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Abstract As the capabilities of artificial intelligence

systems improve, it becomes important to constrain

their actions to ensure their behaviour remains ben-

eficial to humanity. A variety of ethical, legal and

safety-based frameworks have been proposed as a ba-

sis for designing these constraints. Despite their vari-

ations, these frameworks share the common character-

istic that decision-making must consider multiple po-

tentially conflicting factors. We demonstrate that these

alignment frameworks can be represented as utility

functions, but that the widely used Maximum Expected

Utility (MEU) paradigm provides insufficient support

for such multiobjective decision-making. We show that

a Multiobjective Maximum Expected Utility paradigm

based on the combination of vector utilities and non-

linear action-selection can overcome many of the is-

sues which limit MEU’s effectiveness in implementing

aligned artificial intelligence. We examine existing ap-

proaches to multiobjective artificial intelligence, and

identify how these can contribute to the development

of human-aligned intelligent agents.
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1 Introduction

Recent years have seen dramatic improvements in the

capabilities of artificial intelligence (AI) systems, with

AI agents demonstrating human or even superhuman

levels of performance across a variety of tasks (Ferrucci,

2012; Mnih et al., 2015; Silver et al., 2016). In parallel,

AI technology is increasingly moving beyond research

labs and ‘toy’ problems, and being applied in systems

which are directly embedded in the real world, such as

autonomous vehicles (Lozano-Perez et al., 2012). Mit-
telstadt et al. (2016) note that ethical issues can arise

even in systems which are only semi-autonomous, and

it can be expected that the ethical repercussions are

likely to increase as systems become increasingly au-

tonomous. For example, even if current autonomous ve-

hicles are not yet explicitly reasoning about the ‘trolley-

car’ like ethical dilemmas involved if an accident be-

comes unavoidable (Goodall, 2014), they do regularly

make decisions which carry an implied trade-off be-

tween the safety of the driver, passengers and other

road-users, and other factors like trip duration (for ex-

ample, deciding how much below the speed-limit to

travel on an icy road).

These developments have led multiple researchers

to raise concerns regarding the potential dangers posed

by careless application of artificial intelligence. An open

letter expressing such concerns, alongside commentary

on the potential benefits of advanced AI, was released

(Future of Life Institute, 2015), while the IEEE has

initiated a series of committees to examine the issues
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pertaining to ethical development and deployment of

AI (The IEEE Global Initiative for Ethical Consider-

ations in Artificial Intelligence and Autonomous Sys-

tems, 2016). Some authors, notably Bostrom (2014),

have focused on the existential risk to humanity posed

by superhuman artificial general intelligence, while oth-

ers have concentrated on the more immediate dangers

posed in the short to medium-term (Amodei et al.,

2016). In either case, the underlying concern is that an

agent following under-specified or poorly defined goals,

or which has the ability to modify its own goals, may

act in a manner which is inconsistent with the intent of

its designer.

To prevent such dangers from arising, many re-

searchers have proposed that the behaviour of AI sys-

tems must be constrained. Various frameworks have

been identified which might act as a basis for these

constraints, including adapting moral and ethical sys-

tems previously proposed for human behaviour, as well

as other frameworks tailored more expressly to the re-

quirements of AI. Soares and Fallenstein (2014) intro-

duced the term aligned to refer to an artificial intelli-

gence which is constructed in such a way as to ensure

that it behaves in a manner which will be beneficial

to humanity (that is to say, its goals are ‘aligned with

human interests’). This paper adopts this terminology.

While there has been substantial theoretical and

philosophical discussion regarding aligned artificial in-

telligence in recent years, Allen and Wallach (2012) note

that there is often a disconnect between the abstrac-

tions proposed at a theoretical level, and the implemen-

tation technologies developed by AI practitioners. This

paper aims to address this divide by identifying specific

characteristics of the various theories and considering

how they impact on the requirements of the underlying

technologies.

Section 2 reviews some of the main frameworks

which have been proposed as a basis for aligned AI, and

identifies a common theme — the need for an agent to

be able to take into account multiple conflicting fac-

tors when making decisions. Section 3 addresses the

use of multi-factor utility functions to represent these

alignment frameworks, and considers the broad class

of AI technologies based on the concept of maximum

expected utility (MEU), assessing their risks and the

extent to which these can be addressed by incorporat-

ing alignment constraints. A critical limitation is iden-

tified in terms of the capability of MEU methods to

address the multiobjective characteristic inherent in all

alignment frameworks. Section 4 examines the exten-

sion of MEU approaches to use an explicitly multiobjec-

tive representation of utility, showing that this enables

alternative approaches to action selection which address

the limitations of MEU. This section identifies promis-

ing directions for applying such technologies to address

the issues posed by the various alignment frameworks,

and briefly reviews the current work on multiobjective

AI, and multiobjective approaches to alignment.

We conclude by arguing that the appropriate means

to suitably constrain AI behaviour is to use an explicitly

multiobjective approach to specifying and implement-

ing an agent’s goals, and that this provides a very strong

argument for an increased focus on the development

of multiobjective approaches to AI and autonomous

agents.

2 Alignment Frameworks for Artificial

Intelligence

In this section we review a sample of the various ap-

proaches which have been proposed as providing a suit-

able basis for specifying constraints on the behaviour

of AI agents. These concepts have arisen from a num-

ber of fields including philosophical theories of ethics,

moral systems, and codes of conduct from specific do-

mains. For convenience, we will refer to these as align-

ment frameworks as all have the aim of ensuring that

AI is aligned, in the sense proposed by Soares and Fal-

lenstein (2014).

2.1 General ethical frameworks

The identification of ethical frameworks to drive human

behaviour has long been one of the primary themes of

philosophical thought. We do not intend to provide a

thorough review of these ethical philosophies here, but

instead to focus on the key characteristics which we

believe to be of most relevance to the development of

ethical AI. As such we restrict our discussion to the util-

itarian and deontological approaches to ethics, as these

have been the most widely considered in the literature

on ethical AI so far.

2.1.1 Utilitarian ethics

Utilitarianism is based on the notion that the morality

of an action should be judged by its consequences. It

is assumed that the desirability of an outcome can be

measured via some utility metric, and that an action is

judged to be morally right if its consequences lead to the

greatest utility (Tavani, 2011). Different utilitarian the-

ories vary in terms of the definition of utility they aim to

maximise. For example, Bentham (1789) proposed that

a moral agent should aim to maximise the total happi-

ness of a population of people. Utilitarian theories also
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vary in whether they are act utilitarianism or rule util-

itarianism. An act utilitarian selects between acts by

simply choosing the act which can be expected to max-

imise utility given the current situation. In contrast rule

utilitarianism identifies rules of behaviour which would

be expected to lead to good outcomes if followed by

everyone.

Utilitarianism has been a popular ethical the-

ory over the last hundred years and is preferred by

economists as its outcomes can be measured in dol-

lar terms (Reynolds, 2011). Due to their quantitative

nature, the utilitarian approaches to ethics also appear

particularly well suited for implementation in computer

systems. However the choice of which of the many util-

itarian theories is most appropriate for an AI agent is

unclear. Brundage (2014) notes that reviews of the util-

itarian literature reveal no consensus on exactly what

measure of utility should be maximised, and that plu-

ralist utilitarian philosophies explicitly advocate con-

sidering multiple values, such as a mixture of individual

and group benefits. However, there remains disagree-

ment over the correct manner in which to weight differ-

ent sources of utility, or even over whether it is appro-

priate to combine them on the same scale at all (Wal-

lach and Allen, 2008).

Wallach and Allen (2008) suggest that one approach

to utilitarian AI may be to elicit multiple utility ratings

from different sources, and then seek to combine these

into a single weighting formula. Abel et al. (2016) also

propose adopting a multiobjective utilitarian approach

for the creation of an ethical AI agent using reinforce-

ment learning, in which the agent learns the ethical

preferences of multiple individuals, and then tries to

maximize a combination of these personal preferences.

