human activity from sparsely sampled poses
is based on identifying these poses as samples of a
complete, densely sampled model activity. To achieve this
objective, we construct a database for all the major body
parts that includes all the model activities in the form of
pose entries in multidimensional hash tables. Each body
part has a separate hash table which includes all the model
activities. The poses of the body parts are represented by a
set of normalized body part angles to achieve invariance to
body size. Hence, models of human activity are represented
by a sequential arrangement of sets of multidimensional
vectors that correspond to sampled angular poses1 of body
parts over the entire time interval. These vectors are then
divided into a set of subvectors where each subvector
corresponds to the angular pose of different body part.
Next, we form a set of hash tables, each of which
corresponds to an individual body part. The indices in
these hash tables are the poses of the corresponding body
parts (the subvectors) and the contents of these hash tables
are the identities of the model activities and their time
labels. The size of these tables is not too large since body
parts have limited angular motion and, thus, the number of
bins that describe the full range of angular motion of each
body part is quite limited. An important feature of our
approach is the separation of the multidimensional index-
ing into several hash tables, where each table corresponds
to a different body part. This structure enables us to index
and recognize activities even when several body parts are
occluded (as elaborated in Section 5). Also, our approach of
using multidimensional vectors proves to be very efficient
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1. By the terms “angular poses” and “body poses,” we refer to angular
poses and angular velocities of the nine major body parts.
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in terms of storage since all the activities are stored in the
same set of hash tables.

At the recognition stage, a set of multidimensional
indices (which correspond to angular poses) are derived
from the video sequence of the test activity. Each video
frame in the test activity sequence yields a vote vector for
each activity model in the database. This vote vector is a
temporal depiction of the log-likelihood that the indexed
pose belongs to the activity model. The overall vote for each
activity model is obtained by integrating the votes for all the
test frames using sequential correlation. Details are pro-
vided in Section 4. The overall votes for each activity model
correspond to the likelihood that the test frames actually are
samples of this particular model activity. As elaborated in
Section 3, our approach is robust to variations in an
activity’s speed and timing. Another advantage of this
approach is the tremendous flexibility it provides in
sampling activity sequences. There are no strict require-
ments either on the number of sampled body poses (frames)
or on the frame intervals of the test sequence. Users need
only a set of sparsely sampled representative body poses for
activity recognition. We show in Section 3 that the
probability for false detection declines exponentially with
the number of sampled body poses. So, only a few body
poses are required. The organization of the activity database
also results in tremendous reduction of recognition time
and of space requirements since all the candidate model
activities are examined at one voting action as they are
stored in the same set of hash tables.

In Section 3, we describe the theory behind our
approach. In Section 4, we describe the multidimensional
indexing and the voting schemes. Section 5 discusses the
application of our approach and demonstrates the method
experimentally. The main contribution in this paper is a
novel recognition method and our tracking scheme only
provides inputs; therefore, it is elaborated in the appendix.

2 PREVIOUS WORK

A paper by Gavrila [10] is an excellent reference which
conducts an intensive survey on the different methodolo-
gies for visual analysis of human movement. Gavrila
groups them into 2D approaches with or without explicit
shape models and 3D approaches. The 2D approach
without explicit shape models is based on describing

human movement in terms of simple low-level 2D features
instead of recovering the pose. The second approach, which
is a view-based approach, uses explicit shape models to
segment, track, and label body parts. The third approach
attempts to recover the 3D poses over time. More recently,
there has been a survey by Moeslund and Granum [17]
which describes various computer vision-based human
motion capture. They elaborate about the various categories
of human motion capture, namely, initialization, tracking,
pose estimation, and recognition. Human motion recogni-
tion is classified into static and dynamic recognition. Static
recognition is based on using spatial data, one frame at a
time, and dynamic recognition uses the temporal character-
istics of the action. Our indexing and sequencing-based
approach differs from all the methods surveyed by Gavrila
[10] and Moeslund and Granum [17] since it combines the
static and dynamic recognition approaches.

Unlike our work, which can classify eight different
activities and can be easily extended to even more than eight
activities, past works focused on recognition of very few
activity classes. Fujiyoshi and Lipton [8] use skeletonization
to extract internal human motion features and to classify
human motion into “running” or “walking” based on the
frequency analysis of the motion features. Yang and Ahuja
[28] apply time-delay neural network (TDNN) to hand
gesture recognition and achieve quite a high recognition rate.
Schlenzig et al. [24] useHiddenMarkovModel (HMM) and a
rotation-invariant imaging representation to recognize visual
gestures such as “hello” and “good-bye.” HMMs are used by
Yamato et al. [27] for recognizing human action in time
sequential images. HMMs are also utilized by Starner and
Pentland to recognize American Sign Languages (ASL).
Darrell and Pentland apply dynamic time warping to model
correlation for recognizing hand gestures from video. Polana
and Nelson [22] use template matching techniques to
recognize human activity. Motion Energy Images are used
by Bobick and Davis [1] for recognition.

