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transport of solutes mainly occurs via transcellular pathways, 

either by passive diffusion or by active transport via various 

transporter proteins (Endter et al., 2009).

Isolated human ATI-like cells in primary culture (hAEpC) are 

to date the best model to reflect the in vivo situation of the air-

blood barrier due to their ability to form tight junctions and hence 

to exhibit high trans-epithelial electrical resistance (TEER). The 

latter is a widely accepted parameter for tightness of an epithe-

lium and its barrier function. hAEpC is the most reliable alveolar 

cell model reflecting the in vivo situation of the air-blood barrier 

(ABB), especially regarding the study of absorption and trans-

port of xenobiotics (Bur et al., 2006; Endter et al., 2009; Forbes 

and Ehrhardt, 2005). The primary cell model is also used in the 

context of infection research, e.g., Chan et al. investigated the 

1  Introduction

The alveolar epithelium of the peripheral lung is mainly com-

prised of two cell types, alveolar type I (ATI) and alveolar 

type II (ATII) cells, both forming the air-blood barrier, which 

is responsible for gas exchange. While the cuboidal ATII cells 

produce lung surfactant proteins to reduce the alveolar surface 

tension, the squamous ATI cells essentially represent the barrier 

between blood and air space of the lung; they form a tight epi-

thelium sealed by intercellular connections, i.e., tight junction 

complexes (Crandall and Matthay, 2001). ATI cells cover about 

95% of the alveolar surface (Crapo et al., 1982) and shield the 

organism from outer influences, like inhaled toxins, particles or 
microorganisms. While paracellular transport is thus restricted, 
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from patients undergoing lung tumor resection surgery. Tissues 

were used with ethical approval from the Ärztekammer des 
Saarlandes and patients’ informed consent. The isolated ATII 

cells were seeded on fibronectin/collagen-coated six-well cell 
culture plates and maintained in Small Airway Growth Medium 

(SAGM) from Lonza, supplemented with 10% (v/v) fetal calf 

serum (FCS) and 10% (v/v) penicillin/streptomycin (P/S).

2.2  Transfection via lentiviral vectors
The hAEpC cells seeded on 6-well cell culture plates were in-

fected on day 5 of culture with self-inactivating lentiviral vec-

tors. For immortalization a lentiviral gene library composed of 

33 different expansion genes was employed (CI-SCREEN gene 

library; InSCREENeX GmbH; International patent application 

PCT/EP2011/005528 “Methods and Vectors for Cell Immortali-

sation”). The expression of these recombinant genes is driven 

by the SV40 promoter. For infection, the lentiviral vectors were 

incubated with the primary cells overnight in the presence of 

8 µg/ml polybrene (hexadimethrine bromide, Sigma Aldrich)

The following day infection medium was aspirated and the 

cells were further cultivated with the abovementioned culture 

medium for five weeks until colonies of proliferating cells be-

came apparent. These cells were pooled and further cultivated 

as polyclonal cell lines. 

2.3  Cell culture/growth curves
All cell types, primary as well as transfected, were cultured 

in SAGM on fibronectin/collagen-coated cell culture plastic 
or Transwell® filter devices (3470, Corning). The cells were 
maintained in SAGM, supplemented with 10% fetal calf serum 

(FCS) and 10% penicillin/streptomycin (P/S). The transfected 

cells were passaged 1:1 in the first months of culturing when 
they reached confluence, and afterwards cultivated in a 1:3 ratio 
every 14 days. The medium was changed every two to three 

days and the cells incubated at 37°C, 5% CO2 and 95%. To ob-

tain the growth curves, hAELVi cells, passage 18 (1x104 cells 

per well) were seeded on 24-well plates; thereafter the cells 

were trypsinized and counted 24 h after seeding and then every 

48 h with the CASY® Cell Counter (Roche) (n = 3). 

To cultivate the cells under liquid-liquid conditions (LLC) or 

air-liquid interface (ALI), hAELVi cells were seeded on Tran-

swell® filters (either 1.12 cm² (3460) or 0.33 cm² (3470), Corn-

ing). The cells were cultivated for 2 days under LLC (with cell 

culture medium feeding from both, apical and basolateral sides). 

