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Amygdala circuitry and early life stress (ELS) are both strongly and
independently implicated in the neurobiology of depression. Impor-
tantly, animal models have revealed that the contribution of ELS to
the development and maintenance of depression is likely a conse-
quence of structural and physiological changes in amygdala circuitry
in response to stress hormones. Despite these mechanistic founda-
tions, amygdala engagement and ELS have not been investigated as
biobehavioral targets for predicting functional remission in trans-
lational human studies of depression. Addressing this question, we
integrated human neuroimaging and measurement of ELS within a
controlled trial of antidepressant outcomes. Here we demonstrate
that the interaction between amygdala activation engaged by
emotional stimuli and ELS predicts functional remission on antide-
pressants with a greater than 80% cross-validated accuracy. Our
model suggests that in depressed people with high ELS, the likeli-
hood of remission is highest with greater amygdala reactivity to
socially rewarding stimuli, whereas for those with low-ELS exposure,
remission is associated with lower amygdala reactivity to both re-
warding and threat-related stimuli. This full model predicted func-
tional remission over and above the contribution of demographics,
symptom severity, ELS, and amygdala reactivity alone. These findings
identify a human target for elucidating the mechanisms of antide-
pressant functional remission and offer a target for developing novel
therapeutics. The results also offer a proof-of-concept for using
neuroimaging as a target for guiding neuroscience-informed inter-
vention decisions at the level of the individual person.

amygdala | early life stress | human brain imaging |
predictive biomarkers | antidepressant remission

mygdala reactivity and exposure to early life stress (ELS) are

both strongly implicated in depression mechanisms in both
animal and human models (1-6). The amygdala plays an important
role in emotion processing, including evaluating biologically salient
emotional stimuli, generating emotional states and potentiating
emotional memories (7). It also plays a central role in the stress
response, both promoting downstream hypothalamic-pituitary—
adrenal (HPA) axis stimulation and receiving HPA axis feedback
(8). Engagement of the stress system can fundamentally change
amygdala structure and function, especially as a result of ELS (2,
9-11). Moreover, the amygdala is likely a component of the neural
circuit involved in antidepressant action (12, 13), and the antide-
pressant response is modified by prior stress exposure (10, 14).
Despite these mechanistic foundations, amygdala-stress interac-
tions have not been investigated as a prognostic biobehavioral
therapeutic target for depression.

Human neuroimaging investigations have demonstrated strong
links between depression and amygdala abnormalities in both
structure and function (1, 15-21). Structurally, decreased amygdala
volumes were found in unmedicated depressed individuals
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relative to healthy controls, whereas larger amygdala volumes
were found in depressed individuals receiving antidepressant
treatments (21). Functionally, distinct profiles of amygdala
activation, such as hyperengagement of the amygdala to threat
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and hypoengagement to positive emotion, have been reported
in depression (16-19).

Animal models have further highlighted the importance of the
amygdala in the pathophysiology of depression and the mechanisms
underlying this association. For example, stress paradigms that in-
duce depressive-like behaviors result in hypertrophy of the amygdala,
potentially through an increase of dendritic arborizations and spines
(1, 9). Parallel physiological changes contribute to a sensitization of
amygdala engagement (9). Independently, direct stimulation of the
amygdala is sufficient to induce an increase in emotional reactivity
and fear-like behaviors (22). These amygdala-mediated behaviors,
together with decreased emotional control by medial prefrontal
cortex regions, are thought to contribute to the increased negative
bias and overly negative evaluation of the self that are fundamental
features of human depression (23). Although these rodent models
can reproduce depressive-like behaviors, they cannot capture the
personal human experience of depression, making it difficult to di-
rectly translate findings between animal and human models. Despite
this limitation, animal models have significantly aided our un-
derstanding of the neural mechanisms by which depression develops.
In particular, these models have provided critical insights into a
mechanistic pathway through which stress, especially ELS, produces
the cascade of neurobiological changes that disrupt emotion regu-
lation and generate depression in adulthood (1, 24, 25).