Haritaoglu et al. [11] implemented a system for human
tracking and activity recognition in which the activity
recognition part is mainly based on analysis of the projected
histograms of detected human silhouettes. This system
classifies human poses in each frame into one of four main
poses (standing, sitting, crawling/bending, lying) and one of
threeview-basedappearances (front/back, left side, andright
side) and activities are monitored by checking the pose
changes over time. In another work, Ivanov and Bobick [12]
recognize generic activities using HMM and stochastic
parsing. These activities are first detected as a stream of low
level action primitives represented using HMM and then are
recognizedbyparsing thestreamofprimitive representations
using a context-free grammar. Bobick and Davis [2] recog-
nizedhumanactivitybymatchingtemporal templatesagainst
stored instances of views of known actions. More recently,
Galata et al. [9] useVariable-LengthMarkovModels (VLMM)
for modeling human behavior. They use VLMMs because of
theirmorepowerful encodingof temporaldependencies.Our
indexing-based recognition approach differs from all the
above-mentionedworkssince itdetermines thebestmatching
activity in a single indexing operation.
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Fig. 1. Three sampled video frames of a man walking. (a) Frame 7,

(b) frame 12, and (c) frame 15.



3 THEORETICAL FOUNDATION OF OUR APPROACH

In this section, we describe the theoretical foundation to our
approach in recognizing human activity using indexing. Our
representation for human activity in video frames could be
described as a concatenation of 18-dimensional subvectors xi

that describe the angles and angular velocities of nine body
parts.2Each subvector pertains to a video frame and, thus, the
wholevideo sequence canbe representedbyavectorYwhich
is a concatenation of all the subvectors xi. Please note that, in
our representation, the angles are only 2D projections of the
actual 3D angles. Hence, our representation is limited to a
given view of the activity and, so, our scheme is view-based.
However, we find that this representation is not very
sensitive to changes in vantage point and the viewing
direction can be changed in the range of�30 degrees without
seriously affecting the recognition rate. Experimental results
that verify this assertion are included in Section 5 and in
Fig. 17. In the future, we plan to incorporate a method for
recovery of the 3D angles [7] that will enable us to make our
recognition method view invariant.

To recognize an activity, one has to compare the test
video to a model activity. In other words, the test vector Yt

has to be compared with a set of model vectors
fYm;m 2 ½1;M�g, where M is the number of activity models
in the database. A similar problem was dealt with using
Hidden Markov Models (HMM) [12], [19], [24]. We find that
the solution can be significantly simplified if we make some
assumptions that will be detailed later. The problem of
activity recognition can be formulated as a Maximum
Likelihood Sequence Estimation (MLSE). The MLSE pro-
blem is to determine the most likely sequence Ym given the
observations Yt. The Viterbi algorithm [18] provides a
computational approach to solving such a problem. How-
ever, we use an indexing approach which is computation-
ally simpler. We assume that the random differences
between the subvectors xt and xm can be described as
multivariate zero mean Gaussian distribution. Assuming
that these variations are conditionally independent from
sample to sample, then the likelihood function for the
sequence P ðYtjYmÞ can be written as

P ðYtjYmÞ ¼ P ðxt1
;xt2

; � � � ;xtk
jxm1

;xm2
; � � � ;xmk

Þ

¼
Y

k

i¼1

e
ÿ1
2

xti
ÿxmi

ð Þ
T
Cÿ1
x xti

ÿxmi
ð Þ

� �

ð2�Þ
N
2 jCxj

1
2

;
ð1Þ

where Cx is the covariance matrix of the distribution of the
training set for xm, N is the dimension of the subvectors xm

or xt (18 in our case), and k is the number of frames in the
activity sequence. Using the log-likelihood function, we get

logP ðYtjYmÞ ¼
X

k

i¼1

ÿ1

2
xti

ÿ xmi
ð ÞTCÿ1

x xti
ÿ xmi

ð Þ

� �

ÿ kG;