The cells were then divided into two groups: some wells contin-

ued LLC cultivation, while others were transferred to the air-liq-

uid interface (ALI) condition, in which the cell culture medium is 

supplied only from the basolateral compartment. Finally, the cells 

were grown for 14 days under the respective culture conditions 

at 37°C, 5% CO2 and 95% humidity. Microplasma controls were 

performed on a regular schedule and never showed infection. 

2.4  TEER measurement
The barrier property of primary cells or cell lines was determined 

by measuring the trans-epithelial electrical resistance (TEER) as 

previously described (Daum et al., 2012; Srinivasan et al., 2015). 

In summary, the cells were placed on a heating plate at 37°C to 

pro-inflammatory response induced by influenza viruses (Chan 
et al., 2005). Furthermore, hAEpC cells are applied in advanced 

co-culture models for various purposes, e.g., to investigate the 

interaction of epithelial cells and immune cells, like human blood 

monocyte-derived macrophages and dendritic cells (Blank et 

al., 2011; Lehmann et al., 2011). Nevertheless, primary cells are 

limited by certain factors, including availability, short life span, 

inter-individual differences, and health status of the donor, which 

may negatively affect reproducibility and also preclude their use 

in high-throughput screening of new drug candidates (Daum et 

al., 2012; Elbert et al., 1999; Fuchs et al., 2003). 

A number of human (Ehrhardt et al., 2003; Forbes, 2003; Fos-

ter et al., 1998; Grainger et al., 2006) and non-human (Horálko-

vá et al., 2009; Rosenberger et al., 2014) lung epithelial cell lines 

are commercially available; however, in terms of mimicking the 

tight barrier formed by ATI cells, they have limited application. 

The human alveolar cell line A549, derived from an adenocar-

cinoma and commonly used in toxicity studies (Roggen et al., 

2006), does not exhibit high TEER values and is therefore not 

well suited for drug absorption studies (Foster et al., 1998). A 

new human ATI cell line (TT1), recently described by Tetley et 

al. (van den Bogaard et al., 2009), was obtained through the im-

mortalization of primary ATII and used as a model for inflam-

matory response studies and nanoparticle uptake. However, TT1 

cells do not appear to develop tight intercellular junctions, and 

therefore still lack important barrier properties (van den Bogaard 

et al., 2009; Kemp et al., 2008). Other widely used lung cell lines 

are 16HBE14o- and Calu-3, but they are both of bronchial origin 

and therefore – although they build TEER of 300-600 Ω*cm2 – 

are not suitable as a model of the alveolar epithelium (Ehrhardt 

et al., 2003; Forbes, 2003; Grainger et al., 2006). 

Thus, there is a need for cell lines reflecting the specific 
properties of alveolar cells required for investigating biologi-

cal aspects of the respiratory tract, such as infection pathways 

in the context of aerosol transmitted infectious diseases. To 

minimize the use of animal tests for the safety assessment of 

inhaled drugs, chemicals and (nano-) materials according to the 

3R principle (replace, reduce, refine), new in vitro models of the 

air-blood barrier are of utmost importance. Given the lack of a 

suitable cell line, a novel immortalization regimen was applied 

in this study, leading to the generation of a new human alveolar 

immortalized cell line, namely human alveolar epithelial lenti-

virus immortalized (hAELVi) cells, through viral transduction 

of a defined set of immortalizing genes. Two clones of this cell 
line were obtained (hAELVi.A and hAELVi.B) and character-

ized with respect to their morphological and functional proper-

ties and their ability to serve as a model of the air-blood barrier 

as needed for drug transport studies. 

