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Abstract

Deep learning has driven remarkable accuracy in-
creases in many computer vision problems. One ongoing
challenge is how to achieve the greatest accuracy in cases
where training data is limited. A second ongoing chal-
lenge is that trained models oftentimes do not generalize
well even to new data that is subjectively similar to the
training set. We address these challenges in a novel way,
with the first-ever (to our knowledge) exploration of encod-
ing human judgement about salient regions of images into
the training data. We compare the accuracy and general-
ization of a state-of-the-art deep learning algorithm for a
difficult problem in biometric presentation attack detection
when trained on (a) original images with typical data aug-
mentations, and (b) the same original images transformed
to encode human judgement about salient image regions.
The latter approach results in models that achieve higher
accuracy and better generalization, decreasing the error of
the LivDet-Iris 2020 winner from 29.78% to 16.37%, and
achieving impressive generalization in a leave-one-attack-
type-out evaluation scenario. This work opens a new area
of study for how to embed human intelligence into training
strategies for deep learning to achieve high accuracy and
generalization in cases of limited training data.

1. Introduction
Deep learning methods have had huge impact in many

areas of computer vision, including generic object detec-
tion [27], face recognition [29, 13], medical image analysis
[26] and biometrics [37]. They are known for their need for
large amounts of training data and for solutions that are of-
ten fragile, in the sense of producing state-of-the-art results
on a well-defined problem but not generalizing well to what
might seem to be related problems or datasets. The general-
ization problem can be addressed to some degree by design
of a large and varied training dataset, or regularization tech-
niques. But the strengths and weaknesses here are like two
sides of the deep learning coin. Deep learning-based meth-
ods can learn whatever exists in the training data that can
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Figure 1: Do Human-Aided Saliency Maps Improve
Generalization of Deep Learning? We use the same train-
ing and architecture to compare models trained on a newly-
acquired limited dataset, with typical augmentation tech-
niques (S2), and the same images encoding human judge-
ment of region saliency using multiple levels of blur (S3).
For reference, we also present results for training with a
much larger original dataset (S1). The use of training im-
ages encoding human saliency results in models demon-
strating improved accuracy and generalization over the
conventional approach.

be used to solve the problem. Learning what is incidental to
the training data causes the solution to not generalize well.

In this work, we make the novel proposition to transform
training data for deep learning in a way that incorporates
human judgement about salient parts of images. We asked
humans to annotate image regions that are salient to their
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decision about that image. Then we produced transformed
versions of the original images, in which the degree of blur
applied to a region is inversely related to its human-rated
salience. The transformed images have full original clarity
in regions salient to humans, and increasing levels of blur
in regions rated increasingly less salient for humans. Such
transformed images are then used as training data. In this
way, the deep learning process is encouraged to learn what-
ever it can from the image regions rated salient for humans,
but discouraged from learning from high-frequency details
of regions rated less salient for humans, Fig. 1.

Various methods of experimental psychology have been
already used to gauge limits of human perception [25, 33],
understand how humans process visual information [5],
build more explainable computer vision models [34], or
strengthen feature extractors in iris recognition with human-
driven way of processing images [10]. However, to our
knowledge, this is the first-ever exploration of transforming
the training data for deep learning based on human percep-
tion. This may initially seem a radical proposition. But we
present two important advantages of this approach when ap-
plied to a quite difficult problem of presentation attack de-
tection in biometrics, which always suffers from small and
unrepresentative training corpora. First, comparing the ac-
curacy achieved by training with the original image dataset
versus the saliency-transformed version of that dataset, the
saliency-transformed version achieves significantly higher
accuracy. Second, evaluating the open-set scenario of train-
ing using all-except-one attack types and testing on the
held-out attack type, the saliency-transformed training gen-
erates models with significantly higher accuracy on gener-
alizing to the held-out attack type. It’s noteworthy that the
idea proposed in this paper is different from and indepen-
dent of recent research on “attention” mechanisms [2, 3],
and actually may complement them with human guidance.