ð2Þ

where G is the logarithm of the denominator in (1) given by

G ¼ log ð2�Þ
N
2 jCxj

1
2

h i

: ð3Þ

The most likely activity sequence 
 is found by the
maximum-likelihood approach,


 ¼ argmax
m

X

k

i¼1

ÿ1

2
xti

ÿ xmi
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x xti
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ð Þ
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: ð4Þ

3.1 Foundations of the Voting Approach

Finding the most likely activity can now be solved by an
indexing-based voting approach. In this case, for each test
subvector xti, we accumulate votes for all themodels. In such
voting, a model m will accumulate an incremental vote of

ÿ1

2
ðxti

ÿ xmi
ÞTCÿ1

x ðxti
ÿ xmi

Þ ÿG ð5Þ

for each test frame i. This process is repeated by voting for
all the frames i in the test sequence. In our method, we even
simplify this voting further by voting only on a few
representative frames which are sparsely sampled from the
test video sequence.

In order to assess how many sampled poses/frames are
necessary for robust activity recognition, in general, one has
to characterize the behavior of the probability of false
matching as a function of the number of sampled test body
posesK.We first performa statistical study of the probability
distribution pABð�Þof theminimalmultidimensional distance
� between activities A and B. This is done simply by finding,
for every frame of A, the minimal distance to any frame in B.
In Fig. 2,we show pABð�Þ, whereA is the jumping activity and
B is the sittingactivity. InFig. 3,weshowpABð�Þ,wherebothA
and B are jumping activities but performed by different
people. This probability distribution curve is ameasure of the
closeness between the two activities when the number of
sampled test poses is one. The high density of the probability
distribution in the range of lower values of distances for the
two different jumping sequences in Fig. 3 clearly show the
closeness between the two versions of the jumping activity
even when they are performed by different people, whereas
theprobability distributionof the jumpingand sitting activity
in Fig. 2 is comparatively sparse. The area under this
probability distribution curve pABð�Þ below a threshold ,
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2. The nine body parts are torso and head, upper arms and legs (thighs)
and lower arms (forearm plus hand), and legs (calf plus foot).

Fig. 2. Probability distribution of the multidimensional Euclidean distance

for the jumping activity and the sitting activity. This distribution is quite

sparse compared to the one in Fig. 3.



PABð� � Þ, indicates the probability that the test sequence is

identified incorrectly (assuming thatA 6¼ B). This threshold 

is the distance that corresponds to a good match.

PABð� � Þ ¼

Z 

0

pABð�Þ d� ¼ �: ð6Þ

Assuming that PAB is independent from sample to sample,

the joint probability for a false matching in all the frames

when using K test sampled poses can be obtained by,

PABð�1 �  and �2 �  � � � �K � Þ � �K : ð7Þ

The inequality arises from our sequencing method that

reduces the probability for false matching by further

reducing the time interval for each subsequent sample.

For example, we show in Fig. 4 the probability for false

match between jumping and kneeling as a function of K.

Actually, the sequencing process further reduces the

probability for false matching since each subsequent frame

is matched in a decreased space and, therefore, has even

lower probability PABð�Þ.

3.2 Dealing with Time Shifts and Activity Speed
Variations

In most test sequences, we encounter the problem that the
activity is not synchronized with the model activity.
Usually, there is a time shift between the two sequences.
This time shift denoted by a, is a priori unknown and has to
be found, along with the activity classification. We solve
this problem by combining the votes with temporal
correlation.


 ¼ argmax
m

argmax
am

X

k

i¼1

ÿ1

2
xti

ÿ xmiÿam

ÿ �T
Cÿ1

x xti
ÿ xmiÿam

ÿ �

� �

 ! !

;

ð8Þ

where am is the time shift between the test sequence and the
mth model sequence of the activity.

Another problem that arises in many activities is the
problem of speed variations of the activity. The same
activity could be performed with different speeds and the
speed can even vary during the course of the activity.
Variations of speed are actually equivalent to variations in
time scale. This problem is quite difficult, in general, since it
requires complex search for the optimum votes with
various time scales and time shifts.


 ¼ argmax
m

argmax
s

argmax
am

��

X

k

i¼1

ÿ1

2
xti

ÿ xmsðiÿamÞ

� �T

Cÿ1
x xti

ÿ xmsðiÿamÞ

� �

� �

 !!!

;

ð9Þ

where s denotes the time scale.
In Section 4, we propose a method which provides an

efficient and robust solution to speed invariant activity
recognition. Our solution is based on sequence matching of
the sparse samples. The first underlying principle in the
method is that the sequence of the samples of any activity do
not change with any variations of speed. This is obvious.
Thus,we can reduce the search space by first searching for the
optimal vote for the first test frame xt1

and then searching for
the next optimal vote for the second test frame xt2

only in the
reduced set of model frames which occur after the matched
model framewithxt1

. The sameprocess repeatswith the third
test frame, the fourth test frame, and so on.