2  Materials and methods

2.1  Isolation of human primary 
alveolar epithelial cells (hAEpC)
Primary alveolar epithelial cells (hAEpC) were isolated accord-

ing to the established protocol by Daum et al. (2012). Briefly, 
the tissue was obtained from the healthy lung areas removed 
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The samples were washed with PBS and counterstained with 

DAPI (1:50,000). Transwell® membranes were then mounted in  

DAKO medium (Product No. S302380-2, DAKO), as previous-

ly described by de Souza Carvalho et al. (2011), and analyzed 

by confocal laser scanning microscopy (Zeiss LSM710, Zeiss, 

Germany). Microscopic images of fixed samples were acquired 
at 1024 x 1024 resolution using a 63X water immersion objec-

tive and z-stacks of around 6 μm. Confocal images were ana-

lyzed using Zen 2012 software (Carl Zeiss Microscopy GmbH) 

and Fiji Software (Fiji is a distribution of ImageJ available at 

http://fiji.sc).

Transmission electron microscopy (TEM) 
hAELVi cells (passage 36) were grown on Transwell® mem-

branes, under LLC and ALI conditions, for 12 days. Thereaf-

ter, the samples were processed as described by Susewind et 

al. (2016), with minor modifications. Briefly, the membranes 
were fixed with a solution containing SAGM plus 1% glutar-
aldehyde for five minutes at 37°C, followed by incubation with 
1% glutaraldehyde in 200 mM HEPES buffer, pH 7.4, overnight 

at 4°C. For epon embedding the samples were postfixed with 
2% OsO4 (EMA, PA, USA) solution containing 1.5% potassium 

ferricyanide for one hour on ice, and stained en bloc with 1.5% 

aqueous uranyl acetate (EMS, PA, USA) for 30 min. Cells were 

then dehydrated at RT using a graded ethanol series (70-80-

90-96-(4x)100% for 10 min each) and progressively infiltrated 
with epoxy resin (50-75-100%) (Sigma-Aldrich). Transwell® 

membranes with cells were flat embedded and blocks were po-

lymerized overnight at 70°C. Ultrathin sections of 70-80 nm, 

perpendicular to the filter plane, were cut with a Leica ultra-

microtome Ultracut EM UCT (Leica Microsystems, Austria) 

using an ultra-diamond knife (Diatome, Switzerland) and ex-

amined with a CM100 transmission electron microscope (FEI, 

The Netherlands). The images were recorded digitally with a 

Quemesa TEM CCD camera (Olympus Soft Imaging Solutions, 

Germany) and iTEM software (Olympus Soft Imaging Solu-

tions, Germany). 

Scanning electron microscopy (SEM)
SEM images were taken with a Zeiss SEM EVO® HD15 (Zeiss, 

Germany) under high pressure conditions with a secondary 

electron detector and using 10 kV acceleration voltage. hAELVi 

cells (passage 41) on Transwell® filters were fixed after 8 days 
in culture, in either ALI or LLC, in 200 mM HEPES buffer con-

taining 1% glutaraldehyde at 4°C, overnight. The following day, 

cells were washed twice for 10 min in HEPES buffer and de-

hydrated with gradual ethanol concentrations (50-60-70-80-90-

96-99-100% for 20 min each). The filters were then sputtered 
with gold and examined by SEM.

2.6  Transport studies
To evaluate the transport of sodium fluorescein (FluNa) across 
the monolayers, hAELVi.A cells (1x105 cells/cm2) were seeded 

on fibronectin/collagen-coated Transwell® membranes with a 

pore size of 0.4 µm and a growth area of 1.12 cm2 (3460, Corn-

ing). The cells were cultured under LLC and ALI, respectively, 

and TEER measurements were performed every other day for 

avoid temperature shock-related TEER fluctuation while hand-
ling the cells under the sterile hood. TEER was measured with 

a Chopstick electrode and an epithelial voltohmmeter (EVOM) 

(World Precision Instruments, Sarasota, USA). For measuring 

TEER of ALI cultures the cells were set up to LLC conditions  

2 h prior to measurement by adding SAGM culture medium. ALI 

culture condition requires no culture medium in the apical com-

partment and less culture medium in the basolateral compart-

ment compared to LLC conditions. To avoid detachment of the 

cell monolayer and liquid pressure-related stress, medium was 

added first to the apical and then to the basolateral compartment. 
After the measurement the medium was removed, first from the 
basolateral, then from the apical compartment; hence, the cells 

were returned to the ALI condition.