Similarly, in humans, a history of ELS, particularly abuse or ne-
glect, is a prominent risk factor for developing depression and ex-
acerbating depression severity (3, 4). Mechanisms by which ELS
affects adult psychopathology are thought to involve—at least in
part—engagement of the HPA axis in the immediate response to
the stressor (2, 6, 10, 11, 19, 26). This engagement of the HPA axis
and release of stress-related hormones are, in turn, believed to cause
structural and functional changes in the neural circuits that underlie
emotion processing. The amygdala is one of the most consistently
reported regions demonstrating such changes (1, 9, 27). These
structural changes outlast the termination of the stressor (9), and
may heighten emotional reactivity and fundamentally alter the
way these neural circuits respond to subsequent stressors (9).

Not all individuals who experience ELS develop depression. The
cumulative risk likely depends on the interaction between the
stressor and the degree to which the stressor impacts emotional
brain circuits. For example, in rodents, the degree of amygdala hy-
pertrophy resulting from an initial stressor differentiates rodents that
go on to develop depressive-like behaviors following a subsequent
stressor from those that do not (28). That is, subsequent maladaptive
sensitivity to stress depends on the degree to which the early stressor
impaired the amygdala. Similarly, in humans, the interaction be-
tween the degree of amygdala engagement at baseline and the
amount of subsequent stress predicts which people developed an
internalizing disorder, including depression, 14 years later (29).

Amygdala function and ELS have independently been identi-
fied as factors contributing to antidepressant response. Evidence
from rodents and humans has implicated the amygdala as a target
of antidepressants (12, 13). Congruent with this framework,
amygdala engagement in response to both positively and nega-
tively valenced stimuli distinguished antidepressant responders
and nonresponders (30). Specifically, preintervention amygdala
hypoengagement in response to subliminal fearful and angry faces
(a signal of potential threat) and happy faces (a signal of social
reward) have separately been associated with better antidepres-
sant response. Moreover, amygdala reactivity in responders to
both negatively and positively valenced stimuli increased toward
normalization following antidepressant intervention (30). Increasing
levels of ELS have also been associated with poorer outcomes to
pharmacotherapy, pharmacotherapy combined with psychotherapy,
and psychotherapy alone (4, 5, 14).

In summary, these overlapping lines of evidence have demon-
strated that: (i) amygdala engagement and ELS independently
contribute to antidepressant response, (i) functional and structural
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alterations in amygdala circuitry can result as a function of ELS,
and (i) vulnerability to developing depression depends on the in-
teraction between amygdala function and ELS rather than either
alone. However, despite these findings, no study has tested whether
the interaction of amygdala engagement and ELS could be used as
targets for therapeutic response to antidepressants in humans.
Addressing this question could provide a new mechanistic un-
derstanding for why some individuals respond to antidepressant
treatments and others do not, as well as offer new targets for in-
tervention. Given that (i) a large societal cost is associated with
untreated depression, (i) less than a third of individuals typically
remit after first-line antidepressants, and (i) there is currently no
test available for predicting remission in practice, these findings
have important clinical ramifications.

In the present study, we hypothesized that an individual’s ca-
pacity to remit after an antidepressant intervention would depend
on ELS history and amygdala reactivity to fearful and happy faces.
Defining remission as requiring functional improvement and al-
leviation of symptoms (31), we tested the following hypotheses:

Hypothesis 1: Combining measures of ELS and preintervention
amygdala reactivity to happy faces will predict functional remis-
sion better than ELS or amygdala reactivity alone.

Hypothesis 2: Combining measures of ELS and preintervention
amygdala reactivity to fearful faces will predict functional re-
mission better than ELS or amygdala reactivity alone.

Hypothesis 3: Combining measures of ELS and amygdala re-
activity to both happy and fearful faces will provide the most
accurate prediction of functional remission, beyond predictions
based on ELS or specific stimulus valence-evoked amygdala
reactivity alone.