2.1.2 Deontological ethics

Deontological ethics argues that actions should be

judged not on the basis of their expected outcomes,

but on whether they are compatible with a set of du-

ties which would be recognised by all rational decision-

makers. As with utilitarian theories, many variations

of deontological ethics exist, depending on which du-

ties are assumed to apply, and theories can be both

act-based or rule-based. For example, Kant’s categori-

cal imperative states that people should be understood

as ends-in-themselves and not merely as a means to an

end, and that actions should be judged on the basis to

which they comply with this imperative (Kant, 1993;

Tavani, 2011).

Meanwhile, Ross (1930) proposed a list of seven

prima facie duties consisting of fidelity, reparation,

gratitude, non-maleficence, justice, beneficence, and

self-improvement. A decision-maker should try to sat-

isfy all of these duties, but of course at times they may

conflict with each other, at which point the decision-

maker must balance the importance of the different

competing duties to decide on the most ethical course of

action. Fieser (2016) describes a scenario based on Ross’

list of duties where a person borrows a gun from their

neighbour and promises to return it. At a later time

the neighbour demands the gun back in order to shoot a

third party. The person now faces a conflict between the

fidelity and non-maleficence duties. Defining the correct

decision in the face of such conflicts is extremely diffi-

cult. Anderson et al. (2006a) proposed a computational

approach to resolving such conflicts based on learning

decision principles from example cases labelled using

expert ethical opinion.

2.2 Other alignment frameworks

Given the difficulties in establishing suitable, widely-

accepted ethical codes to form the basis for ethical AI

systems, some researchers have argued in favour of more

pragmatic approaches based on alternative frameworks.

For example, Danielson (2009) argues that as the moral

decision-making capabilities of AI will likely be inferior

to that of humans in the near to mid-term, it is in-

appropriate to attempt to replicate the frameworks of

human morality. Instead, he argues that more limited

approaches should be implemented, with the autonomy

of robots (or other AI) restricted based on the trust we

have in their ethical decision-making. Several alterna-

tives have been proposed for these restricted alignment

frameworks – in many cases these are based on con-

straints which are either domain-specific, or which are

suited to the more restricted ethical scenarios consid-

ered by non-general AI.

2.2.1 Legal frameworks

It can be argued that the laws and regulations of a

society reflect the dominant and most widely-accepted

ethical and moral beliefs of that society. Certainly these

can be viewed as the primary external constraints on

the behaviour of the members of that society. There-

fore, it has been argued by several researchers that AI

agents should also be constructed so as to comply with

the legal framework of the society in which they will

be operating (for example, Etzioni and Etzioni (2016);

Prakken (2016))1.

1 For the purposes of this paper we will ignore the vital issue
of who bears legal responsibility for the actions of an AI agent.
For a broader discussion of the legal issues around AI see
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Consider for example the case of an autonomous ve-

hicle. The rules of the road constrain the behaviour of

human drivers so as to minimise the risk of injury and

death, and to promote traffic flow. Therefore, it seems

reasonable that vehicles controlled by AI should also

comply with these rules. However, direct implementa-

tion of these rules may be problematic. Laws are often

based on vague concepts such as “safe” and “reckless”

which may prove difficult to quantify. In addition the

rules alone may be insufficient to define the correct be-

haviour for the agent in all of the circumstances which

it may encounter. Wallach and Allen (2008) discuss the

case of an autonomous car having to break the traf-

fic laws in order to avoid an accident, while Prakken

(2016) points that some actions are technically illegal,

but acceptable by social norms (such as driving slightly

above the speed limit to match surrounding vehicles),

or vice-versa (driving below the speed limit to an ex-

tent which inconveniences and angers human drivers).

As such, an agent based on a legal framework will in-

evitably have to take into account factors other than

strict compliance with a defined set of rules or laws.

Legal issues may also arise in the context of intelli-

gent systems which are not physically situated. Machine

learning systems can potentially learn decision-making

strategies which are illegally discriminatory in nature.

Even if the agent is not directly given access to vari-

ables such as race and gender, it may form decisions on

the basis of variables which act as proxies for these pro-

tected attributes (Mittelstadt et al., 2016). Therefore,

Romei and Ruggieri (2014) argue for the inclusion of

explicit anti-discrimination criteria in addition to the

other criteria used within the learning algorithm.

2.2.2 Military frameworks

Throughout history, military and defense considera-

tions have been a leading driver of technological de-

velopment, and this has also been the case in artificial

intelligence research. The development and deployment

of armed autonomous vehicles has been considered by

the US military (Altmann, 2013). Military agents face

ethical decisions with greater repercussions than those

which arise with any frequency in most other domains.

Whilst general approaches such as utilitarianism can be

applied in military contexts, more specific frameworks

have also been developed. Arkin (2008) has proposed

that autonomous military systems should be designed

so that their actions “fall within the bounds prescribed

by the Laws of War and Rules of Engagement” – that

Leenes and Lucivero (2014) and the review of the literature
in Section 10 of Mittelstadt et al. (2016)

is, the same rules and directives which govern the op-

erations of human military personnel.

An example of these directives is the principle of

proportionality which underpins military decision mak-

ing where there is a risk of civilian casualties – this “re-

quires that the anticipated loss of life and damage to

property incidental to attacks must not be excessive in

relation to the concrete and direct military advantage

expected to be gained” (Petraeus and Amos, 2006, p.

7-5). Putting aside the difficulties in distinguishing be-

tween civilians and combatants (Sharkey, 2012), clearly

this principle requires an agent to make a decision which

balances the conflicting objectives of minimising col-

lateral damage and achieving military advantage. As

noted by Sharkey (2009) this decision is made more

complex by the imprecise nature of terms such as “ex-

cessive”.

2.2.3 Safety frameworks

Some researchers have argued that fully ethically-aware

agents are unlikely to be created, or required, in the

near-future and have instead focused on the more im-

mediately pressing goal of ensuring that AI agents be-

have in a manner which is safe for humanity (for a good

summary see Amodei et al. (2016)). Many of the appli-

cations in which AI systems are likely to be deployed

in the near future may not require the AI to behave

as a fully moral agent, but may still require the agent

to avoid actions which will have negative or danger-

ous consequences. For example, a mobile robot could

reasonably be expected to avoid collisions which might

cause harm to humans, but may not be required to

carry out other actions which would be required of a

fully moral agent, such as recognising a person in emo-

tional or physical distress and appropriately responding

to their needs.

If successful, the development of suitable safety-

based frameworks for AI can be seen as achieving two

purposes. In the short-term it will allow AI systems to

be deployed with confidence in situations where their

behaviour might otherwise result in harmful outcomes.

In the longer-term, we believe it is likely that meth-

ods developed for implementing safety constraints will

also prove of value in developing the more complex sys-

tems of constraints required by the ethical frameworks

discussed in Section 2.1.

The work in this area of AI safety has largely fo-

cused on identifying and addressing problems that arise

specifically in the area of artificial intelligence rather

than adapting existing ethical systems for human be-

haviour. For example, Soares et al. (2015) consider the

need to ensure that an AI system which is behaving in-
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correctly will comply with attempts to shut it down or

otherwise modify its behaviour. As being shutdown will

impact on the agent’s ability to satisfy its primary goal,

an agent which is not specifically designed to also con-

sider the alignment goal of being corrigible (that is, be-

ing compliant with human orders) may be incentivized

to avoid being deactivated. Meanwhile Taylor (2016)

proposes a limited optimization approach to address the

problems which may arise from an agent being overly

focused on maximising expected performance on one

specific criteria, and failing to take into account other

factors. Amodei et al. (2016) discuss a specific variant

of this problem in which the agent aims to maximise

performance on its main task, subject to minimising

its impact on the environment. The justification from

a safety perspective is that environmental disruptions

should generally be regarded as negative outcomes un-

less they are specifically required to achieve the pri-

mary task (for example, a mobile robot should prefer-

ably avoid knocking over objects or causing humans to

have to move to avoid collisions). In particular, such

environmental disruptions may be regarded as negative

side-effects across a range of tasks rather than being

task-specific.

