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Abstract

We investigate the biologically inspired features (BIF)
for human age estimation from faces. As in previous bio-
inspired models, a pyramid of Gabor filters are used at all
positions of the input image for the S1 units. But unlike pre-
vious models, we find that the pre-learned prototypes for the
S2 layer and then progressing to C2 cannot work well for
age estimation. We also propose to use Gabor filters with
smaller sizes and suggest to determine the number of bands
and orientations in a problem-specific manner, rather than
using a predefined number. More importantly, we propose a
new operator “STD” to encode the aging subtlety on faces.
Evaluated on the large database YGA with 8,000 face im-
ages and the public available FG-NET database, our ap-
proach achieves significant improvements in age estimation
accuracy over the state-of-the-art methods. By applying our
system to some Internet face images, we show the robust-
ness of our method and the potential of cross-race age esti-
mation, which has not been explored by any studies before.

1. Introduction

Human face, as a window to the soul [37], conveys im-
portant perceptible information related to individual traits.
Human age, as an important personal trait [10, 39], can be
directly inferred by distinct patterns emerging from the fa-
cial appearance. People have the ability, developed early in
life, to determine age between 20 and 60 years and conceive
aging appearance from the face with high accuracy [1, 13].
Can machine do the same job? Recent studies have given a
positive answer to this question by defining the age estima-
tion technique which is to label a face image automatically
by machine with the exact age (year) or the age group (year
range) of the individual face.

Age estimation by machine is useful in scenarios where
we don’t need to specifically identify the individual, but
want to know his or her age. Derived from rapid advances
in computer vision and pattern recognition, computer-based
age estimation via faces become a particularly interesting

Figure 1. Age estimation on Einstein’s faces (obtained from the
Internet) using our method. The estimated ages below each face
might be a little bit older than the true ages (unknown to us) but
reasonable. Our training data are all Asian faces. This might be
a good example to echo the phenomenon that Asian faces often
aesthetically look younger than the Western.

topic recently because of the explosively emergent real-
world applications, such as electronic customer relationship
management (ECRM) [2, 18], security control and surveil-
lance monitoring [14, 20, 24], biometrics [25, 23], and en-
tertainment.

Age estimation by machine has been reveled as a dif-
ficult and challenging problem by existing facts and atti-
tudes from the perception field. Different people have dif-
ferent rates of aging process [15, 14], which is determined
by not only the people’s gene but also many factors, such
as health condition, living style, working environment, and
sociality [29, 5]. Aging shows different forms in different
ages [4, 37]. From infancy to puberty, the greatest change
is the craniofacial growth (shape change) [1]. Overall the
face size is getting larger gradually during the craniofacial
growth. From adulthood to old age, the most perceptible
change becomes the skin aging (texture change). The shape
change still continues, but less dramatically. Thus face ag-
ing is uncontrollable and personalized [24, 7, 11]. Further-
more, males and females may have different face aging pat-
terns displayed in images due to the different extent in using
makeups and accessories. Many female face images may
potentially show younger appearances. It is still an open
problem to extract general discriminative features for age
estimation while reducing the negative influence of individ-
ual differences.
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The existing age estimation systems using face images
typically consist of two concatenated modules: image rep-
resentation and age estimation. For age image repre-
sentation, the anthropometric model [19], active appear-
ance model (AAM) [6], AGing pattErn Subspace (AGES)
[12, 11], age manifold [8, 7], and patch-based appearance
model [36, 33] are most popular ones. Given an aging fea-
ture representation, the next step is to estimate ages. The
age estimation can be viewed as a multi-class classification
problem [20, 30, 14], a regression problem [8, 35, 34, 7, 38],
or a hybrid of the two [16] [14] [15].

Given the superior performance of human vision on gen-
eral object recognition and age estimation, it is reasonable
to look to biology for inspiration to improve the computer’s
performance for age estimation. This motivates us to ex-
plore features and methods from brain modelling and stud-
ies. Recently, the biologically inspired features [26] have
shown excellent performance in some computer vision tasks
such as object category recognition [28] [22] [27] and face
recognition [21]. In this paper, we want to investigate the
bio-inspired features (BIF) for the age estimation problem.