In periodic activities (such as walking, running, etc.), the
first frame in the test activitymaymatch amodel framewhich
is toward the end of the period and the second test framewill
then match a model frame which occurs before the first
matchedmodel frame. Imposing the sequencing condition in
such a case will cancel such matching. To avoid such
situations, we extend each model activity sequence to two
consecutive periods for all the periodic activities.

4 MULTIDIMENSIONAL INDEXING AND VOTING

In this work, we are interested in activities that involve
motions of major body parts. Therefore, the human body is
represented only by nine generalized cylinders for the torso,
upper arms and legs (thighs), and lower arms (forearms +
hands) and legs (calves + feet), as in Fig. 5. In our video
analysis,we consider the 2Dprojections of thismodel. The 2D
Cartesian coordinates of all the major joints connecting the
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Fig. 3. Probability distribution of the multidimensional Euclidean distance
between two different versions of jumping performed by different

persons. Note that this distribution is quite concentrated in the low

distance values compared with the one in Fig. 2.

Fig. 4. Probability for false matching between jumping and kneeling as a

function of K.



above mentioned parts are derived using a tracking proce-
dure for body parts which is explained in the Appendix. For
our application, the pose of the whole body at any instant is
composed of the poses of the arms, legs, and torso. To achieve
invariance to body size, the 2D Cartesian coordinates are
transformed into 2D angles. The hash table is four-dimen-
sional for the limbsand two-dimensional for the torso.Weuse
4D tuples ð�1; �2; _��1; _��2Þ, where �1 denotes the angle between
the positive x-axis and the upper arm or the thigh and �2
represents the angle between the positive x-axis and the
forearm or the calf, _��1 denotes the angular velocity of the
upper arm or thigh and _��2 denotes the angular velocity of the
forearm or the calf. For the torso, the 2D tuples are ð�3; _��3Þ,
where �3 represents the angle between the positive x-axis and
themajor axis of the torso and _��3 is the angular velocity of the
torso. Theangularvelocities are calculatedas thedifferenceof
the angular positions of two successive frames.

The next step is to quantize thesemultidimensional tuples
intomultidimensional bins to form indices into separate hash
tables. In our indexing scheme, we have five hash tables: one

(h1) for the torso, two (h2 and h3) for the legs, and two (h4 and
h5) for the arms. The model information stored in the hash
tablecontainsapairofvalueswhichdenote themodelnumber
fm;m 2 ½1;M�g and the time instant ft; t 2 ½0; Tm ÿ 1�g of the
model activity in the database, where M is the number of
activitymodels in thedatabase andTm represents the number
of image frames formodelm. This information is stored at the
bins that correspond to the angular pose that pertains to the
model activity m at the particular instant t. The hash table
structure for the limbs is shown in Fig. 6. Each hash table is
updatedusing theangularpositionof thebodypartsobtained
from each activity model. In the hash table, every entry may
include a set of different activity models which pertain to the
same body part pose. This arrangement of the hash tables is
quite efficient for storage since it includes all the model
activities inthesametableandalsoenablesrobustrecognition.

Our recognition scheme consists of three stages: The first
stage involves voting for the individual body parts. The
second stage combines the votes of the individual body
parts for each test pose/frame. The third stage obtains the
final activity vote by integrating the votes of individual test
frames based on the sequence information. The recognition
scheme is illustrated in Fig. 7 in the form of a flow diagram.

In the first stage, we decompose the body pose in each
frame into angular poses and velocities of body parts and
index into the hash tables of the corresponding parts. The
voting scheme for each part hi employs M 1D arrays
V hi

mkðtÞ;m 2 ½1;M�, where each array corresponds to a
different activity model and to k, which is the frame number
of the test activity. One may have several items in the same
hash table bin that correspond to the same pose index; such
items may correspond to different activity models and/or
may pertain to different time instants. In order to tolerate
slight pose variations that may occur in the same activity, it
is necessary to also consider the neighboring pose bins of the
indices derived from the poses of the test activity. Let bki ¼
ðqk1 ; q

k
2; q

k
3 ; q

k
4Þ denote the quantized bin of one of the limbs

(hi; i 2 ½2; 5�) for a test pose in test frame k and let b0i ¼
ðq01; q

0
2; q

0
3; q

0
4Þ denote a neighboring bin in the corresponding

hash table. We define fðb; c; d; eÞ as a mapping function from
a bin’s offset b; c; d; e to the f range ½0;ÿ1Þ. Here, we choose
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Fig. 5. A 3D human body model.