2.5  Morphology and ultrastructure
For morphological and ultrastructural characterization hAELVi 

cells were grown on Transwell® membranes with a pore size 

of 0.4 µm and a growth area of 1.12 cm2 (3460, Corning), cul-

tivated under LLC and ALI conditions, and evaluated by cross 

sections, confocal laser scanning microscopy (CLSM), trans-

mission electron microscopy (TEM) or scanning electron mi-

croscopy (SEM). 

Histology 

hAELVi cells previously grown on Transwell® filters were fixed 
on days 7 and 14 with 3% paraformaldehyde (PFA) for 30 min 

at room temperature (RT). Afterwards, the samples were dehy-

drated with an ethanol dehydration row (35-50-70-95-95-100% 

for 10 min each), followed by treatment with Histoclear II (His-

tological Clearing Agent-Fa. National diagnostics) for 10 min. 

Subsequently the samples were embedded in paraffin (Histo-

wax Embedding Medium-Leica Microsystems) for 1 h, stored 

at 4°C overnight, and were cut the next day into 4 µm slices us-

ing a Microtom-Reichert Jung 2040 Autocut. The sections were 

stained with hematoxylin/eosin and analyzed with a Zeiss light 

microscope (Zeiss Imager M1m, Zeiss, Germany) using a 100x 

objective. 

Confocal Laser Scanning Microscopy (CLSM) 
Immortalized cells were grown on Transwell® membranes with 

a pore size of 0.4 µm and growth area of 1.12 cm2 (3460, Corn-

ing) for 7 and 14 days, under LLC and ALI conditions, as de-

scribed previously. Samples were then fixed with 3% PFA in 
phosphate buffered saline (PBS) for 30 min at RT. Afterwards, 

the samples were quenched with 50 mM NH4Cl/PBS for 10 min 

and subsequently blocked and permeabilized using a mixture 

of 0.5% bovine serum albumin (BSA)/0.025% saponin/PBS 

for 30 min at RT. The primary antibodies against ZO-1 (rab-

bit anti-ZO-1, Catalog No 61-7300, Invitrogen) and occludin 

(mouse anti-occludin, Catalog No 33-1500, Invitrogen) were 

diluted 1:200 in 0.5% BSA/0.025% saponin/PBS and incubated 

at 4°C overnight. The secondary antibodies for occludin (poly-

clonal Alexa-Fluor 488 conjugated rabbit anti-mouse, Catalog 

No. A11059, Invitrogen) and ZO-1 (polyclonal Alexa-Fluor 

633, conjugated goat anti-rabbit, Catalog No. A21070, Invitro-

gen) were diluted in PBS (1:400) and incubated for 1 h at 37°C. 

http://fiji.sc
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(Livak and Schmittgen, 2001). Sequences of primers and probes 

are presented in Table 1. The primers were constructed and or-

dered from Eurofins. Reverse transcription was performed with 
QuantiTect reverse transcription kit (Qiagen, Cat.No. 205314) 

and the real-time PCR reaction with QuantiTect Sybr Green PCR 

kit (Qiagen, Cat.No. 204143). Run information: 7 min 95°C;  

40 cycles of 10 sec 95°C, 30 sec 65°C, 30 sec 72°C; and 1 min 

65°C. Data analysis was performed with the Bio-Rad CFX Man-

ager software.

2.8  Chromosome microarray analysis
Genomic DNA samples were extracted from 1x106 cells using 

NaCl/chloroform and proteinase K treatment. Genomic hybridi-

zation was performed with the CytoScan™ HD array (Affym-

etrix, USA) according to the manufacturer’s instructions. The 

Cytoscan HD array is characterized by 743,000 genotypeable 

SNP probes and > 1,953,000 non-polymorphism probes. Re-

sults were visualized and analyzed with the Chromosome Anal-

ysis Suite (ChAS) software package (Affymetrix) based on the 

GRCh37/hg19 assembly.