Our main contributions include that (1) the biologically
inspired features are introduced to age estimation for the
first time; (2) previous bio-inspired models are changed by
proposing a novel “STD” operation in creating C1 features;
(3) some refinements to the bio-inspired models are pro-
posed: The starting scale of the filter pyramid is changed
smaller, the numbers of bands and orientations are adaptive
to data; Each modification is shown to provide improvement
in age estimation; and (4) our new method outperforms all
of the state-of-the-art methods in age estimation.

2. Bio-inspired Models

Visual processing in cortex is modeled as a hierarchy of
increasingly sophisticated representations. A recent theory
of the feedforward path of object recognition in cortex ac-
counts for the first 100-200 milliseconds of processing in
the ventral stream of primate visual cortex [26] [27]. We
briefly present some existing biologically inspired models
for object recognition, and then describe our base model
and improvement. Detailed implementation of our model is
given in the next section.

2.1. Previous Models

Riesenhuber and Poggio [26] proposed a new set of fea-
tures derived from a feed-forward model of the primate
visual object recognition pathway, called the “HMAX”
model. The framework of the model contains alternating
layers called simple (S) and complex (C) cell units creating
increasing complexity as the layers progress from the pri-
mary visual cortex (V1) to inferior temporal cortex (IT). A
notable property of the model is the nonlinear maximum op-

eration “MAX” over the S units rather than the linear sum-
mation operation “SUM” in pooling inputs at the C layers.
Specifically, the first layer of the model, called the S1 layer,
is created by convolving an array of Gabor filters at four
orientations and 16 scales, over the input gray level image.
Adjacent two scales of S1 units are then grouped together
to form 8 ‘bands’ of units for each orientation. The second
layer, called the C1 layer, is then generated by taking the
maximum values within a local spatial neighborhood and
across the scales within a band. So the resulted C1 represen-
tation contains 8 bands and 4 orientations. The advantage
of taking the “MAX” operation within a small range of po-
sition and scale is to tolerate small shifts and scale changes.

Serre et al. [28] [27] extended the “HMAX” model of
Riesenhuber and Poggio [26] to include two higher level
layers, called S2 and C2, for object recognition. In the S2

layer, template matching is performed to match the patches
of C1 units with some pre-learned prototype patches that
are extracted from natural images. This S2 layer gets inter-
mediate features that are more selective and thus useful for
discriminating between classes of objects. These S2 units
are then convolved over an entire image and C2 units are
assigned the maximum response value on S2. Mutch and
Lowe [22] built on Serre et al.’s work [28] for object cate-
gory recognition and proposed some improvements such as
sparsify S2 inputs (selecting dominating orientations from
the four), suppress S1 and C1 outputs (reducing the number
of output units), and select features that are highly weighted
by the support vector machine (SVM) [31]. Meyers and
Wolf [21] used the biologically inspired features for face
recognition by concatenating the C1 units to form a so-
called S2 facial features (S2FF) and used a relevant com-
ponent analysis technique for feature dimension reduction.

2.2. Our Base Model

Our base model with the biological inspiration is par-
ticularly designed for human age estimation. In previous
approaches to object category recognition [28] [22] [27], a
number of prototypes (approximately 1,000 in [27]) are ran-
domly selected from the learning images. These prototypes
are stored for template matching in S2 units. We found that
the S2 (and then C2) features using pre-learned prototypes
cannot work well for age estimation. Therefore we used
only the S1 and C1 units. The outputs from the C1 units
are concatenated to form a long feature vector to represent
each face image. After the biologically inspired C1 features
are extracted, we perform feature dimension reduction and
statistical learning for age estimation.

2.3. Improvement

In using the S1 and C1 units, we found that the number
of bands and orientations for S1 units should not be prede-
termined by a fixed number, e.g., 4 orientations in [26] [28]
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[27] [21], and 12 orientations in [22]. In addition, all of
them used 8 bands. In our age estimation, the number of
bands and orientations varies within a range. The best num-
bers are reported based on the age estimation results. The
purpose is to show that these parameters should be adaptive
to each specific problem, because there are different image
sizes for different problems and various objects may con-
tain different levels of details. In age estimation, we would
like to know what are the proper numbers of bands and ori-
entations for the S1 units.

In applying the Gabor filters to S1 units, we found that a
smaller size of 5 × 5 can characterize the aging effects on
faces better. So in our pyramid of Gabor filters, the starting
filter size is from 5 × 5 rather than 7 × 7 as in [28] [27].