Results

Participant Characteristics. Of 102 participants with major depressive
disorder (MDD) imaged, 22 dropped out. Eighty were assessed at
week 8, of which 10 had no ELS data available. Baseline de-
mographic, clinical breakdown, and dosage information for the
three antidepressants are presented in Tables S1 and S2 for the
analyzed sample (n = 70) split by ELS status and remission type.
Those who achieved “functional remission” (i.e., symptoms return-
ing to healthy range plus functional improvement) and those who
did not showed no detected differences in age, education level,
duration of MDD episode, social/occupational functioning, de-
pression symptoms, or dose within each treatment arm. This lack of
differences remained when further stratified by level of ELS expo-
sure (all P > 0.05).

Predictors of Functional Remission. Fig. 1 and Table 1 show the
performance of each classification model with and without leave-
one-out cross-validation in predicting functional remission.

Covariate Model. To serve as a basis of comparison for more complex
models, a regression model consisting solely of clinical and de-
mographic variables was used to classify functional remission (Table
S3). In the first step, age, years of education, baseline depression
severity, and MDD episode duration were included as predictors
based on their previous associations with treatment success (30, 32).
This model overall showed a trend toward significance (> = 73.07,
df = 4, P = 0.067) (Table S3). Receiver operating characteristic
(ROC) analyses revealed an area under the curve (AUC) of 0.71
with 84% sensitivity and 59% specificity (Fig. 14 and Table 1).

Consistent with prior findings (4, 5, 14), adding ELS to the
model significantly increased overall performance (sz = 5.88,
Adf =1, P = 0.025) (Table S3). Within this model, the likelihood
of achieving functional remission was negatively associated with
ELS status [unstandardized beta coefficient (B) = —0.99, Wald
statistic (W) = —2.12, P = 0.034] when holding covariates at a fixed
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ROC curves showing the relative performance of candidate regression models in predicting functional remission. ROC curves model performance in

predicting functional remission for 70 participants using the following predictors: (A) demographic/clinical measures; (B) demographic/covariate measures and ELS;
(C) demographic/covariate measures and the interaction between amygdala reactivity to happy faces and ELS; (D) demographic/covariate measures and the
interaction between amygdala reactivity to fearful faces and ELS; and (E) demographic/clinical covariates, the interaction between ELS and amygdala reactivity to
happy faces, as well as the interaction between ELS and amygdala reactivity to threatening faces.

value. ROC analyses demonstrated that this model performed
modestly in predicting functional remission: AUC of 0.75; sensi-
tivity of 84%; and specificity of 59% (Fig. 1B and Table 1). These
metrics dropped to 0.64, 95%, and 39%, respectively, using a
leave-one-out cross-validation (Table 1).

Happy x ELS Model. We next tested whether models combining
ELS and amygdala reactivity to happy faces would significantly
increase model performance (see details in S/ Results and Table
S4). Briefly, the model that included interactions between ELS
and amygdala reactivity to happy faces performed significantly
better than the model with ELS and amygdala reactivity without
interactions, even at a conservative Bonferroni level (sz = 8.03,
df = 1, P = 0.005) (Table S4). The interaction model classified
functional remission with an AUC of 0.82, sensitivity of 95%, and
specificity of 57% (Fig. 1C and Table 1). Leave-one-out cross-
validation analyses yielded an AUC of 0.69, sensitivity of 89%, and
specificity of 45%, suggesting some caution in making inferences
about its generalizability (Fig. 1C and Table 1).

Fear x ELS Model. We then tested whether models combining ELS
and amygdala reactivity to fearful faces would significantly increase

model performance beyond each independently (see details in S/
Results and Table S4). Briefly, the fear reactivity x ELS interaction
model performed only marginally better than a model with fear
reactivity and ELS without their interaction (Ay* = 3.04, df = 1,
P =0.081) (Table S4). The fear reactivity x ELS model had an
AUC of 0.84, sensitivity of 95%, and specificity of 65% (Fig. 1D
and Table 1). The leave-one-out cross-validation model was
relatively weaker, with an accuracy of 0.72, sensitivity of 47%,
and specificity of 90%, suggesting caution in making inferences
about its generalizability (Fig. 1D and Table 1).