This work opens up a new area of study for how to best
incorporate human judgement about visual saliency into
training data for deep learning, and makes the following
novel contributions:

(a) a framework that employs human intelligence to use
effectively a low amount of training data to increase the
performance of deep learning models,

(b) demonstrated greater generalization of the method
when applied to the iris presentation attack detection prob-
lem being solved by a deep learning classifier,

(c) all elements to reproduce this work made publicly
available, including a database of human-annotated iris
images and sources codes.

2. Related Work
Training data augmentation. Deep learning’s voracious
appetite for training datasets has been dealt with in multiple

ways, and data augmentation techniques (such as flipping
orientation of images, adding noise, using multiple crop off-
sets, and combination of those) are now a staple element of
training [36, 9, 28]. These techniques can be applied to raw
training data, subsets of training data within a batch [15], or
in feature space instead of image space [19]. Another ap-
proach, benefiting from a renaissance of generative models,
is to generate large amounts of synthetic images for use in
training [41]. Recent trends are to mix synthetic and actual
data [23], e.g. pre-train a model on a larger synthetically-
generated corpus, and fine-tune on a smaller actual sample
set [42], or guide the generation of synthetic data to make it
more domain-specific [18].

To our knowledge, no previous work has applied human
saliency encoding to augmentation techniques.

Combining human and algorithm capabilities when
solving vision tasks has been studied in the context of bio-
metrics. O’Toole et al. [31] demonstrated that fusing hu-
mans and algorithms increased face recognition accuracy to
near perfect values for the Face Recognition Grand Chal-
lenge dataset. A few research groups concluded that hu-
man’s and algorithm’s visual saliencies differ and their in-
tegration increases the quality of image captioning [14] and
of post-mortem iris recognition [30, 39]. Peterson et al.
have even shown that humans’ perceptual uncertainty may
positively impact the generalization of deep learning-based
models [32]. Human-machine pairing was also proposed to
speed-up large-scale segmentation tasks, in which humans
“correct” algorithm results, without a need to solve an entire
segmentation task manually [4].

These past efforts demonstrate a boost in performance
when machines and humans cooperate on the same task.
However, again, we know of no previous work that has inte-
grated human saliency judgements into training to increase
generalization of the models.

Presentation Attack Detection (PAD) refers to determin-
ing the validity of an object presented to a biometric sensor,
which – if not detected – could drive the system to an incor-
rect decision. While many iris PAD works show promising
cross-dataset and cross-attack performance, generalization
against true unknown attack types is an open research prob-
lem and a crucial aspect of deployable solutions [7]. Mod-
ern iris PAD approaches mainly employ deep-learning to
achieve state-of-the-art accuracy, as evidenced in the recent
LivDet-Iris 2020 competition [11]. In particular, Sharma
and Ross [35] propose the application of DenseNet-121 [16]
to iris PAD with a focus on interpretability. More recently,
Chen and Ross proposed a novel method of attention-guided
training using class activation mapping and attention mod-
ules [8]. They apply positional and channel attention mod-
ules to extract refined features from a DenseNet-121 back-
bone. Through experiments on public and private datasets,
superior performance is demonstrated on both known and



Table 1: Number of samples in the train, validation and test partitions extracted from the superset of all available iris PAD
datasets, broken by abnormality type. [P] denotes our proprietary data set.

Bona fide Artificial Textured Display Post Paper Synthetic Diseased Textured contact Total
contact lenses mortem printouts lenses & printed

Train and validation partitions:
399,053 277 27,372 × 2,259 16,393 10,000 1,537 1,899 458,790

[1] [24] [12] [24] [P] [24] [20] [46] [40] [12] [24] [21] [44] [38] [45]
[38] [22] [20] [45] [P]

[46] [43] [45] [P]

Test partition (equivalent to LivDet-Iris 2020 benchmark) [11]:
5,331 541 4,336 81 1,094 1,049 × × × 12,432

Figure 2: Examples of bona fide and abnormal samples from the acquired databases. The eight image types shown represent
all attacks represented in the datasets. Each human annotator was presented with multiple examples of each type.

unknown presentation attack samples. The attention mod-
ules shift the focus of the networks to the iris regions rather
than peripheral image features. Our work differs in that,
instead of applying attention modules to learn network-
defined salient features, the collected human-annotated fea-
tures are used as predefined salient features and incorpo-
rated directly into the training process.