For C1 units, we found that the “MAX” filtering can be
improved further. We propose another nonlinear operator
“STD” to each scale band (2 scales) of S1 units after they
are merged into one maximum map using the “MAX” oper-
ation.

We also do dimension reduction for the C1 features to
make them more efficient. All these improvements are nec-
essary in order to obtain a high-performance age estimator.

3. Detailed Implementation

Our system for age estimation works in four steps. First,
the face image goes through the S1 layer and C1 layer. The
resulted C1 features are about 7,000. Then a dimensionality
reduction process reduces the dimensions greatly. Finally,
classifiers or regressors are used for learning and the output
is the estimated age. The system framework is illustrated in
Figure 2. Before performing experimental evaluations, we
describe the details for each step.

Figure 2. Our age estimation framework.

S1 units: A grey level input image is first analyzed by an ar-
ray of simple S1 units that correspond to the classical simple
cells of Hubel and Wiesel found in the primary visual cor-
tex (V1) [17]. The Gabor functions [9] are usually taken for
the S1 units [26] [28] [27] [22] [21], which provide a good
model of cortical simple cell receptive fields. The Gabor
functions are of the following form

G(x, y) = exp
(
− (X2 + γ2Y 2)

2σ2

)
× cos

(
2π

λ
X

)
, (1)

where X = x cos θ + y sin θ and Y = −x sin θ + y cos θ
are the rotations of the Gabor filters with angle θ which
varies between 0 and π. The aspect ratio is fixed as in

Table 1. Parameters used in S1 and C1.

C1 layer S1 layer
Scale Pool. Overlap filter Gabor Gabor

band S grid �S size s σ λ

Band 1 6 × 6 3
5 × 5 2.0 2.5
7 × 7 2.8 3.5

Band 2 8 × 8 4
9 × 9 3.6 4.6

11 × 11 4.5 5.6

Band 3 10 × 10 5
13 × 13 5.4 6.8
15 × 15 6.3 7.9

Band 4 12 × 12 6
17 × 17 7.3 9.1
19 × 19 8.2 10.3

Band 5 14 × 14 7
21 × 21 9.2 11.5
23 × 23 10.2 12.7

Band 6 16 × 16 8
25 × 25 11.3 14.1
27 × 27 12.3 15.4

Band 7 18 × 18 9
29 × 29 13.4 16.8
31 × 31 14.6 18.2

Band 8 20 × 20 10
33 × 33 15.8 19.7
35 × 35 17.0 21.2

[27], γ = 0.3, the effective width σ, the wavelength λ
as well as the filter sizes s were adjusted as in [27], but
in our case, the filter banks start from 5 × 5 rather than
7× 7. Thus the pooling grid sizes and overlaps are changed
accordingly. Details about the related parameters are shown
in Table 1. The orientation θ varies from 0 to π uniformly
with different intervals, resulting in different number of
total orientations, such as 4, 6, 8, 10, and 12. The best
number of orientations is determined from the data in our
age estimation problem. As in the work of Serre, Wolf,
and Poggio [28], the S1 filters were arranged to form a
pyramid of scales, spanning a range of sizes. But in our age
estimation problem, we found that starting from a smaller
size, such as 5× 5, instead of 7× 7, delivered better results
(See experiments). The reasons might be that (1) the image
size of 60 × 60 in our age estimation is much smaller than
in object category recognition, e.g., in [27] all input images
are down-sampled to 140 pixels high while maintaining the
aspect ratio; and (2) small facial details are important to
characterize subtle age variations. In addition, the number
of bands was chosen and fixed as 8 (thus 16 scales in total)
in Serre et al.’s work [27], but we let the data determine
the best number of bands, selected from 2, 4, 6, and 8.
The number of S1 receptive field types is determined by
the product of the number of scales and orientations. For
example, it could be 192 types when 16 scales and 12
orientations (0◦, 15◦, 30◦, . . . , 165◦) are chosen by the
algorithm.