2.2.4 Social norms

One likely wide-spread application of AI is in the do-

main of social and service robots, with 35 million ser-

vice robots expected to be in use by 2018 (van Wyns-

berghe, 2016). A dominant factor in the success of such

robots will be their ability to interact with humans in

a manner which does not disturb or adversely affect

those humans (Meisner, 2009). Sharkey and Sharkey

(2012) give the example of a care robot being required

to knock and await an invitation before entering a pa-

tient’s room. More generally, to be effective, social and

service robots are likely to have to abide by the prin-

ciples of manners and other social norms which govern

everyday human interaction. Of course, this must also

be balanced with other factors – for example, entering

a patient’s room without invitation is appropriate in

cases of a medical emergency. The IEEE Global Initia-

tive for Ethical Considerations in Artificial Intelligence

and Autonomous Systems (2016, p. 25) expressly com-

ment that AI systems are “usually subject to a multi-

plicity of norms and values that may conflict with each

other.”

Van Riemsdijk et al. (2015) argue that agents capa-

ble of conforming to adaptive social norms can poten-

tially be created based on existing research in norma-

tive multi-agent systems. Norm-based frameworks have

been widely used as a means of regulating interaction

between agents in multi-agent systems (Andrighetto

et al., 2013). In this context, the actions of any agent

are influenced by both that agent’s own internal prefer-

ences and also the normative constraints of the system,

which have been designed to support satisfaction of the

goals of all agents (Dignum, 1996; Castelfranchi et al.,

1999; Broersen et al., 2002).

2.3 Alignment frameworks are multiobjective

The various frameworks discussed in Sections 2.1 and

2.2 differ in numerous ways. The ethical frameworks at-

tempt to provide guidance at a universal level, across

all possible situations which might be encountered. This

form of framework potentially could be of value in cre-

ating AI systems capable of acting as fully moral agents,

as may be required for an artificial general intelligence.

Meanwhile, legal and safety-based frameworks are more

specific in scope and application, and are perhaps best

suited to the more narrow AI which is likely to be de-

veloped in the near to mid-term.

Regardless of these variations, all of the frameworks

share a common defining characteristic. They provide

constraints to guide the agent on acceptable behaviour

when it finds itself facing a dilemma; that is, when

the agent’s attempts to achieve its primary purpose

(whatever that may be – maximising profit, or plea-

sure, or some other objective) conflict with the other

values which the agent’s designer wishes it to observe.

Therefore, any human-aligned AI agent must take into

account both its primary goal and its ethical or other

constraints in each decision it makes.

Taking this a step further, Sections 2.1 and 2.2 iden-

tified that within any specific alignment framework,

multiple competing factors may influence decision-

making. For example, the duty-based ethical frame-

work of Ross (1930) consists of multiple prima facie

duties which may be in conflict in some situations. Sim-

ilarly, utilitarian frameworks may require the decision-

maker to take into account multiple measures of utility

(Brundage, 2014).

Furthermore, it may be the case that a single align-

ment framework is insufficient to produce the desired

alignment behaviour in an agent. For example, while

a legalistic framework may guide the behaviour of an

agent, it may be insufficient in itself to fully constrain

the actions of that agent – it is easy to envisage sce-

narios in which the ethically correct course of action

may not be legal, and vice-versa (Asaro, 2012). Etzioni

and Etzioni (2016) note that human society is built

on a two-tier approach to ethics – critical values (such

as banning murder and theft) are enforced via the law,

while individuals have freedom to make their own moral
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judgements regarding issues such as whether to invest

their funds in socially-responsible companies. Indeed,

as discussed in Cushman (2013), experiments in moral

psychology have provided evidence that human ethical

decision making at an individual level also involves a

dual-system framework, which considers both outcomes

and actions (that is, it explicitly considers and combines

the utilitarian and deontological approaches).

Therefore we contend that the universal characteris-

tic of any ethical agent, and thus of any human-aligned

artificial intelligence, is that it must consider multiple

conflicting factors and objectives within its decision-

making. This is true regardless of the specific nature of

the alignment framework(s) governing the behaviour of

the agent. As such, it is vital that the technologies used

to develop intelligent agents provide this multiobjective

decision-making capability.

3 Can utility-maximizing AI be

human-aligned?

A wide variety of methods have been proposed for

implementing intelligent agents. However, Russell and

Norvig (2010, p. 611) argue that the concept of max-

imum expected utility (MEU) can be regarded as the

defining principle of artificial intelligence. MEU requires

that the objectives or preferences of an agent have been

defined in the form of a real-valued utility function,

U(s), which provides a numeric rating of the desirabil-

ity of any state s in which the agent may find itself. If

the agent has the capability to predict the probability

with which performing any action a will lead to each

possible state s′, then the agent can behave rationally

by selecting the action which will maximise the future

expected utility. That is,

action = argmax
a

(
∑
s′

P (s′ |s, a)U(s′)) (1)

where argmax selects the action a which maximises the

summation, and P (s′ |s, a) is a function which outputs

the probability of each successor state s′ occurring if

action a is executed in the current state s. We note

that MEU is a deliberately general model of an AI, and

so the exact details of the state and action variables

may differ between implementations. For example, the

state s may be a specific state from a discrete set of

states S, or a vector of real-valued variables, or a set of

symbolic facts, or any combination of the above, whilst

the action a might be a discrete choice from a set of

actions A, or a vector of real values, as in a control

task.

In some contexts (such as where the outcome of ac-

tions is not predictable), an alternative utility function

may instead be defined in terms of both the current

state and the action to be performed. This still allows

for MEU-based action selection, as specified in Equa-

tion 2 below:

action = argmax
a

(U(s, a)) (2)

The concept of MEU underpins AI methods such

as decision-theoretic planning (Blythe, 1999) and re-

inforcement learning (Sutton and Barto, 1998) which

have been used in some of the most successful AI sys-

tems of recent years. Therefore this section will examine

the strengths and limitations of MEU-based methods

with regards to implementing human-aligned AI.

3.1 The risks of unaligned utility maximizing agents

One of the strengths of MEU-based approaches such as

reinforcement learning is their capacity to discover solu-

tions which are different from, and potentially superior

to, those already known to their designers. However,

this open-ended nature also brings risks, as identified

by numerous researchers in AI safety and ethics. Tay-

lor (2016) notes that MEU agents may produce unin-

tended, potentially serious, negative side-effects if the

utility function being maximized is not aligned with

human interests (for example if some relevant criteria

are not included in the utility function). The poten-

tial magnitude of these negative side-effects is greatly

magnified if the agent is not constrained to a limited

action set within a narrow domain. Omohundro (2008)

gives the example of an agent given the goal of winning

chess games. This seemingly innocuous utility measure

can lead to serious repercussions if the agent has the

capability to interact with the broader environment. It

could, for example, try to take control of other com-

putational resources in order to achieve relatively small

improvements in its chess-playing ability. An agent with

the ability to modify its own internal functioning may

produce similar problems, even if its original utility

function appears to be suitable (Bostrom, 2014).