3. Experimental Datasets
Superset of Available Iris PAD Datasets. We made an ef-
fort to acquire all known (to us) public research iris PAD
datasets, to have a full representation of known presenta-
tion attack instruments (PAI), ending up with more than
800,000 samples available. This collection was first cleaned
by removing duplicated and not ISO-compliant [17] im-
ages. Second, it was split into training and validation
comprising 458,790 samples in 8 categories (live + seven
PAIs), and a disjoint test set, which is identical to the most
recent LivDet-Iris competition benchmark [11] comprising
12,432 samples in six categories (live + 5 PAIs), as shown
in Tab. 1. This test dataset was excluded from all train-
ing and validation processes, and was withheld solely for
final testing. This allows for comparison with the results
of the LivDet-Iris 2020 competition, as well as providing
an independently collected dataset to assess the generaliza-
tion capabilities of the proposed approach. Comprehensive
descriptions of individual datasets can be found in the asso-

ciated papers listed in Table 1. Examples of PAIs available
for this research, along with bona fide samples are illus-
trated in Figure 2, and individual dataset sample contribu-
tion statistics can be seen in the supplemental materials. In
this work the term abnormal is assigned to the samples that
differ from bona fide (live) samples including presentation
attacks.

Human-Guided Region Saliency. To facilitate human data
collection, an online annotation tool was developed. Sub-
jects were presented 8 types of images: bona fide and 7
abnormal types, as presented in Figure 2. Participants were
not specifically trained in iris PAD or iris recognition tasks,
and were associated with the University of Notre Dame at
the time of data collection.

On presentation of an iris image, users were asked to first
select the type of image they believed it to be (one of eight
types as above or unsure). Next, users were asked to high-
light at least five regions of the image supporting their deci-
sion. The regions highlighted were not constrained on size
or on location within the image. The objective was to collect
data on what information present in an ISO-compliant iris
image leads humans (non-experts) to a classification deci-
sion. There are two reasons for using non-experts: (1) there
are no experts formally trained in iris image examination
(such experts do exist in, e.g. fingerprint analysis); (2) to
investigate whether a generalization boost can be obtained
with help of non-experts in a given domain. The online an-



(a) (b) (c) (d)

Figure 3: Creating human-guided training samples: the original image presented to human annotators (a); five individual
correct annotations and a combination of those into the saliency map (b); a heatmap representation of the annotation density
(c); the resulting training sample blurred locally with a magnitude (as defined in Sec. 4) inversely proportional to the
annotation density (d).

notation tool, with green highlights corresponding to user
annotated regions, is presented in supplementary materials.

Data from 150 subjects was collected in this experiment
who annotated 30 unique image sets in total. Users were
presented with an average of 27 images from one of the im-
age sets. Image sets were assigned randomly to users and
on average five subjects annotated each image. This simu-
lates a scenario where some images have more annotation
data available than others and hence the proposed approach
must account for this imbalance. Only annotations from
correctly classified samples were kept. As PAD is a binary
classification problem, it was deemed a correct classifica-
tion if the subject selected correctly either a bona fide sam-
ples, or marked any of the 7 abnormal types as abnormal.

Note that merely collecting more labeled samples (bona-
fide / abnormal) may (a) be impossible in the context of
biometric attacks as these may be sparsely represented in
datasets of ample size, and (b) not guide the network “where
to look”, opposite to the idea proposed in this paper. That
is, the network, by simply observing more data, would still
need to figure out relevant and irrelevant features without
other guidance than the one through the loss function.