C1 units: The C1 units correspond to cortical complex cells
that tend to have larger receptive fields [26, 27]. C1 units
pool over S1 units from the previous layer with the same ori-
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entation and from the same scale band. Each scale band has
a pair of adjacent filter sizes. The scale band index of the S1

units determines the size of the S1 neighborhood NS × NS

over which the C1 units pool [27]. In previous models [26]
[27] [22] [21], the maximum operation “MAX” was used as
the pooling filter. Riesenhuber and Poggio [26] argued and
demonstrated the advantages of using the nonlinear “MAX”
operator over the linear summation operation “SUM.” Here
we propose another nonlinear operation – standard devia-
tion “STD”

std =

√√√√ 1
NS × NS

NS×NS∑
i=1

(
Fi − F̄

)2
, (2)

which reveals the variability in the data within a neighbor-
hood NS ×NS of S1 units, where Fi is the maximum value
of two consecutive S1 units in the same scale band (but us-
ing different filers) at pixel index i,

Fi = max (xj
i , xj+1

i ), (3)

where xj
i and xj+1

i are the filtered values with scales j and
j + 1 at position i. F̄ is the mean value of the filtered val-
ues within the neighborhood NS × NS . The pooling of
the “MAX” operation over two consecutive scales (i.e., in
the same scale band) increases the tolerance to 2D transfor-
mations, such as scale changes with a small amount. The
“MAX” operation merges two filtered images using filters
of the same orientation but different scales into one, and
then the “STD” operation is performed on the merged im-
age within a neighborhood NS × NS. In previous models
[26] [28] [27] [22] [21], the operation on the merged im-
age is another “MAX” filtering. While the second “MAX”
can tolerate more shift and size changes, it cannot reveal the
variability in the data. In age estimation, the description of
local variability in data might be important for subtle age
variation, such as wrinkles, on faces.

The process of “MAX” pooling and “STD” operation
is done for each orientation and each scale band indepen-
dently. For instance, consider the first band: S = 1. For
each orientation, it contains two S1 maps: the one obtained
using a filter of size 5×5 and the one obtained using a filter
of size 7 × 7. The two maps have the same size but dif-
ferent values because different filters are applied. First, the
“MAX” pooling is performed on the two maps resulting in a
maximum map. Then the “STD” operation is performed on
the maximum map using a cell grid of size NS×NS = 6×6.
From each grid cell, one single value is computed from the
36 elements. C1 responses are only computed with an in-
terval of half of the neighborhood size in one direction, i.e.,
NS/2. As a result, there is only one half overlapping be-
tween two neighboring grid cells, and this will largely re-
duce the number of features in the C1 layer and make the
age estimation process more efficient.

Experimentally we found that the “STD” operation
outperforms the pure “MAX” pooling for age estimation
(See experiments). The reason is that the “STD” operation
can reveal the local variations which might be important to
characterize the subtlety of aging (e.g., wrinkles, creases,
and eyelid bags) on faces. This can be observed in Figure
3 where the input face image is of size 60 × 60. The S1

units at four orientations of band 4 (filter sizes of 17 × 17
and 19 × 19) are displayed. A pooling grid of 12 × 12 is
drawn in each S1 map. The local variation is significant
(especially in the orientation of 45 degrees), while the pure
“MAX” operation cannot reveal it.

Figure 3. The S1 layer of band 4 (two scales with filter sizes of
17 × 17 and 19 × 19) at four orientations. The pooling grid size
for C1 units is a 12 × 12 square shown in each S1 map. Within
each pooling grid, the “STD” operation characterizing the local
variation on S1 maps is very important in describing the subtlety
of aging. For better viewing, please see enlarged color pdf file.

Feature Dimensionality Reduction: When the pre-learned
prototypes are used for template matching in S2 units [27]
[22], the final feature dimension in C2 is controlled by the
number of prototypes used for comparison in S2. A typical
number of prototypes is set by N = 1, 000 in [27]. Here we
do not use the S2 and C2 units. The C1 features are con-
catenated to form a feature vector for each face image. The
resulted features have a high dimensionality. Reducing the
feature dimension makes the algorithm more efficient. Pre-
viously, the C2 features can be selected using those highly
weighted by the SVM for object category recognition [22],
or using a relevant component analysis for face recognition
[21]. Here we show that the simple method of principal
component analysis (PCA) [32] can work well for the bio-
inspired C1 features.