As a result, numerous authors have argued for the

inclusion of alignment constraints within MEU agents,

for example by using limited optimization techniques

(Taylor, 2016; Armstrong et al., 2012), by minimising

side-effects (Amodei et al., 2016), or by guaranteeing

corrigibility (Soares et al., 2015). The next sub-section

will discuss how this might be achieved within the MEU

framework, and also the limitations of such approaches.
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3.2 Implementing alignment frameworks via utility

maximization

The behaviour of an MEU agent is driven by its utility

function. Therefore a natural means by which to in-

corporate an alignment framework is to define the con-

straints of the framework via a utility function, and to

direct the agent to consider both this aspect of utility

and its main utility function when selecting actions to

perform. That is, if utility function UP (s) relates to the

agent’s primary goal (such as winning games of chess),

and utility function UA(s) relates to the constraints of

the chosen alignment framework, then the combined

utility function will be as shown in Equation 3.

U(s) = UP (s) + UA(s) (3)

The agent’s behavior can then be determined us-

ing Equation 1 as in regular MEU2. More generally, as

discussed in Section 2.3, the alignment framework may

itself consider multiple factors, or multiple alignment

frameworks may be required to be used in parallel. In

this case there will need to be multiple alignment utility

functions as shown in Equation 4, where n ≥ 2 repre-

sents the number of alignment-based utility functions.

U(s) = UP (s) +

n∑
i=1

UAi(s) (4)

The main issue to be considered then is how utility

functions UAi can be derived from the various align-

ment frameworks discussed in Section 2.

As suggested by the name, utilitarian ethical frame-

works map naturally onto a utility-based approach to

decision-making. Act utilitarianism and MEU both take

an outcome-focused approach to selecting actions, so

implementing a utilitarian framework within an MEU

agent requires only that we identify measurable aspects

of the outcomes of the agent’s behavior and codify these

in the form of utility functions. For example, Ander-

son and Anderson (2007) describes the development of

a computational ethics system based on the hedonis-

tic act utilitarian ethical theory of Bentham (1789). In

this theory the aim is to maximize the overall summed

happiness across all members of the population. As de-

scribed by Anderson, this can be achieved by measuring

the individual happiness of each member of the popu-

lation, summing these values and then applying MEU.

As noted earlier in Section 2.1.2, deontological the-

ories of ethics explicitly argue against making ethical

2 A similar approach can also be applied in the context of
utility functions which depend on both state and action, as
in Equation 2.

decisions on the basis of outcomes and as such are less

obviously compatible with the MEU approach. How-

ever, as noted by Cushman (2013), this type of ethical

approach can be expressed in terms of utility by defin-

ing the utility function solely in terms of the action

being performed, and not the state in which this ac-

tion is performed. For example, an ethical rule which

prevents lying can be implemented by defining a utility

function which assigns a large negative utility to the

action of lying (i.e. UA(‘lie′) = −1000). More generally,

a rule-based alignment framework can be represented

by a series of utility functions UA1 ..UAn where each

function returns negative utility if the agent violates a

specific rule of the framework.

The use of pre-specified utility functions to repre-

sent the constraints imposed by a specific alignment

framework is an example of what Wallach and Allen

(2008) have described as a top-down approach to cre-

ating an aligned AI. This involves the AI designer se-

lecting an appropriate alignment framework, and iden-

tifying a computational approach which implements

that framework. Wallach and Allen (2008) also iden-

tify the contrasting bottom-up approach in which the

emphasis is on the agent learning its own set of moral

constraints which aligns its goals with that of human-

ity. Approaches belonging to this category include su-

pervised learning from examples labelled by humans

(Guarini, 2006), reinforcement learning (Dewey, 2011;

Abel et al., 2016), and learning the values implied by

human stories (Riedl and Harrison, 2016). Methods

may also merge elements of the top-down and bottom-

up approaches (Wallach and Allen, 2008, ch. 8).

Regardless of the alignment framework used, and

whether the utility functions are formed in a top-down

or bottom-up fashion, once these functions have been

established we might expect that an MEU agent based

on Equation 4 in combination with Equation 1 or 2

would exhibit human-aligned behaviour.

Unfortunately, this may not be the case. Equation

4 collapses all of the factors influencing the decision as

represented by the alignment utility functions and the

primary utility function into a single scalar value. The

behaviour elicited by maximising the expected value

of this scalar utility will be heavily influenced by the

relative scale of the individual utility functions. If the

obtainable values for the primary utility UP greatly ex-

ceed those of the UAi
functions, then the agent may

act to maximise UP even if this violates the intended

alignment framework. Alternatively, if the scale of UP

is much lower than the UAi
values, then the agent may

focus entirely on the alignment factors and fail to per-

form any useful function (for example, a self-driving car
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which refuses to start its engine so as to minimise any

risk to human life).

This can potentially be addressed by introducing

weighting factors into the combination of the utility

functions, as shown in Equation 5 where wi ∈ R>0 rep-

resents a positive weight associated with each utility

function. The weights serve two purposes – they allow

the relative scales of the different utility functions to be

normalised with respect to each other, and also provide

a means for the system designer to indicate the relative

importance of the different factors.

U(s) = w0UP (s) +

n∑
i=1

wiUAi(s) (5)

However, designing this weighted utility function to

produce the desired behavior may still prove problem-

atic. The non-linear nature of the argmax operator in

Equations 1 and 2 means that the relationship between

the weights wi and the behaviour of the agent is not

straightforward (Van Moffaert et al., 2014). Identify-

ing suitable weights to produce the target behaviour

can therefore be quite difficult. In fact, in some cases it

may be that no weights exist which will elicit correctly-

aligned actions from the agent (Das and Dennis, 1997;

Vamplew et al., 2008). For example consider a care

robot scenario, inspired by the work of Anderson et al.

(2006b). The robot is tasked with carrying out a pri-

mary objective UP of ensuring a patient complies with

their treatment program, while the alignment objective

UA aims to preserve the patient’s sense of independence

and autonomy. The robot has five actions available –

a1 maximises compliance, but at the cost of eliminat-

ing the patient’s autonomy, while a2 allows the patient

complete independence, and therefore does not ensure

compliance. The other actions offer a compromise be-

tween the two factors. Figure 1 illustrates the value of

each action with respect to each of the objectives. As

the value of actions a3, a4 and a5 lie below the line be-

tween a1 and a2, there are no weight values for which

these actions would be the utility maximising action

(Section 2 of Das and Dennis (1997) provides a proof of

this observation). Therefore in this case an AI based on

Equation 5 would be unable to select actions a3, a4 or

a5 even if they would be the best compromise between

the two objectives.3

A further, non-technical objection to a linear-

weighted approach to aligned AI is that by explicitly

mapping all utility functions to a common scale, this

3 This problem would not arise if the Pareto front shown in
Figure 1 was convex rather than concave in shape. However
many problems will naturally result in concave fronts and so it
is important that an ethical AI can deal with such problems.
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Fig. 1 An example of the limitations of implementing an
alignment framework using MEU with a linear-weighted com-
bination of utility functions. Actions a3, a4 and a5 will never
be selected under any weighting of the utilities.

approach may in some scenarios conflate economic and

moral factors in a manner which would be philosophi-

cally unacceptable to many people (Wallach and Allen,

2008).

In summary, the task of specifying an appropriate

utility function to align an MEU agent’s behaviour with

human interests is extremely problematic and perhaps

impossible if a scalar-valued utility function is used.

Littman (2015) discusses the related task of specify-

ing reward functions which elicit the desired behaviour

from a reinforcement learning agent, and recommends

that future research focus on developing more struc-

tured formats for reward-function specification to fa-

cilitate specifying more complex behaviour. Similarly,

Dewey (2014) has argued that goal specification is crit-

ical to the creation of aligned AI, and that therefore

there is a need for the development of reward engineer-

ing techniques to assist developers in correctly specify-

ing AI goals.

In the next section we will argue that a vector-

valued (i.e. multiobjective) utility function in combina-

tion with a non-linear approach to action selection pro-

vides this additional structure, and therefore is a suit-

able mechanism for implementing human-aligned MEU

agents.