The annotations are next used to create image represen-
tations called human saliency maps, as shown in the bot-
tom right image of Fig. 3(b). Each correct annotation, as
shown in five individual plots in Figure 3(b), is weighted
equally and combined. The closer the pixel is to white in the
saliency map, the more subjects selected that area as sup-
porting their decisions. Black regions correspond to areas
in which no subject annotated interesting features. These
saliency maps provide the basis to incorporate the data into
the training process, as outlined in the next Section 4.

Classification accuracy from the human annotators is
shown in Table 2. The most difficult type to classify cor-
rectly is textured contact lenses. This might be due to the
fact that lens manufacturers design them to mimic genuine
patterns. Conversely, the highest human classification ac-
curacy (98%) was for post-mortem samples. The presence

Table 2: Human performance on the limited data used to
construct saliency-encoded training images, measured in
two scenarios: bona fide vs abnormal (independently of the
abnormality type) and multi-class classification (indication
of exact abnormality class was important).

Image Type Accuracy (%)
Bona fide / abnormal Exact type

Bona fide 56.3 56.3
Textured contact lenses 65.13 32.89
Paper printouts 94.27 64.53
Post-mortem 98.0 79.43
Synthetic 83.81 49.0
Artificial 70.19 34.82
Textured contact lenses printed 88.17 27.46
Diseased 77.32 47.73

of metal retractors to hold the eyelids open potentially con-
tributes to this. Human annotators also performed well on
paper printouts, possible due to well-visible pattern spread
through the images. Interestingly, humans not trained in iris
recognition, and classifying near-infrared iris samples, tend
to have lower accuracy for bona fide samples.

4. Saliency-Encoded Training Images
Given a set of human-annotated iris samples, various lev-

els of Gaussian filtering are applied to de-emphasize re-
gions not marked as salient by humans. The intuition is
that human annotators are able to restrict attention to re-
gions relevant to the decision, as opposed to features of the
training samples that may have incidental correlation with
class labels. The magnitude of the blur (Gaussian kernel
width σ) has a simple relation to how frequently a given
region was annotated, and in particular regions selected by
the largest number of annotators remain unchanged. We
use blurring rather than binary masks due to (a) the need
of gradual information suppression reflecting the human
saliency, and (b) sharp edges around a binary mask could
constitute “fake” image features that impact training. This
approach mitigates these sharp edges between edges by ap-



Figure 4: Illustration of annotations translating into saliency-encoded images for training. σmax denotes the maximum blur
is applied to unannotated regions. The top row is a bona fide iris and the bottom is a sample wearing a textured contact lens.

plying Gaussian blur of σ = 5 to the saliency map.
An important degree of freedom is the maximum

strength of blurring σmax applied to non-annotated regions,
serving as baseline when calculating all remaining annota-
tion map-dependent blur levels σ for a given sample. In-
stead of making arbitrary choices about σmax, we use a
combination of σmax ∈ {2, 4, 6, 8, 10, 12, 14, 16} as partic-
ular levels of blur “aggressivness” may make more sense for
some abnormal types, or some values are better than others
across all abnormal types. Thus, all annotated regions are
blurred with a blur level σ based on a function of σmax and
the number of subjects that highlighted a specific region:

σ = (σmax(1− ρ))4/σ3
max

where ρ is the fraction between 0 and 1 of annotators that
selected a given image area. Thus, if zero subjects highlight
a region (ρ = 0) then σ = σmax. And if all annotators
working on a given image marked that region as important
to them, then σ = 0 and these regions will be passed to
the network unchanged. Figure 4 illustrates how the human
annotation maps translate to the human-aided training data
for various σmax. Increasing σmax subjects unannotated re-
gions to stronger blurring.

This straightforward mechanism of guiding the model to
learn more human-like decisions has never been explored
before. The next section will demonstrate its effectiveness
in the case of limited training data, which is particularly
relevant for biometric presentation attack detection.