PCA is a linear transform technique. Let X =

115



[x1 x2 · · · xn] be the feature vectors with dimension D,
derived from the C1 units on n training faces, x̄ be the
mean vector of the training data. For dimensionality re-
duction, the purpose is to find an n × d matrix P satisfy-
ing Y = PT X, where Y = [y1 y2 · · · yn] is the pro-
jected new features with dimension d, and d � D. The
PCA method finds the embedding that maximizes the pro-
jected variance, p = argmax‖p‖=1 pT Sp, where S =∑n

i=1(xi − x̄)(xi − x̄)T is the scatter matrix.
The PCA technique can be used efficiently for di-

mensionality reduction on the bio-inspired C1 features.
Experimentally, we found that the age estimation errors
do not change too much when the features with reduced
dimensions are used. In some cases, the errors are even
smaller than using all C1 features.

Classification or Regression: Age estimation can be con-
sidered as a classification problem, when each age is taken
as a class label. On the other hand, age estimation can also
be considered as a regression problem, where each age is
used as a regression value [14]. In our experiments, we use
both the classification and regression approaches to age es-
timation but on different databases. We will analyze why
sometimes the classification works better, while other times
the regression is better. Following the suggestions in [14],
we choose to use the linear SVM for age classification and
support vector regressor (SVR) [31] for age regression.

4. Experiments

The performance of age estimation is measured by the
mean absolute error (MAE) and the cumulative score (CS)
[7, 12]. The MAE is defined as the average of the absolute
errors between the estimated ages and the ground truth ages,
MAE =

∑N
k=1 |l̂k − lk|/N , where lk is the ground truth

age for the test image k, l̂k is the estimated age, and N is
the total number of test images. The cumulative score is
defined as CS(j) = Ne≤j/N × 100%, where Ne≤j is the
number of test images on which the age estimation makes
an absolute error no higher than j years.

4.1. Databases

Extensive age estimation experiments are performed on
the large Yahama Gender and Age (YGA) database which
contains 8,000 face images captured from 1,600 Asian sub-
jects in an outdoor environment, 800 females and 800
males, in the age range from 0 to 93 years. The ground truth
age for each face is provided. See Table 2 for the number of
face images in each age group.

The second database is the FG-NET Aging Database [3]
which is public available. The database contains 1,002 color
or grey scale face images with large variation of lighting,
pose, and expression. There are 82 subjects (multiple races)

Table 3. MAE (years) at different age groups on FG-NET.

Range #img. Ours RUN[35] QM[20] MLP[20]

0-9 371 2.99 2.51 6.26 11.63
10-19 339 3.39 3.76 5.85 3.33
20-29 144 4.30 6.38 7.10 8.81
30-39 70 8.24 12.51 11.56 18.46
40-49 46 14.98 20.09 14.80 27.98
50-59 15 20.49 28.07 24.27 49.13
60-69 8 31.62 42.50 37.38 49.13
Total 1002 4.77 5.78 7.57 10.39

in total with the age ranges from 0 to 69 years, and each face
image has 68 labelled points characterizing shape features.
In our approach, the shape features are not used.

4.2. Results

We perform a standard 4-fold cross validation test to
evaluate the accuracy of our algorithms on the large YGA
database. The test was executed on the female and male
subsets separately, because age estimation is sensitive to
gender on this large database. A leave-one-person-out
(LOPO) test scheme is used on the FG-NET database. Each
face image is cropped and resized to 60 × 60 in both
databases, and only the grey level images are used. We use
the classifiers of linear SVMs for the YGA database, and
the regressor SVR for the FG-NET database, as suggested
in [15, 14]. The parameters of the learners are adjust from
a tuning data set (part of the training data). The general
scheme is to use a small error tolerance value, e.g., 0.001,
and the capacity value around 100 for the SVM. The width
of the RBF kernel for regression [31] is between 0.1 and
0.01. Combining the classification and regression methods
[15, 14, 16] might improve the results further, but we have
not tried here. Our main focus is the new features based on
biological inspiration.

The MAEs on the YGA database is shown in Table 2,
and FG-NET in Table 3. The MAEs at each age group
(about 10 years span) are also given. In the YGA database,
our method has an MAE of 3.91 years for females, and
3.47 years for males. These average errors are substantially
smaller than the RUN method [35] (9.79 and 10.36 years),
and even significantly lower than the very recent RPK [36]
approach (4.94 and 4.38 years) which announced to be the
best reported result so far. See Table 6 for more methods.