4 A multiobjective approach to human-aligned

AI

The previous section demonstrated that the constraints

defined by different alignment frameworks can be repre-

sented via multiple utility functions. However, linearly

combining these into a single scalar measure of util-

ity to allow the application of conventional MEU ap-

proaches introduces problems, which may prevent the

agent from acting in an aligned fashion. This section

will examine the advantages which accrue from adopt-
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ing an explicitly multiobjective approach to utility, in

terms of both representation and action-selection. This

section will also examine how methods based on the

concept of multiobjective maximum of expected utility

(MOMEU) may prove beneficial in creating aligned AI,

and briefly review prior work on multiobjective AI.

4.1 Multiobjective Maximum of Expected Utility

The issues with MEU identified in Section 3 arise

from the process of combining the multiple utility val-

ues representing the primary utility and the various

alignment-related factors into a single scalar value prior

to performing action selection. In contrast, MOMEU

approaches compose these utility values into a vector-

valued utility function, as shown in Equation 6.

U(s, a) = [UP (s, a), UA1
(s, a), ..., UAn

(s, a)] (6)

This vector-valued utility can then be used as the

basis for action selection, as described in Equation 7. 4

action = argmax
a

(f(U(s, a)) (7)

The MOMEU approach to action-selection shown

in Equation 7 shares a similar underlying structure

with MEU action selection (Equation 2). Indeed, if f

is a weighted or unweighted sum of the individual util-

ity values then this approach is equivalent to MEU,

and therefore inherits the limitations of that approach.

However, more generally f can be any function which

induces a total ordering over the utility vectors U(s, a),
reflecting the system designer’s preferences. In many

cases this can be achieved via a real-valued function

where ∀X,Yf(X) > f(Y) implies that X is preferred

to Y (that is, X � Y). However some preference re-

lationships such as lexicographic ordering can not be

represented by a real-valued function – in such cases f

must be specified in the form of an ordinal relationship

which directly captures the preferences between utility

vectors.

4.2 The Advantages of MOMEU for Aligned AI

The MOMEU approach to action-selection has two key

advantages in terms of specifying the desired outcomes

4 Note that depending on the structure of the utility func-
tions, if f is non-linear then Equation 7 may fail to result
in the desired behaviour unless the state vector S also incor-
porates information about the utility history (Roijers et al.,
2013).

of the behaviour of an aligned AI. First, the increased

range of options available for f may allow the agent

to identify courses of action which are not discoverable

using linear-weighted MEU. Second, the ability to use

non-linear forms for f provides an additional level of

structure and expressiveness for the system designer,

allowing them to explicitly specify desired trade-offs be-

tween the different components of utility – this helps ad-

dress the reward engineering concerns of Dewey (2014).

4.2.1 Satisfying alignment criteria

As an example of the benefits of MOMEU consider the

care robot example from Figure 1, where UP indicates

the utility associated with the primary objective of en-

suring the patient complies with treatment and UA the

utility associated with maintaining the patient’s auton-

omy. As discussed in Section 3, MEU based on a linear-

weighted sum of the utility terms will only ever select

actions a1 or a2, even though the other actions may

offer more acceptable trade-offs between the relevant

factors. In contrast, the MOMEU approach provides

a straightforward means for the designer to specify the

desired trade-off in fashion which the robot can achieve.

For example, the action-selection function f can be de-

fined using a combination of lexicographic ordering and

thresholding of objectives, so as to maximise the level

of compliance with the treatment program subject to

maintaining an acceptable level of patient autonomy, as

shown in Equation 8.

∀s, a, a′f(U(s, a)) ≥ f(U(s, a′)) ⇐⇒
min(UA(s, a), TA) > min(UA(s, a′), TA)∨
(min(UA(s, a), TA) = min(UA(s, a′), TA)∧

UP (s, a)) > UP (s, a′))

(8)

Depending on the value chosen as the minimum ac-

ceptable threshold for autonomy TA, any of the actions

a1..a5 could be selected as the maximal action accord-

ing to MOMEU principles. In addition this definition

of f provides a much more direct and understandable

specification of the designer’s preferences than does a

specification via weights as in a scalar MEU agent.

4.2.2 MOMEU for fairness

As a further example of the freedom which the MO-

MEU approach offers to the system designer in terms

of specifying an action-selection function f which is ap-

propriate to the alignment framework being used, con-

sider the hedonistic act utilitarian approach of Bentham

(1789). As outlined by Anderson and Anderson (2007)
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this ethical approach can be implemented within an

MEU framework by calculating a utility term UAi
for

each individual in the population, and then using Equa-

tion 4 to select the action which maximises the summed

happiness over the entire population, as shown in Equa-

tion 9.

action = argmax
a

(

n∑
i=1

UAi(s)) (9)

This framework has been criticised by other ethi-

cists as it can sacrifice the needs and rights of individu-

als in order to provide benefits to the remainder of the

population (Anderson and Anderson, 2007). Within a

MOMEU agent, the individual utilities could be gath-

ered in the same fashion, but an alternative choice of

f could be made which places more emphasis on fair-

ness. For example, Rawls (1971) proposed the maximin

principle as a basis for addressing social and economic

fairness. This principle selects actions which maximise

the utility received by the individual who is worst off

under that action, and can be implemented within an

MOMEU framework via the action-selection function f

shown in Equation 10.

f(U(s, a)) = min(UA1 ..UAn) (10)

An MOMEU approach based on maximin, or related

methods such as leximin (Dubois et al., 1997), is a nat-

ural fit to ethical AI problems such as ensuring a traffic

control system gives priority to emergency vehicles even

if this means delaying a large number of commuters.

Fairness-based approaches to action-selection are also

well suited to ensuring ethical behaviour in multi-agent

systems. Aligned AI motivated by concepts of fairness

such as this would be difficult or impossible to achieve

in an MEU agent based on scalar utility.

4.2.3 Low-impact AI

The low-impact agent proposed by Amodei et al. (2016)

illustrates a further benefit of the MOMEU approach.

The central concept of this style of agent is that it aims

to maximise its primary utility subject to achieving a

suitably low-level of unintended impact on the environ-

ment. Amodei et al. (2016, p5) note that unintended

side-effects of an agent’s actions may be similar regard-

less of the primary task being performed (“knocking

over furniture is probably bad for a variety of tasks”).

Therefore learning or planning about how to avoid such

side-effects should ideally be transferable between dif-

ferent primary tasks within the same environment. For

example, consider an office-place robot which is initially

trained to deliver the mail, while avoiding bumping into

either people or the office furniture. This task can be

framed in terms of utilities UP (for delivering mail), UA1

for avoiding collisions with people, and UA2
for avoid-

ing collisions with furniture. Either a MEU or MOMEU

approach to action-selection could then be utilised, al-

though as discussed in Section 4.2.1 the MOMEU ap-

proach is likely to allow the designer to more read-

ily specify the desired behaviour. In particular, this is

another context where a thresholded lexicographic ap-

proach to action-selection (similar to that in Equation 8

but with three components) is likely to be suitable – the

relative importance of avoiding humans and avoiding

furniture can be conveyed by the position of UA1
and

UA2 within the lexicographic ordering, and by setting

different threshold values for each of these alignment

utilities.

In addition, consider the situation where the pri-

mary purpose of the robot is changed from delivering

mail to another task, such as collecting garbage. Clearly

the primary utility function UP will no longer be rel-

evant, but the alignment criteria related to avoiding

collisions should still constrain the robot’s actions. For

an MEU agent using a scalar representation of utility,

the utility related to the primary task and the util-

ity related to side-effects have been irreversibly com-

bined within the utility values stored by the agent. In

contrast, if a multiobjective representation of utility is

used, the different aspects of utility remain distinct as

individual components of the utility vector. The values

related to UA1
and UA2

can be directly transferred to

the new task where they will probably still be largely

applicable, ensuring the robot behaves in a safe manner

while learning to carry out its new primary objective.