Fig. 6. The hash table structure used for the limbs.



this mapping function to be a logarithm of a 4D Gaussian

(assuming uncorrelated covariance matrix Cx) which con-

forms with our assumed model in (2),

fðb; c; d; eÞ ¼ log e

ÿ1
2

bÿb0
�b

� �2

þ
cÿc0
�c

ð Þ
2
þ

dÿd0
�d

� �2

þ
eÿe0
�e

ð Þ
2

� �

2

6

4

3

7

5
; ð10Þ

where �b; �c; �d; �e denote the scale of the Gaussian along the
respective axes, ðb0; c0; d0; e0Þ represent the center of the
function. The standard deviations of the Gaussians are
selected using statistical analysis. Each model activity is
derived by averaging several video sequences containing the
same activity. Since the number of frames in each of these
sequences is different in most instances, we interpolate
between frames tomake this number equal.We thencalculate
thevariance of the angularpose for eachbodypart over all the
sequences for that activity at that frame instant. This is then
done for all the frames of the sequences taken for that activity
andall thesevariancesareaveragedtogetasinglevariance for
each bodypart for that activity. These variances are later used
in our probability distribution models (as in (10)). We do this
for all the models and for all the body parts.

In the voting process, a model m with time instant t in
the entry hiðb

0
iÞ; i 2 ½2; 5� receives a vote from the test pose bki

of one of the limbs according to

V hi
mkðtÞþ¼ f jqk1 ÿ q01j; jq

k
2 ÿ q02j; jq

k
3 ÿ q03j; jq

k
4 ÿ q04j

ÿ �ÿ �

; ð11Þ

whereþ¼ represents incrementing the value of the left-hand
side by the value of the right-hand side. V hi

mkðtÞ is initialized to
zero before the voting begins. f is defined in (10) and qk1 , q

k
2 , q

k
3 ,

and qk4 and q01, q
0
2, q

0
3, and q04 are defined in a prior paragraph.

This voting mechanism is illustrated in Fig. 8. For additional
voting on the poses of the torso, we use

V h1

mkðtÞ þ¼ f jqk5 ÿ q05j; jq
k
6 ÿ q06j

ÿ �

; ð12Þ

where qk5 denotes the quantized bin of the angular pose of

the torso in test frame k, qk6 denotes the quantized bin of the

angular velocity of the torso in test frame k, q05, q
0
6 denote a

neighboring bin, and the mapping function f is a logarithm

of a 2D Gaussian in this case.
In the second stage, the votes that correspond to a

particular test image frame k are denoted as VmkðtÞ and are

obtained by combining the votes for the torso and the votes

for other body parts. The votes from the limbs and torso are

combined by addition. Hence, the votes for a test image

frame are given by:

VmkðtÞ ¼
X

5

i¼1

V hi

mkðtÞ: ð13Þ

This process of voting and combining of votes for

different body parts is illustrated in Fig. 9. The final

result of the first two stages is a set of M 1D voting arrays

fVmkðtÞ;m ¼ 1; � � � ;Mg, where m is the model number and

k represents a test frame k ¼ 1; � � � ; K and K is the

number of test frames. A numerical example of the first

two stages of voting is shown in Fig. 10.
In the third stage, the votes obtained from all the

individual test frames are combined. This combination can

be done in two ways, temporal or sequential correlation. In

temporal correlation, the temporal difference between the

successive test frames is used to combine the votes. This

method fails for activities performed at different speeds. For

speed invariant activity recognition, we find that, even

though the speed of the activity may change, the sequence

of the body poses always remains almost the same (for the

same activity). So,we can combine the votes of the test frames

by using sequence information as follows: The final vote for

themthmodel can be obtained by the following equation

Vm ¼
X

K

k¼1

VmkðLkÞ: ð14Þ

In order to have the same sequences, the following

conditions have to be satisfied in (14): Li < Lj; i < j and

VmkðLkÞ is the maximum vote for the activity m and Lk is

the argument of the maximum vote. The recognized activity

is then the model that corresponds to the maximum of

Vm;m ¼ 1; � � � ;M.
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Fig. 7. The Flow Diagram of our recognition approach.