5. Experiments
Setup. We selected D-NetPAD [35] as the most re-
cent, open-source deep-learning-based iris PAD algorithm,
demonstrating good results on the LivDet-Iris 2020 bench-
mark [11]. To ensure that the results presented in the evalu-
ation section are the result of the application of human data,
and not due to parameter optimization or modification to
the method, no changes were made to the model parame-
ters from the publicly available code. That is, the learning
rate was set at 0.005, batch size was 20 and the number of

epochs was 50 for all experiments in this section. SGD with
a momentum of 0.9 was used as the optimization algorithm
and cross-entropy loss function was applied. No additional
train time image augmentations were applied. All data is
segmented (a SegNet-based method [40]), cropped, resized
to 224× 224 and used as input.

Leave-one-type-out experiments. Increased generaliza-
tion means that the model can better classify new types
of inputs unseen in training. This perfectly fits into bio-
metric presentation attack detection, where – realistically
– we cannot assume that only abnormal types present in
the training data will be observed during testing. To evalu-
ate effectiveness of the proposed method, seven “leave-one-
abnormal-type-out” experiments are run. For each experi-
ment, one abnormal type is omitted from both training and
validation, and present only in testing. As this is a binary
classification problem, bona fide samples (yet from disjoint
sets) are used in all training, validation and test sets. In
each of the 7 experiments, the left-out class represents an
unknown type of abnormality for the model, and the per-
formance on these left-out sets is indicative of the model’s
generalization capability. Because the textured contacts
& printout type contains information about both contacts
and printouts, these samples were excluded from training
and validation for experiments with the textured contacts
and paper printouts, thus maintaining complete model ig-
norance of the nature of the test data. Similarly, textured
contacts and paper printouts were excluded from the ex-
periment where textured contacts & printouts was the held-
out test set. The models trained in the leave-one-abnormal-
type-out scenario are then tested on unseen bona fide sam-
ples taken from the LivDet-Iris 2020 dataset, and unseen ab-
normal samples originating from the large dataset. Taking
bona fide samples from LivDet-Iris 2020 corpus maximizes
the “open-setness” of these experiments, as these bona fide
samples were acquired independently of all the training and
validation data shown in Table 1.

Evaluation scenario S1: Training on the Large Dataset.
In this scenario, models are trained on the unmodified train-



(a) Textured contact lens (b) Paper printouts (c) Post-mortem (d) Artificial

(e) Synthetic (f) Diseased (g) Contact lens & printed

Figure 5: ROC curves in leave-one-abnormal-type-out experiments obtained in three training scenarios. The left-out type is
named in the plot caption. Shaded bands represent ±1 standard deviation along the TPR axis obtained in repeated experi-
ments. S1 refers to scenario 1 using the large dataset in training. S2 refers to limited training dataset with no human salience
info incorporated. S3 refers to the training with human-salience-encoded versions of the same original images as S2. In all
cases, there is a significant performance increase when human salience info is used in training (compare S3 with S2).

ing data described in Table 1, starting from pre-trained Ima-
geNet weights, as common practice suggests [6]. Before
model training, all samples that have corresponding cor-
rect human annotations (765 in total) are removed from
the training and validation sets. This means the human-
annotated data used in other scenarios was unseen. There
are many more bona fide samples available than abnor-
mal samples, as shown in Tab. 1. To prevent the over-
representation of one class in training, all abnormal sam-
ples are taken along with a randomly sampled set of bona
fide samples equal to the number of abnormal samples.
Models trained in this scenario are referred to as the large
data models, achievable in the situation of having a “large-
enough” training dataset, which usually is not the case in
biometric presentation attack detection.

Evaluation scenario S2: Training on Regular Limited
Data. In this scenario, the same ImageNet-initiated mod-
els are tuned with 765 live and abnormal samples minus the
samples corresponding to the left-out type, for which cor-
rect human annotations were collected (but not used here).
Additionally, these images are augmented by applying a
Gaussian blur σ ∈ {2, 4, 6, 8, 10, 12, 14, 16} to the entire
image and combined with the unblurred versions of the
samples, increasing the size of the dataset nine-fold. This
is to ensure that the results obtained for human-annotated
training data (scenario S3 below) are due to the model learn-
ing human-aided features, not the addition of the global blur
as image augmentations. This scenario simulates a situation

where limited dataset representing a given domain is avail-
able, and human-aided augmentations are not used. Models
trained according to this scenario will be referred to as the
limited data models.