In this way, the ability of the agent to be applied to new

tasks in a safe manner has been substantially improved.

4.2.4 Avoiding the risks of unconstrained

maximization and exploitation

As discussed earlier in Section 3.1, one of the recur-

ring concerns raised in the literature about the safety

of MEU methods relates to the fact that such methods

focus exclusively on maximising their utility function

(Omohundro, 2008; Bostrom, 2014; Taylor, 2016). This

can readily lead to negative repercussions if there are

aspects of the situation which are not included within

that utility function. For example, the chess playing AI

described by Omohundro (2008) may attempt to ac-

quire increasing amounts of computational resources in

order to achieve increasingly small improvements in its

ability to win chess matches. Taylor et al. (2016) coins

the term “mild optimization” to describe approaches
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which attempt to address this problem, by creating AI

systems which aim to maximize their utility, but only

up to an appropriate level. The MOMEU approach pro-

vides a natural means for implementing a mild opti-

mizer. The system designer specifies both a primary

utility function UP and also auxiliary alignment utili-

ties relating to any anticipated negative aspects of the

AI’s behaviour (such as acquiring more resources). The

designer also specifies an action selection function f

which defines the appropriate level to which UP should

be maximized. This could, for example, use a thresh-

olded lexicographic ordering similar to that previously

described in Equation 8, but in this case defining a

threshold level of achievement TP for UP , as in Equa-

tion 11.

∀s, a, a′f(U(s, a)) ≥ f(U(s, a′)) ⇐⇒
min(UP (s, a), TP ) > min(UP (s, a′), TP )∨
(min(UP (s, a), TP ) = min(UP (s, a′), TP )∧

UA(s, a)) > UA(s, a′))

(11)

The problems caused by unconstrained optimization

arise due to the failure of the utility function to ad-

equately capture all aspects of the desired behaviour

of the AI. This issue can also lead to other forms of

AI failure as described in Yampolskiy and Spellchecker

(2016), where the AI learns a behaviour which tech-

nically maximises its received utility, while failing to

produce the desired outcomes which the utility func-

tion was intended to represent. For example, Murphy

VII (2013) documents a Tetris-playing AI which paused

the game to indefinitely delay any negative utility when

it realised it was about to lose. Omohundro (2008) de-

scribed an exploit arising within the Eurisko system of

Lenat (1983), whereby a rule evolved which had the

sole purpose of artificially maximizing its own utility

rating. We have observed similar unintended behaviour

arising from our own attempts to train a line-following

robot using reinforcement learning (Vamplew, 2004). In

all of these cases the cause is that the AI has discovered

an exploit or glitch in the utility function, such that it

can be more easily maximized by exploiting that glitch

than by behaving in the desired manner.

We would argue that the MOMEU approach can

assist in avoiding such exploits in two ways. First, the

separation of the different desired components of the

AI’s behaviour into separate utility functions simplifies

the task of the system designer, in the same way that

decomposing a program into separate modules aids the

task of a software engineer. We contend that a util-

ity function (and associated action-selection function

f) designed in MOMEU fashion is less likely to contain

errors or exploits than is a MEU utility function. This

is essentially the argument made by Dewey (2014) and

Littman (2015) when advocating for reward engineering

and structured methods for reward specification.

A second approach to using MOMEU to reduce the

likelihood of exploits in the utility function would be

to develop several independent utility functions, each

designed to achieve the same aim. These functions may

themselves by either scalar or vector in nature, but for

simplicity we assume for now that they are scalar. That

is, we have a vector of utility measures, UP1
, UP1

, ..UPn
,

with each function developed independently by a dif-

ferent system designer. If any individual function UPE

contains an error which can be exploited, this will be

evident in that there will be certain states where its

value will either be considerably higher or lower than

the other UP terms. Therefore an action-selection func-

tion f which merges the various utility terms while ig-

noring the impact of any outliers will be resistant to the

effect of exploits. For example, Equation 12 takes the

mean of the UP values, after discarding the minimum

and maximum values5.

f(U(s, a)) =
1

n− 2


∑

(UP1
..UPn

)

−min(UP1
..UPn

)

−max(UP1
..UPn

)

 (12)

Again an analogy can be drawn between this pro-

posed approach of redundant utility definitions and the

practice of redundancy in development in software engi-

neering (Eckhardt et al., 1991). Under the assumption

that errors in utility definition by different designers

are independent, the combined utility function should

be considerably more robust against exploitation than

any of the individual component functions.

4.2.5 Dealing with changing preferences

A further advantage of the MOMEU approach, as dis-

cussed by Roijers et al. (2013), is the ability for the

agent to reuse prior learning or planning should cir-

cumstances or the system designer’s preferences change.

For example, in our care robot scenario, if the patient’s

medical condition improves so that compliance is less

important than previously, the agent can be directed

to raise the threshold applied to the autonomy fac-

tor, and should be able to respond to this change in

alignment preferences much more rapidly than would

an MEU agent. More generally, the ethical standards

and values of a society change over time, sometimes

5 We assume here for simplicity that all UP terms have the
same range.
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quite rapidly, and an agent operating within that soci-

ety must be able to adjust its behaviour to reflect those

changes. An MOMEU agent can potentially identify in

advance appropriate behavioural policies for any form

of f which it is likely to encounter. The capability to

react to changes in the prioritisation of values has been

identified as a critical requirement of human-aligned AI

by The IEEE Global Initiative for Ethical Considera-

tions in Artificial Intelligence and Autonomous Systems

(2016, p25).

4.3 A Review of Multiobjective Approaches to

Artificial Intelligence and Aligned AI

The examples in the previous section demonstrate that

many advantages accrue from adopting a multiobjec-

tive approach to MEU agents (that is, explicitly using

a vector-based representation of utility in combination

with a non-linear approach to action-selection). The

concept of multiobjective utility is not in itself novel,

as it has been widely used by economists, amongst oth-

ers, for many years (Fishburn, 1968)6. However, the ex-

plicit adoption of multiobjective formulations of MEU

as an underlying technology for AI is a relatively new

development. The work of Wellman (1985) is one of the

earliest attempts to incorporate the concept of mul-

tiobjective utility into an AI system, adding the ca-

pability to reason and explain about preferences into

a propositional reasoning system. Since then other AI

techniques such as heuristic state-space planning meth-

ods like A∗ (Refanidis and Vlahavas, 2003) and multi-

agent systems (Dignum, 1996; Castelfranchi et al., 1999;

Broersen et al., 2002) have also been extended to handle

multiobjective forms of utility.

One area where there has been an extended focus

on multiobjective problems is the field of optimisation.

Evolutionary multiobjective optimisation has emerged

as a distinct and substantial branch of evolutionary

computing (Coello Coello, 2006), extending evolution-

ary methods such as genetic algorithms to handle mul-

tiobjective measures of fitness. Similarly multiobjective

specialisations have also appeared in other forms of op-

timisation such as particle swarm optimisation (Field-

send, 2004) and ant colony optimisation (Angus and

Woodward, 2009). While these are optimisation meth-

ods rather than AI techniques per se, such methods can

be applied to the task of optimising the behaviour of

an AI system. For example, Soh and Demiris (2011) ap-

plied multiobjective evolutionary methods to discover

6 Although in this context it is often referred to as multiat-

tribute utility.

behavior policies for robotics, web-advertising and in-

fectious disease control.

The last decade has seen a growing interest in ex-

tending decision-theoretic planning and reinforcement

learning methods to handle multiple objectives. Roijers

et al. (2013) provide a review of the history and the

state-of-the-art of methods for multiobjective agents

within the context of sequential decision making, high-

lighting several areas where current methods are still

limited in comparison to their single-objective equiva-

lents.