Fig. 8. A voting example of the left arm. On the left, the center square
ðq11 ; q

1
2Þ of the grid represents the bin from the pose of the left arm and

the surrounding squares are neighboring bins. The upper-right bin
ðq01; q

0
2Þ contains three entries from models m1 and m2. These votes are

described by the bars on the right diagram. This diagram describes two
1D voting arrays for activity models m1 and m2.
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Fig. 9. A diagram of the whole voting process which illustrates how voting takes place for the different body parts for different model activities and the

way in which the votes for different body parts are combined.

Fig. 10. A numerical example illustrating the process of voting for the five body parts for a pose corresponding to a jumping test sequence. The votes
shown are with respect to different frames of model jumping activity stored in the hash table. The votes are shown for a subset of model frames
which include the winning pose and its neighbors. The frame numbers of the poses which are shown are represented in terms of the winning frame
w. The test pose which is being voted for is shown in the picture in the top right-hand corner and the model pose which received the highest vote is
shown in the bottom right-hand corner.



5 EXPERIMENTAL RESULTS

In this work, we use a novel method for human body

tracking using EXpansion Matching (EXM) [4]. However,

since this paper is focused on a novel method for human

activity recognition and since there are many other methods

for human tracking (see a survey in [10]), we shall describe

our method very briefly in the Appendix.
We applied our method to a database of eight different

human activities. These activities are jumping, kneeling,

picking up an object, putting down an object, running, sitting
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Fig. 11. Sample frames of jumping sequence to illustrate the full range of the activity. The skeleton superimposed on the human body represent the
detected parts.

Fig. 12. Sample frames of sitting sequence to illustrate the full range of the activity. The skeleton superimposed on the human body represents the
detected parts.



down, standing up, and walking. A total of 92 activity video
sequences are captured in our lab using aKodakdigital video
camera connected to aCompaqAMDK7computer.Outof the
92 videos, we used 24 as model activities and 68 as test
activities. Out of the 68 test activities, 28 videos are taken at
seven views and are used for analysis of the view point
sensitivity of our scheme and the remaining 40 videos are
used as regular test activity, where the activities are
performed by five people. The eight model activities are
derived from 24 videos where each model is obtained after
averaging over a sequence of three videosperformedby three
people. Figs. 11 and 12 show sample frames of the jumping
and sitting activity. For each video recording, we first
manually locate the position, direction, and size of each body
part of the subject in the first frame of the video. Next, the
EXM tracking method is used without manual intervention
for thewhole video stream. The tracking results are shown in
Fig. 13 and Fig. 14, which are overlaid on the original images.
Although we display, for each recording, only a few frames,
the tracking is performed on successive frames in each video
recording. Fig. 13 shows a man jumping up and down and
Fig. 14 shows a person walking in a cluttered environment.
From these results, we determine the 2D location of all the
parts and store them in a database. Further, the 2D angles of
all the body parts are determined and five different hash
tables are created for the torso and the four limbs.

The experiment is conducted on a test set of 40 activity
videos, which is different from the model set. The test set
consists of five different people performing each of the eight

activities. The test frames are generated by taking four
frames from each test set which are sampled at random
time intervals. To ensure independence, we restrict the
random samples to not being too close to one another.

To determine how many frame samples are required for
robust recognition, we examine the “number of frames”
versus the “recognition rate.” As shown in Fig. 15 above
four frames the recognition rate is close to 100 percent.
Thus, we require a minimum of four frames for all our
recognition experiments. These results conform with the
probabilities for false matching derived in (7).

Table 1 displays the average votes for each possible
activity pair for this method. It can be observed that the
average score for each test activity is the highest for the
correct model activity in the table. We also test each
individual score and find that all of them are correct. This
shows that the method recognizes all the activities correctly.

We also perform experiments to study the occlusion
sensitivity of our recognition method in conditions of
partial occlusion of some body parts. The results have been
tabulated in Table 2. This demonstrates our method’s
inherent robustness to partial occlusion due to the
independent structure of the five hash tables of the different
body parts. The method maintains high correct recognition
rates even when two body parts are occluded.

We also perform experiments to find the view point
sensitivity of our recognition scheme with activities
performed at azimuth angles ranging from 0-90 degrees.
Fig. 16 shows an example of the different views of an
activity tested. Fig. 17 shows the recognition results that we
obtain for activities viewed at different angles. The results
show that our method is invariant to view point variations
to the extent of �30 degrees in azimuth.

6 CONCLUSIONS

Human activity recognition finds application in the fields of
human-machine interaction, security surveillance, content-
based retrieval, etc. In this paper, we present a novel
method for view-based human activity recognition by
indexing into a multidimensional hash table followed by
a sequence-based voting scheme.