2.9  Statistical analysis
Data are representative of 2-3 experiments and shown as mean 

± SEM. Two-way ANOVA with Bonferroni’s posttest was per-

formed using GraphPad Prism 5 software (GraphPad). 

3  Results 

hAEpC cells were isolated from human lung as previously de-

scribed (Daum et al., 2012), cultivated on tissue culture plates 

and transduced with a small lentiviral gene library composed of 

33 different genes. (CI-SCREEN gene library; InSCREENeX 

GmbH, for details see Section 2). Due to proprietary proceed-

ings, no further information on the implemented genes can be 

provided at this time.

After transduction, the cells were expanded to establish im-

mortalized cell lines. PCR analysis of the genomic DNA of the 

immortalized cell lines confirmed integration of the genes Id2, 
Id3, E7, Bcl2, Core, Myc and Nanog (Fig. S1A1). From more 

than 50 transfections, seven cell lines showed a prolonged life 

span and two clones, named hAELVi.A and hAELVi.B, devel-

oped high TEER values after 15 days in culture (690 Ω*cm2 

and 2400 Ω*cm2 , respectively) (Fig. S1B). These clones were 

subsequently propagated and used in all further experiments.

Both hAELVi cell lines showed a sigmoidal growth curve, 

with a characteristic lag phase after seeding, developing into an 

exponential growth phase and ending in a stationary phase (Fig. 

1A), resulting in formation of a monolayer (Fig. 1B). 

TEER was determined every day or every other day during 

25 days (Fig. 1C). The hAEpC developed a maximum TEER 

of 2000 Ω*cm2 at approximately day six to eight, followed by 

a subsequent decline of TEER value, demonstrating a short life 

span of around 15 days, a typical behavior for primary cells 

14 days. Transport experiments were then performed according 

to Elbert et al. (1999) with minor modifications. Briefly, before  
the cells were washed twice with pre-warmed Krebs-Ringer 

Buffer (KRB; NaCl 142.03 mM, KCl 2.95 mM, K2HPO4*3H2O  

1.49 mM, HEPES 10.07 mM, D-glucose 4.00 mM, MgCl2*6H2O 

1.18 mM, CaCl2*2H2O 4.22 mM; pH 7.4) and incubated in KRB 

for 45 min. After measuring the TEER, the medium was aspi-

rated and 520 µl FluNa (10 µg/ml in KRB) ± 16mM EDTA were 

added to the apical compartment (donor) and 1.7 ml KRB were 

added to the basolateral compartment (acceptor). Directly after 

adding the solutions, samples were taken from the donor (20 µl) 

and the acceptor (200 µl), respectively, and transferred into a 

96-well plate to measure the start concentrations. Afterwards, 

the plates were placed on a MTS orbital shaker (150 rpm; IKA, 

Germany) in the incubator and 200 µl samples were taken every 

30 min, from the basolateral compartment only, for 3 h. Taken 

volumes were refilled with 200 µl KRB. At the end of the ex-

periment the TEER was measured again and the samples in the 

96-well plate were measured with a Tecan® plate reader using 

wavelengths  of 488 nm (em) and 530 nm (ex).

2.7  RNA isolation and real-time PCR
The total RNA from immortalized cell lines, freshly isolated ATII 

cells, and ATI-like hAEpCs, previously grown on Trans-well®  

filters, was used to check the expression of Cav-1, SP-C and 
AQP-5 (Tab. 1). The total RNA was collected from immortalized 

cell lines on day 14 of cell culture on six-well plates, from freshly 

isolated ATII cells and from ATI-like hAEpCs on day 8 of cell cul-

ture on Transwell® filters. mRNA was isolated with the RNeasy 
mini kit from Qiagen (Cat. No. 74106). Semi-quantitative real-

time PCR was performed with a Bio-Rad CFX96 real-time PCR 

machine. Glyceraldehyde 3-phosphate dehydrogenase (GADPH) 