While the focus of AI researchers has been largely

on problems described in terms of a single scalar ob-

jective, a small but growing proportion of research has

considered extending such methods to multiple objec-

tives, and methods for addressing such problems have

been developed, as summarised in the previous para-

graphs. However, despite the potential benefits outlined

in Section 4.2, so far there has been relatively little work

applying an MOMEU approach to the task of creating

human-aligned AI. Keeney (1988) is perhaps the earli-

est example of work discussing this approach, advocat-

ing for the explicit consideration of value preferences

during expert systems development, and providing rec-

ommendations on designing and using multiobjective

utility functions to support this. While these issues are

discussed relative to the creation of expert systems to

support human decision-making, many of the principles

are equally valid in the context of more autonomous AI.

Wallach and Allen (2008, p. 114) cites the proposal

of Hartman as an example of using evolutionary meth-

ods to create an ethical AI, with the fitness measure

being composed from several separate utility functions

capturing the various aspects of ethical behaviour en-

coded by Asimov’s Laws of Robotics. Recent years have

also seen the beginning of research applying multiob-

jective reinforcement learning to the construction of

aligned AI. Livingston et al. (2008) advocates for a mul-

tiobjective approach to RL as the appropriate means

for creating artificial general intelligence, and specifi-

cally note that a “dominant component of the reward

function is general avoidance of malevolence towards

humans”. More recently, Critch (2017) examines how

an RL system using multiobjective rewards may deal

with the task of aligning its decisions with the values of

multiple parties (such as different nations) who are col-

laborating on the development and deployment of the

AI system.

Given the potential that MOMEU methods have

for addressing many of the issues with AI alignment

identified in this paper, and the relatively limited fo-

cus on multiobjective approaches so far within the AI

literature, we believe that a strong case exists for an in-
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creased focus on developing multiobjective AI technolo-

gies, and more specifically for investigating the appli-

cation of such methods to the task of creating human-

aligned AI.

5 Conclusion

The actions of artificial intelligence systems may re-

sult in unintended negative consequences unless their

goals are accurately aligned with human interests. This

is particularly true for agents based on the concept

of maximum expected utility (MEU). Increases in the

agent’s intellectual capacity, the broadness of the ac-

tions available to it, and the breadth of the domain in

which it is applied increase the difficulty in ensuring the

agent’s behaviour is aligned, and also the magnitude of

the negative side-effects of any unaligned behaviour. As

a result, there has been a growing recognition in recent

years of the need to ensure that AI systems are aligned

with human values.

This paper has presented a review of the alignment

frameworks proposed in the literature, highlighting that

such frameworks are inherently multiobjective in na-

ture. We note that the majority of work in MEU-based

AI uses a scalar representation of utility, which has seri-

ous limitations for incorporating alignment constraints

on the agent’s behavior. As such, we argue that the ap-

propriate mechanism for incorporating any alignment

framework into an MEU-agent is to use an explicitly

multiobjective approach to the specification, represen-

tation and maximization of the utility function. This

approach brings two benefits. First, it improves the ca-

pability of the agent to behave in an aligned fashion, by

eliminating some of the limitations on behaviour which

arise from MEU’s approach to action-selection. Second,

the MOMEU approach greatly increases the range and

expressiveness of action-selection functions available to

a system designer, making it easier for them to define

action-selection operators which directly align the AI’s

behaviour with the designer’s goals. We consider this a

valuable contribution towards the emerging discipline

of reward engineering.

We believe that the requirements of aligned AI pro-

vide a strong argument for an increased research focus

on multiobjective MEU approaches to artificial intelli-

gence.
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Schulman, D. Mané, Concrete problems in AI safety.

arXiv preprint arXiv:1606.06565 (2016)

M. Anderson, S.L. Anderson, Machine ethics: Creating

an ethical intelligent agent. AI Magazine 28(4), 15

(2007)

M. Anderson, S.L. Anderson, C. Armen, An approach

to computing ethics. IEEE Intelligent Systems 21(4),

56–63 (2006a)

M. Anderson, S.L. Anderson, C. Armen, MedEthEx: a

prototype medical ethics advisor, in Proceedings of

The National Conference On Artificial Intelligence,

vol. 21, 2006b, p. 1759

G. Andrighetto, G. Governatori, P. Noriega, L.W.

van der Torre, Normative multi-agent systems, vol. 4

(Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,

Wadern, Germany, 2013)

D. Angus, C. Woodward, Multiple objective ant colony

optimisation. Swarm intelligence 3(1), 69–85 (2009)

R.C. Arkin, Governing lethal behavior: Embedding

ethics in a hybrid deliberative/reactive robot archi-

tecture part I: Motivation and philosophy, in 2008 3rd

ACM/IEEE International Conference on Human-

Robot Interaction, 2008, pp. 121–128

S. Armstrong, A. Sandberg, N. Bostrom, Thinking in-

side the box: Controlling and using an oracle AI.

Minds and Machines 22(4), 299–324 (2012)

P.M. Asaro, A Body to Kick, but Still No Soul to Damn:

Legal Perspectives on Robotics, in Robot ethics: The

ethical and social implications of robotics, ed. by P.

Lin, K. Abney, G.A. Bekey (MIT Press, Cambridge,

2012), pp. 169–186

J. Bentham, The principles of moral and legislation

(Oxford University Press, Oxford, 1789)

J. Blythe, Decision-theoretic planning. AI Magazine

20(2), 37 (1999)

N. Bostrom, Superintelligence: Paths, dangers, strate-

gies (Oxford University Press, Oxford, 2014)

J. Broersen, M. Dastani, J. Hulstijn, L. van der Torre,

Goal generation in the BOID architecture. Cognitive

Science Quarterly 2(3-4), 428–447 (2002)

M. Brundage, Limitations and risks of machine ethics.

Journal of Experimental & Theoretical Artificial In-



14 Peter Vamplew et al.

telligence 26(3), 355–372 (2014)

C. Castelfranchi, F. Dignum, C.M. Jonker, J. Treur,

Deliberative normative agents: Principles and archi-

tecture, in International Workshop on Agent Theo-

ries, Architectures, and Languages, Springer, 1999,

pp. 364–378. Springer

C. Coello Coello, Evolutionary multi-objective opti-

mization: a historical view of the field. IEEE com-

putational intelligence magazine 1(1), 28–36 (2006)

A. Critch, Toward negotiable reinforcement learn-

ing: shifting priorities in Pareto optimal sequential

decision-making. arXiv preprint arXiv:1701.01302

(2017)

F. Cushman, Action, outcome, and value a dual-system

framework for morality. Personality and social psy-

chology review 17(3), 273–292 (2013)

P. Danielson, Can robots have a conscience? Nature

457(7229), 540–540 (2009)

I. Das, J.E. Dennis, A closer look at drawbacks of mini-

mizing weighted sums of objectives for pareto set gen-

eration in multicriteria optimization problems. Struc-

tural Optimization 14(1), 63–69 (1997)

D. Dewey, Learning what to value, in Interna-

tional Conference on Artificial General Intelligence,

Springer, 2011, pp. 309–314. Springer

D. Dewey, Reinforcement learning and the reward engi-

neering principle, in 2014 AAAI Spring Symposium

Series, 2014

F. Dignum, Autonomous agents and social norms, in

ICMAS-96 Workshop on Norms, Obligations and

Conventions, 1996, pp. 56–71

D. Dubois, H. Fargier, H. Prade, Beyond min aggrega-

tion in multicriteria decision:(ordered) weighted min,

discri-min, leximin, in The ordered weighted averag-

ing operators (Springer, US, 1997), pp. 181–192

D.E. Eckhardt, A.K. Caglayan, J.C. Knight, L.D. Lee,

D.F. McAllister, M.A. Vouk, J.P.J. Kelly, An experi-

mental evaluation of software redundancy as a strat-

egy for improving reliability. IEEE Transactions on

software engineering 17(7), 692–702 (1991)