This method gives us 100 percent recognition with 40 test
videos. To evaluate the effectiveness of our method
quantitatively, we define the Average Discrimination Ratio
(ADR) as the average of the ratios of the first maximum vote
to the second maximum vote for each activity. The average
ADR for all the activities is 2:15, which means that the
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Fig. 13. The frames of a video stream of a man jumping overlaid with

wire frames representing detected parts. (a) Frame 1, (b) frame 5, and

(c) frame 9.

Fig. 14. The frames of a video stream of a man walking overlaid with

wire frames representing detected parts. (a) Frame 5, (b) frame 8, and

(c) frame 11.

Fig. 15. A graph of the recognition rate versus number of sparse test

frames used in the voting. One hundred percent recognition rates are

achieved with only four sampled poses.



correct activity receives more than double the votes of the
second highest vote.

Our representations of the angles are only 2D projections
of the actual 3D angles. Hence, our representation is limited
to a given view of the activity and, therefore, our scheme is
view-based. However, we find that this representation is not
very sensitive to changes in vantage point and the viewing
direction can be changed in the range of�30 degrees without
seriously affecting the recognition rate. Currently, we are
working on an inverse kinematics-based method for the
recovery of the 3D angles from 2D images. Initial successful
results show that our activity recognition system can be
extended to be view invariant with only additional pre-
processing.

In summation, we propose here a representation for
human action/activity which can accurately describe any
complex human activity/action and develop a robust
method for activity recognition and retrieval. The indexing
approach also provides an efficient storage and retrieval of
all the activities in a small set of hash tables. The number of
activities can be increased just by adding sampled model
activities to the hash tables. As our experiments demon-
strate, the method is also robust to partial occlusion.

APPENDIX

HUMAN BODY PART TRACKING USING EXPANSION

MATCHING TECHNIQUE

In this work, we use a novel approach for human body
tracking using EXpansion Matching (EXM) [4], [25]. The
EXM filter is an efficient template matching approach and
provides good results since it relies on image features with
medium/high frequency content such, as texture and
edges, which are present everywhere in the image. An
important advantage of EXM matching is that it is highly
robust to partial occlusion [3], [4]. Each body part is

represented in the form of an ellipse, as illustrated in Fig. 18.
For tracking of the human body, we construct an EXM filter
for each body part. Further, the tracking is performed by
application of these EXM filters successively and searching
for maximum response. Tracking robustness of our
approach is improved by a momentum-based updating
scheme of the tracking filters. There have been many works
[23], [20], [6], [19], [26], [5], [15], [16], [14], [21], [13] in the
area of human body tracking. Ju et al. [13] represented body
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TABLE 1
Average Votes of Activity Sequences for the Voting/Sequencing with Angular Pose and Velocity-Based Voting

The rows correspond to test activity, while the columns correspond to the model activities. The best score in each row is in boldface numerals. The
method yields correct recognition since the scores along the diagonal are the highest in each row.

TABLE 2
Correct Recognition Rate under

Occluded Conditions of Body Parts

The method maintains high recognition rates even when two body parts
are occluded.



parts in their tracking algorithm using patches and further

used a parametric model for representing the motion.

However, we choose to use our EXM-based method since it

provides robust tracking even when the body part tracked

is partially occluded or undergoes lighting variations.
The Expansion Matching approach is based on expand-

ing the signal with respect to a set of basis functions that are

all shifted versions of the template [4], [25]. In practice, the

template, which serves as a basis function, is translated to

all the candidate locations in the image. The magnitude of
the expansion coefficients obtained at a particular location
signifies the extent of the presence of the template at that
location. Since EXM optimizes a novel Discriminative Signal
to Noise Ratio (DSNR), which considers as unwanted
clutter all the responses not at the center location, it
achieves a very sharp output peak where the template
matches the image. In contrast, the widely used matched
filtering (correlation-based matching) usually outputs a
very broad peak which is also more sensitive to occlusion.

For human body tracking, one needs to obtain a suitable
set of templates for effective tracking. In this paper, we use
a human model similar to the one used in [5], [16] with
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Fig. 16. Frames of jumping sequence for different views of the activity. The number on the lower left corner of each of the images represent the

azimuth angle (in degrees) at which the activity is viewed. (a) Azimuth angle 0, (b) azimuth angle 15, (c) azimuth angle 30, (d) azimuth angle 45,

(e) azimuth angle 60, (f) azimuth angle 75, and (g) azimuth angle 90.