Happy x ELS + Fear x ELS. We tested whether combining the ad-
ditive and interaction effects between ELS, happy reactivity, and
fear reactivity would further increase model performance. We fo-
cused specifically on the interaction models because both the happy
and fear interaction models performed better than the additive
models, especially for happy. As predicted, the combined model
had additive effects in predicting functional remission (X2 = 47.10,
df =9, P < 0.001) (Table S4). Adding the fear-ELS and happy-ELS
interactions to a model that contained the happy reactivity, fear
reactivity, and ELS (as well as covariates) significantly increased the
ability to predict functional remission at the Bonferroni-corrected

Table 1. Model performance summary
Model Covariates* ELS Happy x ELS Fear x ELS Happy x ELS + fear x ELS
Full sample
AUC 0.71 0.75 0.82 0.84 0.92
Sensitivity (chance rate) 0.84 (50) 0.84 (50) 0.95 (50) 0.95 (50) 0.89 (50)
Specificity (chance rate) 0.59 (50) 0.59 (50) 0.57 (50) 0.65 (50) 0.88 (50)
PPV (remission rate) 0.91 27) 0.91 (27) 0.97 (27) 0.97 (27) 0.96 (27)
NPV (nonremission rate) 0.43 (73) 0.43 (73) 0.45 (73) 0.50 (73) 0.74 (73)
Leave-one-out cross-validated
AUC 0.59 0.64 0.67 0.69 0.81
Sensitivity (chance rate) 0.95 (50) 0.84 (50) 0.94 (50) 0.47 (50) 0.84 (50)
Specificity (chance rate) 0.33 (50) 0.43 (50) 0.41 (50) 0.82 (50) 0.69 (50)
PPV (remission rate) 0.94 (27) 0.88 (27) 0.95 (27) 0.80 (27) 0.92 (27)
NPV (nonremission rate) 0.35(73) 0.36 (73)  0.38 (73) 0.50 (73) 0.50 (73)

NPV, negative predictive value; PPV, positive predictive value.
*Covariates include age, years of education, baseline depression severity, and MDD episode duration.
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level (Ax? = 1491, df = 2, P < 0.001) (Table S4). The combined
model increased the AUC to 0.92, while maintaining high sensitivity
(89%) and specificity (88%) (Fig. 1E and Table 1). The leave-one-
out cross-validated model similarly maintained high AUC (0.81),
sensitivity (84%), and specificity (69%), suggesting good general-
izability (Fig. 1E and Table 1). We replicated these results using an
alternate analytical approach that uses the total number of ELSs
rather than the interval scale measure (SI Results and Table S5).

Within this full model, the happy-ELS (B = 2.78, W = 2.70,
P =0.007) and to a lesser extent the fear—ELS (B = 1.53, W = 1.94,
P = 0.052) interactions contributed to the prediction. The slope of the
relationship between the likelihood of functional remission and
amygdala reactivity to both happy and fearful faces became in-
creasingly positive with greater ELS, as computed by our statistical
model at mean levels of other predictors. Thus, those with low ELS
were predicted to have a greater probability of remitting if they had
less baseline amygdala reactivity to both happy (B = —2.96, W= -2.53,
P =0.011) and fearful (B = 3.00, W = -2.53, P = 0.011) faces (Fig. 2),
whereas for the mid-ELS group, remission was associated with
amygdala reactivity to fearful faces (but not happy faces) such that
those with the lowest amygdala reactivity were the most likely to remit
(fear: B = -1.47, W= =233, P = 0.020; happy: B = —0.19, W = —0.34,
P =0.732). In contrast, the model estimated that those with high ELS
were more likely to remit with increasing preintervention amygdala
reactivity to happy faces (B = 2.57, W = 2.11, P = 0.027) but showed
no association with fear reactivity (B = 0.06, W= 0.08, P = 0.940). The
predicted likelihood of remission as a function of amygdala reactivity
to both fearful and happy faces across ELS groups is plotted in Fig. 2.