was used as the internal control to correct for variations in the 

cDNA content among the samples. The data were normalized to 

the GADPH expression levels and were presented as the average 

of three independents experiments. The relative gene expression 

levels were calculated using the comparative Ct (∆∆Ct) method 

1 Supplementary figures S1-S4 at http://dx.doi.org/10.14573/ altex.1511131s

Tab. 1: Primers for lung cell-specific marker rtPCR

Marker Nucleotide sequence (5’3’)/ 
 product length in bp

AQP5 forward CCTACCATCCTGCAGATCGCGC/210

AQP5 reverse TGCCACACCGTAGAGGATGCCA/210

SP-C forward AAGCCCGCAGTGCCTACGTCTA/273

SP-C reverse TGGATGACCCCGCTTCAGTGGA/273

CAV-1 forward ACAGTTTTCATCCAGCCACGGGC/202

CAV-1 reverse GGTGTTTAGGGTCGCGGTTGACC/202

GAPDH forward GGAGAAGGCTGGGGCTCATTTGC/364

GAPDH reverse CCCGTTCAGCTCAGGGATGACCT/364

http://dx.doi.org/10.14573/altex.1511131s
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Fig. 1: hAELVi cell line characterization

(A) Growth curve of immortalized cell lines (hAELVi.A and 

hAELVi.B), grown in 24-well cell culture plates, passage 18, for  

ten days. (B) Histological cross-sections of hAELVi.A after 7 days in 

culture under liquid-liquid conditions (100x). (C) Comparative  

TEER curve of immortalized cells, both in passage 36, and primary 

ATI-like cells (hAEpC), growing on Transwell® membranes.  

(D) Chromosome profiling was performed with Affymetrix Cytoscan 

HD array. For each immortalized cell line an overview of the 

karyotype at cell culture passage 19 is presented: hAELVi.A (pink) 

and hAELVi.B (purple). Loss of a chromosome region is indicated 

as a red sign and duplication of a chromosome region is indicated 

as a blue sign. Data shown as mean ± SEM (n = 3); ***p < 0.001. 

Fig. 2: Alveolar type I cell characteristics in hAELVi cells

(A,B) Z-stacks of images from confocal laser scanning microscopy 

of hAELVi.B growing under liquid-liquid conditions (LLC) for  

14 days, immunolabeled with anti-ZO-1 (red) antibody (A) or anti-

occludin (green) antibody (B). Nuclei stained with DAPI (blue).  

Bar: 20 µM. (C) TEER measurement of hAELVi.B growing up to  

14 days under LLC and air-liquid interface (ALI). 
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To confirm the formation of tight junctions we investigat-
ed the expression of characteristic proteins – zona occludens  

(ZO-1) and occludin in hAELVi cells (Fig. 2A,B) grown un-

der liquid-liquid conditions (LLC). A densely packed mon-

olayer with clearly labeled tight junction complexes appeared 

as a continuous thin line between adjacent cells (Fig. 2A,B). 

Under air-liquid interface (ALI) conditions hAELVi.B showed 

higher TEER up to 500 Ω*cm2 after seven days compared to 

123 Ω*cm2 observed with LCC, in the same period of time (Fig. 

2C). After 12 days in culture the cells reached even higher TEER 

values (up to 2000 Ω*cm2) in both conditions. The cells culti-

(Daum et al., 2012; Fuchs et al., 2003). hAELVi cells, depicted 

in the same graph, reached a TEER of 2000 Ω*cm2 six to ten 

days later that was conserved for up to 25 days. Higher TEER 

(~3000 Ω*cm2) was also observed in hAELVi cells cultivated 

up to passage 75 (Fig. S2A) and for different passages over 14 

days in culture (Fig. S2B). Genomic DNA from hAELVi cells 

was investigated for ploidy variation (Fig. 1D, Fig. S2C). In 

brief, 13 chromosomes revealed no alterations in copy number, 

in neither an earlier (Fig. 1D) nor a late passage (Fig. S2C). The 

remaining chromosomes revealed several deleted or duplicated 

chromosome regions. 