Evaluation scenario S3: Training on Human-Aided
Limited Data. The same training as scenario S2 is applied,
but using human saliency encoded versions of all 765 train-
ing samples, again minus samples corresponding to the left-
out type. Networks are trained on a combined set comprised
of images transformed with all maximum blur levels, as de-
scribed in Sec. 4. Samples with no blur are not included in
this scenario as they were in S2. Models trained according
to this scenario are referred to as the human-aided models.

Common settings across all scenarios. The validation set
used for best epoch selection was the same in all scenar-
ios, and the validation images were not blurred. Since all
models accept cropped and resized images as input, both
original and the user-annotated images were cropped in the
same way. As with the large training dataset, the common
validation set is also balanced such that the number of bona
fide and abnormal samples is equal.

6. Evaluation Results

Improvement through human-saliency-aided training.
Since the evaluation is focused to assess generalization ca-
pabilities, all samples of one abnormal type are left out in
each experiment. Each plot in Fig. 5 represents one leave-



Table 3: LivDet-Iris 2020 competition results (in %) compared to the proposed approaches.

Method Algorithm APCER Overall Performance ACERcategory PP CL DP AR PM APCERaverage BPCER

Livet Iris 2020
Submissions

Team: USACH/TOC 23.64 66.01 9.87 25.69 86.10 59.10 0.46 29.78
Team: FraunhoferIGD 14.87 72.80 53.08 19.04 0 48.68 11.59 30.14

Competitor-3 72.64 43.68 83.95 73.19 89.85 57.8 40.31 49.06

This Work
Large Training Data (S1) 9.34 32.89 3.70 2.03 0.55 21.74 0.47 11.1

Limited Training Data (S2) 1.91 5.05 1.23 3.512 0.09 3.66 93.08 48.37
Human-Aided (S3) 9.06 36.65 0.0 2.77 1.37 24.14 8.61 16.37

PP: Paper printouts; CL: Textured contacts ; DP: Display; AR: Artificial; PM: Post-mortem; APCER: Attack Presentation Classifica-
tion Error Rate (abnormal called bona fide); APCERaverage: APCER averaged across all attack types; BPCER: Bonafide Presentation
Classification Error Rate (bona fide called abnormal); ACER: average of BPCER and APCERaverage.

(a) Textured contact lens (b) Paper printouts (c) Post-mortem (d) Artificial

(e) Synthetic (f) Diseased (g) Contact lens & printed (h) None (for LivDet testing)

Figure 6: Accuracy on the training and validation subsets while training the models without (scenario S2) and with (S3)
human saliency maps encoded into the training data. We can observe a severe overfit, and a close-to-random-chance perfor-
mance of models trained without employing human intelligence (S2). In turn, human-aided saliency maps help in obtaining
high validation accuracy almost instantly during training (S3).

one-out experiment, with the class that was held out indi-
cated in the graph’s title. For all experiments, each network
initiated from pre-trained ImageNet weights was trained ten
times independently. The ROC curves represent the means
of ten runs in a given scenario. The shaded region surround-
ing each curve represents ±1 standard deviation of the True
Positive Rate (TPR) obtained on the test set.

In all graphs, a similar observation can be made. The
large data models, trained with the largest-possible dataset
(scenario S1), results in the highest accuracy. That is, do-
main knowledge about abnormality delivered by dataset of
ample size allows for more accurate class representations to
be learned. Models trained with a limited number of sam-
ples, and with no human-aided augmentation (scenario S2)
have lowest accuracy for each left out abnormal type. This
clearly demonstrates that such limited training set, although
non-trivial to collect if we think about collecting more than
700 exemplars of real attacks on biometric systems, is not
sufficient to build an effective PAD system.