Clinical Translational Relevance. Due to our combined model’s high
degree of accuracy, it is relevant to consider its applicability to the
clinical setting. Although our results remain speculative, we have
demonstrated that in a moderate-sized sample, a single metric
may be derived from our combined logistic regression model and
used to support decisions about individual patients. In the happy x
ELS + fear x ELS model, ROC analyses determined that a log-
odds cross-validated threshold of —0.80 (the average threshold
across all leave-one-out folds) could be used to distinguish re-
mitters from nonremitters within this sample with a sensitivity of

60% and specificity of 80%. In future applications, a history of
ELS coupled with an amygdala scan may be used to identify likely
nonremitters (those below the —0.80 threshold; Fig. 2) before
beginning a potentially ineffective pharmacotherapy.

Discussion

Our study demonstrates that functional remission with antide-
pressants may be dependent not only on an individual’s ELS
history and degree of amygdala engagement during facial emotion
viewing tasks independently but on their interaction. Given this
information, we could predict with a high degree of accuracy
(81%) who would and would not functionally remit following
pharmacotherapy with commonly prescribed antidepressants. Given
that both amygdala circuitry and ELS are also strongly impli-
cated in the neurobiology of depression, our predictive model
provides a potential clinically meaningful target for mechanistic
investigations and for novel intervention development.

Previous independent lines of research have shown how both
ELS and amygdala reactivity may independently contribute to the
pathophysiology of development, maintenance, and functional re-
mission in depression. ELS has been shown to moderate antide-
pressant outcomes (4, 5, 14, 30). Consistent with these reports, we
found that the severity of exposure to ELS in childhood is associ-
ated with a greater likelihood of treatment failure across three
commonly prescribed antidepressants. Similarly, and consistent with
previous evidence for the independent role of amygdala reactivity in
predicting antidepressant remission (30), our model suggests that
amygdala hyporeactivity to subliminally presented fearful faces may
be associated with better functional remission when not controlling
for ELS. Our study combines these two lines of investigation to
demonstrate that the functional alterations in amygdala circuitry,
potentially as a result of stress-induced plasticity, may be moder-
ating the impact of ELS on functional remission.

The present findings advance our current knowledge by dem-
onstrating that information on amygdala function and interactions
with exposure to ELS together may be used to form the most
accurate predictive model for antidepressant remission, even in a
moderate-sized sample. When considering degree of ELS expo-
sure and amygdala functioning together, we identified several
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Fig. 2. Binary classification of remission. Predicted likelihood of remission (log odds) at varying levels of ELS and amygdala reactivity to emotional faces. The
likelihood of remission was generated from the model containing both the interaction between ELS and amygdala reactivity to happy faces and the in-
teraction between ELS and amygdala reactivity to fearful faces, using all 70 participants. The likelihood of remission was calculated at mean levels of
covariates at low (mean minus 1 SD), mid (mean), and high (mean plus 1 SD) levels of reactivity to happy faces, as well as low and high levels of reactivity to
fearful faces. Individuals with predicted probabilities above the cross-validated threshold for classification (dotted line) would be classified as likely to respond
to escitalopram, sertraline, or venlafaxine, whereas those below would not. Error bars show 90% confidence intervals.
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preliminary patterns of amygdala reactivity that were associated with
likelihood of remission and dependent on ELS status. For example,
our results suggest a negative relationship between amygdala reactivity
to both fearful and happy faces and the likelihood of achieving func-
tional remission in individuals with low levels of ELS. That is, for
individuals free of ELS, our model would predict a greater likelihood
of remission if they showed neural insensitivity to salient emotion,
reflected in hypoengagement in response to both threatening and
socially rewarding stimuli. It is possible that these individuals, in the
absence of stress sensitization, can benefit most from the impact of
antidepressants on amygdala circuits. This result is consistent with a
prior study demonstrating that antidepressants can normalize amygdala
function by increasing amygdala reactivity to both happy and fearful
faces (30) in those individuals who responded to treatment. Those with
low ELS but hypersensitivity to threat might be candidates for psy-
chosocial interventions that focus on improving emotion regulation
[e.g., dialectical behavior therapy (33)] or prosocial behaviors (34).