Fig. 3: rtPCR of lung markers 

(A) Caveolin-1 (CAV), (B) surfactant protein C (SPC) and  

(C) aquaporin-5 (AQP). The relative quantification of gene 

expression in ATII freshly isolated cells was taken as value 1  

and correlated to the gene expression in hAELVi.A, hAELVi.B  

and hAEpC. Data shown as mean ± SEM (n = 3)

Fig. 4: Ultrastructure of hAELVi cells grown under LLC

(A) Scanning electron microscopy and (B and C) transmission 

electron microscopy of hAELVi.B on Transwell® after 12 days. 

Desmosomes (arrow), tight junctions (arrowhead) and caveolae are 

indicated in the TEM images. Bars (A: 5 µM; B: 500 nm; C: 1 µM). 
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pression level of these three proteins relative to the housekeep-

ing gene GAPDH (Tab. 1); the results are shown (as a percent-

age of their expression levels) relative to freshly isolated human 

ATII cells. The expression of CAV-1 for both hAELVi cell lines 

was at a similar level as for primary culture type I like hAEpC 

(Fig. 3A). The type II cell marker SP-C however, could not be 

detected in either hAELVi cell line and was only marginally ex-

pressed in hAEpC (Fig. 3B). Conversely, AQP-5 was expressed 

at a low level in primary hAEpC, but could not be detected in 

the immortalized hAELVi cells (Fig. 3C). 

As expected from CLSM results (Fig. 2 and Fig. S3), no dif-

ference was observed in the ultrastructure of cells cultivated 

under both conditions. SEM images showed the monolayer 

with clear cell-cell contacts (Fig. 4A and Fig. S4A) and TEM 

pictures showed inter-digitations between the cells, sealed with 

tight junction complexes and desmosomes (Fig. 4B and Fig. 

S4B). Other typical ATI cell structures observed close to the 

apical cell membrane were the caveolae (Newman et al., 1999) 

(Fig. 4C and Fig. S4C). These results, together with the observa-

tions regarding the tight junction complexes and TEER values 

corroborate the ATI-like character of the new cell line hAELVi. 

The potential use of hAELVi cells as a model to predict drug 

absorption kinetics was also evaluated in cultures under LLC 

and ALI conditions, for 7 (Fig. 5A) or 14 days (Fig. 5B), by 

measuring the permeability of the hydrophilic molecule sodium 

fluorescein (FluNa), typically used as a paracellular transport 
maker. Higher TEER is always accompanied with lower para-

cellular transport, and this relationship could be observed at day 

7 and even more prominently at day 14, when the cells displayed 

a TEER of more than 1000 Ω*cm2. In the presence of EDTA as 

a modulator of the tight junctions, the TEER dropped to almost 

zero and the Papp value of FluNa reached essentially the same 

maximal level, indicating complete opening of the tight junc-

tions under such conditions, with more FluNa transported to the 

basolateral compartment. 

4  Discussion

Here, we report the generation of a new immortalized type I cell 

line from human alveolar epithelium that exhibits functional 

tight junctions and hence high TEER values. 

Following a novel approach to reduce the possible de-differ-

entiation of cells caused by transformation, the cells were trans-

duced with a set of 33 genes, which are able to immortalize 

various cell types, producing cell lines with conserved physi-

ological functionality. This is different from carcinoma-derived 

cell lines, which are beneficial for studying cancer development, 
e.g., a blastoma-derived cell line (Camerlingo et al., 2011) or 

an in vitro carcinogenesis model, where ATII cells are exposed 

to tobacco-specific carcinogens (Mennecier et al., 2014) but 
hardly represent normal epithelial cells. The widely used A549 

cell line, derived from an adenocarcinoma, which is commonly 

employed as a model of the lung epithelium, has a rather ATII-

like phenotype, including lamellar bodies (Shapiro et al., 1978). 

However, it has been used in drug transport studies (Wang and 

Zhang, 2004) despite its lack of barrier formation ability. A pre-

vated under ALI conditions for seven days (Fig. S3A) showed 

no differences in the monolayer compared to those grown for 

14 days under the same conditions (Fig. S3B); also, no differ-

ence was observed in the tight junction formation, as shown by 

ZO-1 immunolabeling after 7 or 14 days (Fig. S3C and S3D, 

respectively). 