In FG-NET, the MAE of our method is 4.77 years, which
is significantly smaller than the 5.78 of the RUN method
[35], and even lower than the best reported result of 4.95
in [36]. We notice that in the FG-NET database, there are
only 8 face images in the age range of 60-69, and only 15
images of 50-59. The number of faces is too small to train
classifiers for those ages. This interprets why classifiers like
SVM cannot work well on the FG-NET database. This also

116



Table 2. MAE (years) at different age groups on the YGA database.

Females in YGA Males in YGA
Range #img. Ours RUN[35] QM [20] MLP[20] #img. Ours RUN[35] QM[20] MLP[20]

0-9 500 1.84 11.21 11.97 14.33 500 1.24 9.86 13.42 14.08
10-19 500 2.46 6.23 9.58 8.85 500 2.67 7.52 10.33 9.46
20-29 500 3.36 7.95 9.29 9.70 500 3.62 8.85 10.21 9.35
30-39 500 5.22 8.17 9.85 9.66 500 3.37 7.76 9.35 8.60
40-49 500 5.71 8.64 10.45 8.78 500 4.06 8.67 11.71 9.10
50-59 500 4.35 9.43 10.15 9.53 500 4.61 11.10 13.38 10.08
60-69 500 3.82 11.12 13.49 10.88 500 3.92 12.49 15.99 13.44
70-93 500 4.08 15.56 19.66 16.52 500 3.87 16.60 20.44 19.69
Total 4000 3.91 9.79 11.80 11.03 4000 3.47 10.36 13.10 11.72
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Figure 4. Cumulative scores on the YGA and FG-NET databases.

tells why all methods have much larger errors in those age
ranges, shown in Table 3. Even though provided with a
very small number of faces, our method is consistently bet-
ter than other methods in comparison at those age ranges.
This indirectly indicates that the bio-inspired features are
quite robust to encode aging patterns on faces.

The SC curves are shown in Figure 4. The BM [34]
method was used for comparison in FG-NET since it has
a smaller MAE (5.33) than the RUN [35] method (5.78) on
FG-NET.

4.3. Studies of Improvement

We would like to explore more details about our
models, especially the improvement over previous models
[28, 27, 22, 21] for the specific problem of age estimation.

C1 vs. C2 features We first verify if the C2 features can
work well for age estimation. Using almost the same
setting as Serre et al.’s [27] for C2 features with 2,000
prototypes randomly selected, we obtained an MAE of
10.62 and 10.73 years for females and males, separately.
These errors are significantly higher than using C1 features
with any number of bands and orientations as shown in
Table 4.

The number of bands and orientations In previous
biologically inspired models [28, 27, 22, 21], the scale

bands are fixed as 8, and the orientations are fixed as
either 4 or 12. In age estimation, we want to show that
the number of bands and orientations should be adaptive
to the data, rather than using a pre-defined number. More
bands or more orientations do not necessarily give better
results. To check this in detail, we use the C1 features
with the starting filter size 7 × 7 and the pure “MAX”
pooling for age estimation on the YGA database. The
number of bands varies from 2 to 8, and the number of
orientations varies from 4 to 12, with an interval of 2. The
age estimation results are shown in Table 4. The smallest
MAE for the female is 4.20 years obtained using 6 bands
and 10 orientations, while the smallest MAE for the male
is 3.61 years generated from 8 bands and 8 orientations.
This suggests that for each specific problem, the number
of bands and orientations should be determined by data, in
order to obtain good results.

Filter banks starting from 5 × 5 vs. 7 × 7 In previous
biologically inspired models [28, 27, 22, 21], the filter
bank uses a fixed structure, starting from 7 × 7. We found
that starting from a smaller size, such as 5 × 5, improves
the age estimation results. To show this difference, we
run the age estimation experiments using different C1

features, one is starting from 5 × 5, and the other from
7 × 7. The MAEs are shown in Table 5. In all cases –
females or males, original features or with dimensional-
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Table 4. MAEs in terms of the number of bands and orientations
in extracting the biologically inspired features. In each cell, the
MAEs are for females and males, separately.

# Orientations
# Bands 4 6 8 10 12

2
5.26 4.73 4.85 4.81 4.90
5.48 4.56 4.66 4.60 4.57

4
4.96 4.44 4.56 4.64 4.52
4.74 3.72 3.85 3.87 3.82

6
4.85 4.44 4.37 4.20 4.21
4.76 3.72 3.68 3.70 3.68

8
4.77 4.38 4.31 4.29 4.31
4.48 3.79 3.61 3.78 3.77

Table 6. MAE (years) comparisons.