Can we do better with this limited data? The ROC plots
show that the use of human-guided features (scenario S3)
provides a significant increase in accuracy, when compared

to scenario S2, across all experiments. This shows that us-
ing human judgement about which parts of the image con-
tain information that is salient to the decision guides net-
works to learn solutions that generalize better. While only
trained and tested in the iris PAD context, this approach
does not consider any biometrics-specific training or anno-
tations, hence we hypothesise that a similar approach can be
applied to a wide family of visual tasks, in which humans
present better-than-random-chance classification accuracy.
It is important to note that direct comparison of the large
data (scenario S1) models with human-aided (scenario S3)
models would not be fair due to significant discrepancies in
the training set size.

Varying performance can be seen across the left-out ab-
normal types. Abnormal types such as textured contacts
and synthetic are most difficult due to their intentional re-
semblance to bona fide samples. When these types are re-
moved from training and validation, the models struggle to
make effective classifications on these samples. This is a
common observation in iris PAD, as shown in results of
the LivDet-Iris 2020 competition. However, in all cases the
performance is significantly increased when human annota-



tions are incorporated into training.

Testing on LivDet-Iris 2020 Competition data. The fi-
nal evaluation demonstrates how the proposed human-aided
training strategy performs on the most recent iris PAD com-
petition. This competition included abnormal types un-
known from previously published works, and hence is in-
herently focused on assessing generalization capabilities of
iris PAD algorithms. In this evaluation, we again test mod-
els trained according to three scenarios (S1, S2 and S3) and
test on the previously unseen LivDet-Iris 2020 dataset using
the classification threshold defined by the competition orga-
nizers of 0.5, where 0 is bona fide and 1 is abnormal. For
this experiment, no abnormal type from the training data
was left out. The competition protocol is applied such that
we assume no knowledge of the testing set during training.

As shown in Table 1 there are five abnormal image
types present in the LivDet dataset, and also bona fide data.
One of the abnormal image types (display attack) was not
present in the training data. The other four abnormal image
types were represented in the training with disjoint sam-
ples, but were collected by different teams, with different
subjects, and were excluded from any training. To ensure
fairness, no modifications were made to the algorithm to
improve results after attaining performance metrics on the
LivDet-Iris 2020 benchmark. All baselines were disquali-
fied from the competition by LivDet organizers since these
institutions had access to this test data which originated
from the same source as their train data, unlike the com-
petitors. Hence, it was decided to strictly follow the LivDet
competition protocol and compare only to the competitors.

As shown in Table 3, the highest accuracy is again the
“large data” model (scenario S1). This model improves
upon the best results in the competition by decreasing the
average error rate from the winning level of 29.78% to a
much lower 11.1%. It is certainly expected, as the large
and balanced training set, composed of 93,190 (46,595 bona
fide/46,595 abnormal) samples contains the richest infor-
mation about the task domain. However, the most inter-
esting comparison is to juxtapose the “limited data” and
“human-aided” approaches. We can see that using only 765
training images encoded with human saliency maps (sce-
nario S3), the average classification error rate (ACER) de-
creased from 29.78% (obtained by the competition winner)
to 16.37%. In contrast, when using the same training im-
ages but without human-aided training (scenario S2) the
obtained ACER = 48.37%, which is worse than the top
two LivDet submissions and only marginally better than
the last place submission. This suggests that the human
guided approach (S3) would have won the LivDet-Iris
2020 competition by a large margin of 13% whereas an
equivalent solution without human annotation incorporation
(S2) would have placed third.

Validation accuracy increases significantly using models
trained with human-aided saliency maps. Figure 6 out-
lines an interesting finding when analysing validation accu-
racies as the training progresses in both S2 and S3 scenarios.
While the training accuracy in both scenarios stays prac-
tically identical, it is clear that regular training (S2) leads
to a severe overfit to the training data, as performance on
the validation data is close to random chance and plateaus
quickly. Conversely, the validation accuracy on the same
set when the models are trained with human saliency en-
coded into the training data (S3) is significantly better, and
can be achieved rapidly during the training process. It’s yet
another demonstration that the addition of human saliency
information to the training data reduces overfitting, while
increasing performance over models trained with the same
images without human saliency information encoded.