Real-time PCR (rtPCR) showed the expression of alveolar 

epithelial cell-specific markers in hAELVi cells compared to 
the hAEpC (Fig. 3). The markers caveolin (CAV-1), surfactant 

protein C (SP-C) and aquaporin (AQP-5) were chosen based on 

their known cell type-specific expression. We compared the ex-

Fig. 5: Permeability assay in hAELVi cells

Transport of sodium fluorescein (FluNa) across a monolayer of 

hAELVi.A after (A) 7 days or (B) 14 days, cultivated under LCC and 

ALI, respectively. Both graphs show the relation of TEER and Papp. 

Data shown as mean ± SEM (n = 3); *p < 0.05; **p < 0.01;  

***p < 0.001 vs. LLC_0 mM EDTA; ###p < 0.001 vs. ALI_0mM EDTA; 
§§p < 0.01; §§§p < 0.001 vs. LLC_16 mM EDTA.



Kuehn et al.

ALTEX 33(3), 2016258

(Phelps and Floros, 1991). AQP-5 is a water channel protein ex-

pressed on the apical side of ATI and bronchial epithelium cells 

(McElroy and Kasper, 2004; Nielsen et al., 1997) and seems to 

regulate the volume of the ATI cell (King and Agre, 1996).

The presence of caveolae at the plasma membrane, which can 

be clearly seen in the TEM images as well as the CAV-1 tran-

scripts detected via rtPCR studies, together with the absence of 

multilamellar bodies and SP-C, indicates that the new immor-

tal cell lines resemble an ATI-like rather than an ATII-like phe-

notype (Campbell et al., 1999; Fuchs et al., 2003; Gumbleton, 

2001; Newman et al., 1999). Small amounts of the ATII cell 

marker SP-C in ATI-like hAEpC, as detected by rtPCR, could 

be a result of not yet complete differentiation of the originally 

isolated ATII cells into the ATI phenotype. The water channel 

protein AQP-5, often used as an ATI marker, could not be de-

tected in the immortalized hAELVi cell lines. The reasons for 

this result and its implication for epithelial transport studies 

deserve further investigation, like immunofluorescence studies, 
because the marker has been found in cells using labeled anti-

bodies even though it could not be detected at the transcriptional 

level before (Hermanns et al., 2009).

Another interesting marker, which could provide more in-

formation about the differentiation status of hAELVi cells, is 

the receptor for advanced glycation endproducts (RAGE). This 

highly selective differentiation marker was shown to be ex-

pressed upon the trans-differentiation of ATII into ATI-like cells 

in vitro and to promote the spreading of ATI cells, contributing 

to achieve their squamous phenotype (Demling et al., 2006). 

The detection of RAGE at the transcriptional and translational 

level has to be addressed in future work to further classify the 

hAELVi cell line.

Nevertheless, transport studies with FluNa showed that the 

hAELVi cells maintain their barrier properties and thus could 

be useful for drug permeability studies. Active transporters of 

peptides, e.g., PEPT-2 (Groneberg et al., 2001) or organic cati-

ons OCT (Salomon and Ehrhardt, 2012) as well as efflux sys-

tems, such as MDR1/P-gp (Cordon-Cardo et al., 1990) or BCRP 

(Ejendal and Hrycyna, 2002), should be examined in further ex-

periments to enable the comparison with the primary cells and 

other cell lines. 

In summary, the new cell line hAELVi displays morphologi-

cal as well as physiological similarities with ATI cells. Most 

importantly, these cells develop tight intercellular junctions and 

high TEER (> 1000 Ω*cm2) resulting in a formidable diffusion 

barrier to a hydrophilic marker molecule, which can be modu-

lated by EDTA. We expect that the hAELVi cells described here 

have great potential to become an alternative to animal testing, 

both in the context of pulmonary drug delivery as well as inhala-

tion toxicology. 
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