Method YGA:F YGA:M FG-NET

WAS [12] – – 8.06
AGES [12] – – 6.77
QM [20] 9.96 10.51 6.55

MLPs [20] 10.99 12.00 6.98
RUN [35] 9.79 10.36 5.78
BM [34] 6.95 6.95 5.33

LARR [14] 5.25 5.30 5.07
PFA [16] 5.11 5.12 4.97
RPK [36] 4.94 4.38 4.95
BIF(Ours) 3.91 3.47 4.77

ity reduction, and “MAX” pooling or “STD” operation
– the estimation errors are smaller when starting from 5×5.

“STD” vs. “MAX” In previous models
[26, 28, 27, 22, 21], the “MAX” pooling is used to
obtain the complex C layer features from the simple S
layers. Riesenhuber and Poggio [26] argued the advantages
of the nonlinear maximum operation over the linear sum-
mation “SUM.” We propose another nonlinear operation
“STD” which can characterize the aging subtlety on faces
well. The results demonstrating the advantages of “STD”
over “MAX” are given in Table 5 and Figure 5. In table
5, the age estimation errors based on “STD” are always
smaller than the “MAX,” no matter in which situation –
females or males, original features or reduced, and different
filter banks. In Figure 5, the “STD” also gives smaller
errors in different feature dimensions.

Dimensionality reduction by PCA Although the PCA
technique is a widely used method for feature dimension-
ality reduction, no previous work has shown that the PCA
method is also useful for the bio-inspired high dimensional
features. Here we want to show that the simple PCA method
can work well for the biologically inspired features, reduc-
ing dimensions from the thousand level to hundred. From
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Figure 5. MAEs of “STD” vs. “MAX” and 5×5 vs. 7×7 as the
starting filter size. The PCA method is used for dimensionality
reduction.

Table 5, the errors do not change too much when the fea-
ture dimension is reduced using the PCA method. For ex-
ample, the dimensions can be reduced from 6,976 to 900
without raising the error too much (from 3.47 to 3.44). In
some cases, the errors are even smaller than using all C1

features. In Figure 5, we show the error distributions over
feature dimensions from 100 to 1,000. In sum, less than
1,000 features (selected from about 7,000) are sufficient for
age estimation in our experiments.

4.4. Age Estimation on Internet Images

It may be interesting to see our age estimation perfor-
mance on other face images. We used Internet image search
to find some face images of Einstein, and extracted bio-
inspired features on his face images. The training data are
male Asian faces from the YGA database. Then we ran our
method to estimate the ages from Einstein’s faces. The age
estimation results are shown in Figure 1. Although this is
a very difficult case for cross-race and cross-database age
estimation, the estimated ages, 32, 52, and 76, are very rea-
sonable on the three faces. Since we do not have the ground
truth on these faces, no MAEs are computed. This result
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Table 5. MAE (#features) measures for the filters on S1 units, starting from 5 × 5 vs. 7 × 7.

Females in YGA Males in YGA
Original features Dim reduction Original features Dim reduction

5×5 7×7 5×5 7×7 5×5 7×7 5×5 7×7
MAX 4.15(6976) 4.53 (4376) 4.11(700) 4.51(700) 3.72(6976) 3.66(4376) 3.65 (1000) 3.79(900)
STD 3.94(6976) 4.32(4376) 3.91(1000) 4.32(1000) 3.44(6976) 3.57(4376) 3.47(900) 3.55(600)

shows the robustness of our approach to age estimation, and
encourages us to do more evaluations in the future.

5. Conclusions

We have investigated the biologically inspired features
for human age estimation. A couple of improvements over
the original models have been proposed, which include
introducing the new “STD” operation for pooling in C1

units, changing the filter sizes in S1 units, not using any
pre-learned prototypes, and making the number of bands
and orientations adaptive to data. All of these proposals
to the bio-inspired models are important to obtain a high
performance age estimator. Evaluated on two benchmark
databases, our system performs better (smaller errors) than
any published methods. Have not been explored by anyone
before, we showed an interesting application of our method
to Internet images of Einstein’s faces, which demonstrates
the robustness of our method and the potential of cross-race
and cross-database age estimation. It also suggests a future
work to further verify the method on more Internet images
or surveillance camera inputs.
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