Fig. 17. A graph of the votes that were obtained for different view angles
of four different activities (jumping, sitting, walking, and running activity).
The squares in the graph represent correct recognition of activity. The
results show that all the activities were correctly recognized at least up
to 30 degrees. Fig. 18. A model of human body parts for EXM filtering.



slight variations. The human body is represented by nine
cylinders for the torso, upper arms and legs (thighs), and
lower arms (forearm plus hand) and legs (calf plus foot),
plus a sphere for the head. Each of the body parts is
considered as a rigid object that can rotate and translate. In
our 2D representation, the cylinders are represented as
elliptical regions in the image, as described in Fig. 18. The
representation of the posture of the body is composed of the
poses of individual parts. In our convention, all the poses
are relative to the positive x-axis. The pose of the torso is
described by the position of its mass center and the
direction of its major axis. The upper arms posture is
represented by the angles between their axes and the
positive x-axis and the posture of the lower arms is
represented by their angles between their axes and the
positive x-axis. Similar representation is used for the legs.

Here, we assume that the initial positions and sizes of
these parts are known and our goal is to track these parts in
a video stream. Since the extent of the possible relative
motion between head and torso is very small compared
with their sizes, we think that it is reasonable to designate
only one EXM filter for these two body parts. For the rest of
the body parts, we designate one filter for each. Hence, for
tracking of the entire body, we have nine EXM filters.

The tracking is performed by applying the set of nine EXM
filters represented in elliptical regions to each frame in the
video stream.An example of EXM filtering is shown in Fig. 21
which showsdetectionof the elbow.To reduce computations,
the filters areappliedonly in thevicinityofpreviouspositions
of these parts. The positions of the parts are updated
sequentially. Since all parts move around the torso and,
generally, upper arms and legs move less than lower arms
and legs, the order of the application of the EXM filters
corresponds to their movement relative to the torso.
Obviously, we should use the torso-head filter first to find
the new position of the major portion of the body in the next
image. The motion of the torso possibly consists of transla-
tion, as in the case of walking, as well as rotation,as in the
situation of bending. If the related translation and rotation are
continuous over time, then one needs to apply the torso EXM
filter in the neighborhood of the current position in the three-
dimensional space ðx; y; �Þ with x and y representing
translation and � for rotation in the image plane. The best
newpositionwouldbe the oneatwhich the output of the filter
achieves the maximum in the ðx; y; �Þ space. These three-
dimensional variations can be implemented by first rotating
theEXMfilter byadiscrete set ofdirectionsand thenapplying
the set of rotated filters to the image. The process of the three-
dimensional filtering is depicted in Fig. 19.

Once the new position of the torso is found, the current
positions for the upper arms and legs need to be updated

before applying corresponding EXM filters. The positions of
these upper arms and legs are represented by the
coordinates of the four joints of the upper arms and legs
with the torso, plus the angles formed between them and
the positive x-axis. Under the assumption of smooth motion
over time, one can use the same three-dimensional ðx; y; �Þ
space as with the torso. This again requires rotating
corresponding filters, applying them to the image, and
searching for the point with maximum response. Upon the
acquisition of new positions of four upper arms and legs,
the current positions of the remaining four lower arms and
legs need to be updated in a similar manner. The steps used
to locate the new positions for all the parts of the body are
illustrated in Fig. 20.

In some video sequences, one or more body parts may be
occluded in a few video frames. Such an occlusion is readily
detected by the low matching scores. The body part usually
reappears after a few frames and our tracking filters usually
find it. For such cases, we use an interpolation scheme that
determines the angular pose of such body parts in the
frames in which they are occluded.

After a complete round of filtering and searching, the set
of part EXM filters need to be updated to accommodate the
new positions, orientations and lighting variations. All
these factors may change the appearance of the body part
and, hence, the template. We employ here a momentum
approach for these updates. The momentum formula keeps
a portion � of the past template and combines it with the
new template. According to our experiments, the best
results are achieved when � ¼ 0:9. When � is too small,
there is a risk that a temporary imaging noise may cause a
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Fig. 19. The processing of 3D EXM filtering.

Fig. 20. The order of 3D EXM filtering of body parts (top-down).



complete loss of tracking. The updated template fnðx; yÞ is

formed from the old template foðx; yÞ and parts in the EXM

processed image iðx; yÞ as

fnðx; yÞ ¼ � � foðx; yÞ þ ð1ÿ �Þ � iðx; yÞ; ð15Þ

where � is a constant and determines the momentum.
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