7. Summary and Conclusions
We propose a novel framework for incorporating human

saliency judgements into the training images for deep learn-
ing, with the goal of increasing accuracy, especially from
limited training data, and improving generalization. We val-
idated our approach on the difficult problem of iris presen-
tation attack detection. Iris PAD is an excellent example of
a security-critical task that inherently has limited training
data available, and for which generalization is of paramount
importance. Adversaries create an ever-evolving landscape
of attack samples, and algorithms must be able to generalize
to novel attacks with only a handful of new images.

We collected a unique dataset of human annotations from
150 non-expert subjects who highlighted salient regions for
this visual classification task. These annotations fed into lo-
calized blurring of image regions judged as less salient for
humans. The result is a human-saliency-transformed ver-
sion of the original training images. We experimentally
compared the performance of the model trained with (a)
human-saliency-transformed data, and (b) original images
(with standard augmentation techniques). Training with
human-saliency-transformed images achieves significantly
greater accuracy on all leave-one-attack-type-out experi-
ments. Further, evaluating our approach in the framework
of the state-of-the-art LivDet-Iris 2020 competition, our
human-saliency-transformed model achieves average clas-
sification error rate of 16.37% on the challenging LivDet-
Iris 2020 benchmark, a substantial improvement over the
competition winner’s ACER = 29.78%.

No part of our approach is specific to iris PAD and it can
readily be applied to any visual classification task recogniz-
able to humans. This opens a whole new area of research
related to effective incorporation of human saliency judge-
ments into training strategies for deep learning. We release
our human annotation dataset collected for this work along
with source codes to prepare human-aided training data.
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A. Detailed Dataset Description



Table 4: Full dataset used for training and validation bro-
ken down by individual contributing dataset. The in-house
currently unpublished data used in this work is denoted as
University of Notre Dame data.

Image Type Contributing Dataset # of Samples Total Samples

Bona fide

ATVS-FIr [12]
BERC IRIS FAKE [24]

CASIA-Iris-Thousand [1]
CASIA-Iris-Twins [1]
Disease-Iris v2.1 [38]

ETPAD v2 [22]
IIITD Contact Lens Iris [20]

IIITD Combined Spoofing Database [21]
LivDet-Iris Clarkson 2015 [46]
LivDet-Iris Warsaw 2015 [46]
LivDet-Iris Clarkson 2017 [45]

LivDet-Iris IIITD-WVU 2017 [45]
LivDet-Iris Warsaw 2017 [45]
University of Notre Dame data

800
2,776

19,952
3,181
255
400
13

4,531
813
36

3,949
2,944
5,167

354,236

399,053

Textured contact lens

BERC IRIS FAKE [24]
IIITD Contact Lens Iris [20]

LivDet-Iris Clarkson 2015 [46]
LivDet-Iris Clarkson 2017 [45]

LivDet-Iris IIITD-WVU 2017 [45]
University of Notre Dame data

140
3,420
1,107
1,881
1,700

19,124

27,372

Paper printouts

ATVS-FIr [12]
BERC IRIS FAKE [24]

IIITD Combined Spoofing Database [21]
LivDet-Iris Clarkson 2015 [46]
LivDet-Iris Warsaw 2015 [46]
LivDet-Iris Clarkson 2017 [45]

LivDet-Iris IIITD-WVU 2017 [45]
LivDet-Iris Warsaw 2017 [45]

800
1,600
1,371
1,745

20
2,250
1,766
6,841

16,393

Post-mortem Irises Post-Mortem-Iris v3.0 [40] 2,259 2,259
Synthetic CASIA-Iris-Syn V4 [44] 10,000 10,000

Artificial BERC IRIS FAKE [24]
University of Notre Dame data

80
197 277

Diseased irises Disease-Iris v2.1 [38] 1,537 1,537
Textured contacts & printed LivDet-Iris IIITD-WVU 2017 [45] 1,899 1,899

B. Annotation Tool



Figure 7: Online annotation tool developed to collect annotation data with an example input of a human solving the iris
presentation attack detection task for a textured contact lens sample.