Our results suggest that individuals with a high-ELS exposure
would have a greater likelihood of functional remission with antide-
pressants if they had a preexisting hyperengagement in response to
socially rewarding stimuli, relatively independent of how they respond
to fearful faces. The neurobiological consequences of ELS are
believed to arise initially as an adaptive response to the current en-
vironmental stressors. For example, in an abusive environment, an
increased sensitivity to threat-related emotional signals may enable
earlier detection and a potentially increased ability to avoid a negative
confrontation with the caregiver (35). However, these short-term
benefits are proposed to be associated with long-term functional and
structural changes of limbic-related brain regions—perhaps most
notably in the amygdala—that manifest as a function of the severity of
the ELS exposure (1, 9, 27, 36, 37). Consistent with this framework, in
childhood, the severity of ELS exposure has been positively associated
with amygdala reactivity to both threatening and happy faces in a
dose-dependent manner (26, 38). Similarly, as adults, the severity
of prior stress exposure has also been associated with amygdala
engagement in response to threatening faces (19). However, for
happy faces, there was a marginally significant negative relation-
ship such that greater ELS severity was associated with a lower
amygdala response to happy faces (39). Taken together, these
findings suggest that whereas initially ELS boosts sensitivity for
salient expressions that encompass both positive and negative
emotions, later in life this may progress into a bias toward threat-
relevant stimuli, potentially with decreased sensitivity to happy
faces. It is possible that “high-ELS exposure” individuals who are
able to maintain amygdala hyperengagement to socially rewarding
stimuli are endowed with additional resilience factors that enable
them to mount a more effective response to antidepressants (37).

Although additional replication is required, these findings suggest
that targets of antidepressant response may (at least in part) be tied
to the neurobiology of depression itself. This study also makes a
leap forward in demonstrating the possibility of a single composite
brain-stress predictive metric relevant to informing therapeutic
decisions that may be derived and used before fully understanding
underlying neural mechanisms. Such a metric also offers a viable
target for future mechanistic investigations and for studies aimed at
developing novel interventions. Moreover, these findings provide
additional support for the need to consider a life-course approach
to the prevention and treatment of mental disorder (40).

Findings from this study should be appreciated within the
context of certain limitations. Although our study sample would be
considered large for neuroimaging measures and represents a
statistical advance in power from the few previous neuroimaging
prediction studies, it is relatively small when stratifying by ELS
subgroups. Although we have undertaken steps to demonstrate the
generalizability of our findings, including using cross-validation
techniques and replicating our findings using an alternate analytical
approach (SI Methods), replication and assessment of generaliz-
ability in an independent sample would be an important next step.
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Due to stratifying the sample by ELS, our analyses were not suffi-
ciently powered to test whether the ELS interactions with amygdala
reactivity predictions would be further dependent on the specific
type of antidepressant therapy. Future investigations are needed
to determine whether the interaction between ELS and amygdala
reactivity is a differential predictor of antidepressant outcomes.
Finally, due to the practical trial design, the study was necessarily
limited to antidepressants in common use in each of the participating
countries. It would similarly be important to verify the predictive role
of ELS and amygdala reactivity with additional antidepressants
and second-generation antipsychotics with antidepressant actions
that have distinct mechanisms of action, as well as psychotherapy.