A. Etzioni, O. Etzioni, Designing AI systems that obey

our laws and values. Communications of the ACM

59(9), 29–31 (2016)

D.A. Ferrucci, Introduction to “This is Watson”. IBM

Journal of Research and Development 56(3.4), 1–1

(2012)

J.E. Fieldsend, Multi-objective particle swarm optimi-

sation methods (2004)

J. Fieser, Ethics, in The Internet Encyclopedia of Phi-

losophy (ISSN 2161-0002, http://www.iep.utm.edu,

2016)

P.C. Fishburn, Utility theory. Management science

14(5), 335–378 (1968)

Future of Life Institute, Research Priorities for Robust

and Beneficial Artificial Intelligence: An Open Letter

(https://futureoflife.org/ai-open-letter/, 2015)

N. Goodall, Ethical decision making during automated

vehicle crashes. Transportation Research Record:

Journal of the Transportation Research Board, 58–

65 (2014)

M. Guarini, Particularism and the classification and re-

classification of moral cases. IEEE Intelligent Sys-

tems 21(4), 22–28 (2006)

I. Kant, Grounding for the metaphysics of morals

(1797) (Hackett, Indianapolis, 1993)

R.L. Keeney, Value-driven expert systems for deci-

sion support. Decision support systems 4(4), 405–412

(1988)

R. Leenes, F. Lucivero, Laws on robots, laws by robots,

laws in robots: Regulating robot behaviour by de-

sign. Law, Innovation and Technology 6(2), 193–220

(2014)

D.B. Lenat, Eurisko: a program that learns new heuris-

tics and domain concepts: the nature of heuristics

iii: program design and results. Artificial intelligence

21(1-2), 61–98 (1983)

M.L. Littman, Reinforcement learning improves be-

haviour from evaluative feedback. Nature 521(7553),

445–451 (2015)

S. Livingston, J. Garvey, I. Elhanany, On the broad

implications of reinforcement learning based AGI, in

Artificial General Intelligence, 2008: Proceedings of

the First AGI Conference, vol. 171, IOS Press, 2008,

p. 478. IOS Press

T. Lozano-Perez, I.J. Cox, G.T. Wilfong, Autonomous

robot vehicles (Springer, New York, 2012)

E.M. Meisner, Learning controllers for human-robot in-

teraction, PhD thesis, Rensselaer Polytechnic Insti-

tute, 2009

B.D. Mittelstadt, P. Allo, M. Taddeo, S. Wachter, L.

Floridi, The ethics of algorithms: Mapping the de-

bate. Big Data & Society 3(2), 2053951716679679

(2016)

V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J.

Veness, M.G. Bellemare, A. Graves, M. Riedmiller,

A.K. Fidjeland, G. Ostrovski, et al., Human-level

control through deep reinforcement learning. Nature

518(7540), 529–533 (2015)

T. Murphy VII, The first level of Super Mario Bros.

is easy with lexicographic orderings and time travel.

The Association for Computational Heresy (SIG-

BOVIK) (2013)

S.M. Omohundro, The basic AI drives, in AGI, vol. 171,

2008, pp. 483–492

D.H. Petraeus, J.F. Amos, Fm 3-24: Counterinsur-

gency. Department of the Army (2006)



Human-Aligned Artificial Intelligence is a Multiobjective Problem 15

H. Prakken, On how AI & law can help autonomous sys-

tems obey the law: a position paper. AI4J–Artificial

Intelligence for Justice, 42 (2016)

J. Rawls, A theory of justice (Cambridge, Harvard Uni-

versity Press, 1971)

I. Refanidis, I. Vlahavas, Multiobjective heuristic state-

space planning. Artificial Intelligence 145(1-2), 1–32

(2003)

G. Reynolds, Ethics in information technology (Cen-

gage learning, Boston, 2011)

M.O. Riedl, B. Harrison, Using Stories to Teach Human

Values to Artificial Agents, in Proceedings of the 2nd

International Workshop on AI, Ethics and Society,

Phoenix, Arizona, 2016

D.M. Roijers, P. Vamplew, S. Whiteson, R. Dazeley, A

survey of multi-objective sequential decision-making.

Journal of Artificial Intelligence Research 48, 67–113

(2013)

A. Romei, S. Ruggieri, A multidisciplinary survey on

discrimination analysis. The Knowledge Engineering

Review 29(05), 582–638 (2014)

W.D. Ross, The right and the good (Clarendon Press,

Oxford, 1930)

S.J. Russell, P. Norvig, Artificial intelligence: a mod-

ern approach, 3rd edn. (Prentice Hall, Upper Saddle

River, 2010)

N. Sharkey, Death strikes from the sky: the calculus of

proportionality. IEEE Technology and Society Mag-

azine 28(1), 16–19 (2009)

N. Sharkey, Killing made easy: From joysticks to poli-

tics, in Robot ethics: The ethical and social implica-

tions of robotics, ed. by P. Lin, K. Abney, G.A. Bekey

(MIT Press, Cambridge, 2012), pp. 111–128

N. Sharkey, A. Sharkey, The Rights and Wrongs of

Robot Care, in Robot ethics: The ethical and social

implications of robotics, ed. by P. Lin, K. Abney, G.A.

Bekey (MIT Press, Cambridge, 2012), pp. 267–282

D. Silver, A. Huang, C.J. Maddison, A. Guez, L.

Sifre, G. Van Den Driessche, J. Schrittwieser, I.

Antonoglou, V. Panneershelvam, M. Lanctot, et al.,

Mastering the game of Go with deep neural networks

and tree search. Nature 529(7587), 484–489 (2016)

N. Soares, B. Fallenstein, Aligning superintelligence

with human interests: A technical research agenda.

Machine Intelligence Research Institute (MIRI) tech-

nical report 8 (2014)

N. Soares, B. Fallenstein, S. Armstrong, E. Yud-

kowsky, Corrigibility, in Workshops at the Twenty-

Ninth AAAI Conference on Artificial Intelligence,

2015

H. Soh, Y. Demiris, Evolving policies for multi-reward

partially observable Markov decision processes (MR-

POMDPs), in Proceedings of the 13th annual con-

ference on Genetic and evolutionary computation,

ACM, 2011, pp. 713–720. ACM

R.S. Sutton, A.G. Barto, Reinforcement learning: An

introduction (MIT Press, Cambridge, 1998)

H.T. Tavani, Ethics and technology: Controversies,

questions, and strategies for ethical computing (John

Wiley & Sons, Hoboken, 2011)

J. Taylor, Quantilizers: A safer alternative to maximiz-

ers for limited optimization, in AAAI AI, Ethics &

Society Workshop, 2016

J. Taylor, E. Yudkowsky, P. LaVictoire, A. Critch,

Alignment for advanced machine learning systems,

Technical report, Technical Report 20161, MIRI,

2016

The IEEE Global Initiative for Ethical Considerations

in Artificial Intelligence and Autonomous Systems,

Ethically Aligned Design: A Vision for Prioritiz-

ing Wellbeing With Artificial Intelligence and Au-

tonomous Systems (IEEE, 2016)

P. Vamplew, J. Yearwood, R. Dazeley, A. Berry, On

the Limitations of Scalarisation for Multi-objective

Reinforcement Learning of Pareto Fronts, in AI’08:

The 21st Australasian Joint Conference on Artificial

Intelligence, 2008, pp. 372–378

P. Vamplew, Lego Mindstorms robots as a platform

for teaching reinforcement learning, in Proceedings

of AISAT2004: International Conference on Artifi-

cial Intelligence in Science and Technology, 2004

K. Van Moffaert, T. Brys, A. Chandra, L. Esterle, P.R.
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