Our results advance our understanding of how ELS and amyg-
dala engagement function synergistically to predict subsequent re-
mission from depression with antidepressants. Moreover, we have
demonstrated that a single brain-stress metric may be derived from
our predictive model and used to support decisions about individual
patients. In short, metrics based on combined brain and life expe-
rience data hold promise for developing a neuroscience-informed
approach to mental disorder and its management.

Methods

Overview and Study Design. Functional imaging data were obtained from 102
participants from the International Study to Predict Optimized Treatment in
Depression (iSPOT-D). For a complete description of the randomized iSPOT-D
practical trial protocol, clinical assessments, inclusion/exclusion criteria, and di-
agnostic procedures, see Williams et al. (41). In short, the primary diagnosis of
nonpsychotic MDD was confirmed using the Mini-International Neuropsychiatric
Interview (42), according to Diagnostic and Statistical Manual for Mental Disor-
ders, Fourth Edition (DSM-IV) criteria (43), and inclusion criteria included a score of
>16 on the 17-item Hamilton Rating Scale for Depression (44) (HRSD47). Sample
size and power were determined as part of the protocol development (45).

All participants were either antidepressant medication-naive or underwent a
washout period of at least 1 wk (five half-lives). Participants were randomly
assigned using Phase Forward’s validated, web-based interactive response
technology to receive escitalopram, sertraline, or extended-release venlafaxine.

This study was conducted according to the principles of the Declaration of
Helsinki 2008. After the study procedures were fully explained in accordance
with the ethical guidelines of the Western Sydney Area Health Service Human
Research Ethics Committee, participants provided written informed consent.

Early Life Stress. ELS was assessed using the 19-item Early Life Stress Ques-
tionnaire, which assesses exposure to abuse, neglect, family conflict, illness/
death, and natural disasters before 18 y of age (46). Participants were split into
low- (<1 event), mid- (2-5 events), and high- (>6 events) ELS groups. These
groups did not differ in demographic factors (all P > 0.05; see Table S1 for ELS
distribution details).

Criteria for Functional Remission. Because childhood adversity produces de-
pressive-anxious symptoms as well as stress-related adjustment problems, we
defined functional remission by a combined measure of clinician-rated de-
pression symptom severity using the HRSD; (44), self-reported symptom severity
using the 16-item Quick Inventory of Depressive Symptomatology-Self-Rated
(QIDS-SR+6) (47), and observer-rated functional capacity using the Social and
Occupational Functioning Assessment Scale (SOFAS) (48) at week 8. Remitters
were defined as being in the normative range of symptoms (<7 on the HRSD;7
and <5 on the QIDS-SR;¢) and with healthy adjustment (>10-point improve-
ment from baseline to achieve >61 on the SOFAS).

Functional MRI Emotion Paradigm. Amygdala reactivity to happy and fearful
faces was assessed relative to neutral comparison faces using an established
masking paradigm (30). Stimuli were drawn from a standardized series of
facial expressions (49) modified to be centrally positioned at eye level. Details
of the MRI acquisition, preprocessing, and stimuli presentation have been
published previously (30) and can be found in SI Methods.

Statistical Analyses. Hierarchical logistic regression models and ROC analyses
implemented in R (50) were used to test the predictive performance of models
including ELS and amygdala reactivity measures for functional remission. (Here
we define hierarchical regression as a series of successive logistic regression
models, adding additional predictors with each step. This is not to be confused
with hierarchical linear models, which are used in modeling nested data.) The
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Wald statistic was used to determine the significance of the contribution of
each predictor. To account for multiple statistical tests, we report significance
for our six tests at a 0.05/6 < 0.008 Bonferroni-corrected level (three additive
and three interactive tests).

To increase the generalizability of the model predictions and reduce the bias
caused by model fitting (51), leave-one-out cross-validation was used to derive
an unbiased threshold that could be prospectively used to classify remitters
versus nonremitters as well as assess the generalizability of the ROC perfor-
mance metrics. The specific steps of each analysis are detailed in S/ Methods.
ROC curves were drawn using the Epi package of R (52).
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