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ABSTRACT Present-day deep learning-based motion deblurring methods utilize the pair of synthetic blur

and sharp data to regress any particular framework. This task is designed for directly translating a blurry

image input into its restored version as output. The aforementioned approach relies heavily on the quality of

the synthetic blurry data, which are only available before the training stage. Handling this issue by providing

a large amount of data is expensive for common usage. We answer this challenge by providing an on-the-fly

blurry data augmenter that can be run during training and test stages. To fully utilize it, we incorporate an

unorthodox scheme of deblurring framework that employs the sequence of blur-deblur-reblur-deblur steps.

The reblur step is assisted by a reblurring module (synthesizer) that provides the reblurred version (pseudo-

blur) of its sharp or deblurred counterpart. The proposed module is also equipped with hand-crafted prior

extracted using the state-of-the-art human body statistical model. This prior is employed to map human and

non-human regions during adversarial learning to fully perceive the characteristics of human-articulated

and scene motion blurs. By engaging this approach, our deblurring module becomes adaptive and achieves

superior outcomes compared to recent state-of-the-art deblurring algorithms.

INDEX TERMS Motion deblur, pseudo-blur, augmentation, synthesize, generative adversarial network,

human motion, deep neural network

I. INTRODUCTION

The idea of recovering blurry images into their sharp version

has been presented since a decade ago and remains an active

research area in computer vision. The spread of pixels usually

causes a blurry image owing to the motion effect during

capture time. This motion is modeled by a specific point

spread function (PSF) and can be represented as a blur kernel.

Early motion-blurred image is modeled by the blur kernel

that is directly convolved to a sharp image with few additive

noises. The task of restoring PSF-based degradation is known

as motion deblurring. Based on the previous assumption,

traditional methods solve motion deblurring by deconvolving

back the blurry image with a predicted blurry kernel. This

idea was implemented in famous state-of-the-art works [1]–

[7] where various regularization priors are also advocated

to help the deblurring procedures. With the rise of deep

learning, many kernel-free deblurring works are introduced.

The work of Nah et al. [8] and Kupyn et al. [9], [10]

utilize generative-adversarial-network (GAN) [11] to solve

this issue. The recent deep-learning based deblurrings are

improved by adopting feature-level modification [12]–[14]

and region-based prior utilization [14]–[16].

Following the vast growth of image restoration works, we

observe that the current highlight involves an unorthodox

approach for improving performance. Early work by Chen et

al. [17] solves deblurring by reblurring the deblur output.

The reblur output is being supervised with the blurred input

during training. To simplify, Chen et al. [17] apply the se-

quence of blur-deblur-reblur (B → D → R) in the training

scheme with R ≈ B, while maintaining the (B → D) in

the test scheme. Recently, Zhang et al. [18] provide a unique

approach by supplying a reblur network at the top of the

deblurring module for unpaired strategy. Their approach [18]

employs noise-based re-blurred version of any sharp image

RN and utilize them in the training process (RN → D).

Take note that RN will be inconsistent as noise is generated
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randomly. Thus, they [18] also still perform (B → D)

sequence in the test scheme without utilizing RN . These

approaches indicate that re-corrupting initial information is

useful for augmenting the data.

From this motivation, we introduce the order of blur-

deblur-reblur-deblur (B → D → R → D) as a modish ap-

proach to solve human and scene motion deblurring. Unlike

the previous unorthodox methods [17], [18], our sequence is

performed in training and test stages. This approach allows

our deblurring method to learn the augmented blurry data R

that are different from the blurry input B (with R 6≈ B) in

both stages. To obtain a consistent R, we provide a reblurring

module (pseudo-blur synthesizer) that only receives a single

RGB image, which is trained with the localized regions

of the human body and scene. This strategy is applied as

human-articulated and scene motion display different blur

characteristics. Our motivation is that, up to recent time, only

a few pioneer works [14], [16] that particularly handle the

deblurring on human body case. The idea of human deblur-

ring is presented by Shen et al. [14] that utilizes separated

foreground and background maps to distinguish human and

non-human regions. However, this approach is un-precise as

they produce pre-generated rectangular maps to cover the

human body. Moreover, in their case, the blur is unlikely to

represent the motion blur caused by human articulated body

joint movement. This approach is tackled by Lumentut et

al. [16] by producing a localized map that covers both human

body and its nearby regions that are affected by the body-joint

articulation motion. In this work, the idea of the localized

prior map is utilized in the reblurring procedure as part of

the novel sequence. To achieve it, we propose an adversarial-

based framework that learns both scene and human motion

blur characteristics for supplying the reblurring module.

Once the reblurring module is settled, R is treated as

augmentation data. However, the ultimate goal of adopting

the proposed sequence is to perform self-adaptation in the

test stage. This is important as many restoration models

are trained with a limited dataset but required to solve

various issues. To achieve it, the proposed sequence is

plugged in a model-agnostic meta-learning algorithm [19],

that shows significant performance improvement in previ-

ous non-deblurring studies [20]–[22]. By implementing this

strategy, we show that our approach is superior in deblurring

the real-world scenario, where no related training data is

available. This benefit is obtained due to the presence of our

pseudo-blur synthesizer that supports the proposed sequence.

To summarize, we describe our contributions as 3 manifolds:

• We present a unique sequence of deblurring in training

and testing procedures, which allows a self-adapting

capability that yields superior results compared to recent

state-of-the-art works.

• We provide, to our best knowledge, a novel way to

synthesize a blurry image from only a single RGB

image input, achieved by employing localized human

and non-human regions of an image.

• We show that the hand-crafted human-prior in the re-

blurring module is learnable via adversarial strategy,

subsequently improving the deblurring performance.

II. RELATED WORKS

a: Motion deblurring

Early deblurring algorithms utilize the classical way of

restoration by firstly estimating the blur kernel. The estimated

kernel is used to deconvolve the blurry input to obtain sharp

input. Various regularization priors are utilized for improv-

ing this approach [1]–[7], [23]. These works further target

multi-view imaging, as shown in these studies [24]–[26]. A

recent trend on deep learning moves toward GAN-based [11]

architecture for its capability to directly translate an image

to a certain domain [27]. This approach is then followed by

these notable deblurring works [8]–[10]. Recent works in

deblurring include hand-crafted priors to prioritize certain

regions for learning. These works are shown by Shen et

al. [15] and Ren et al. [28] for face deblurring as well

as Shen et al. [14] and Lumentut et al. [16] for human

deblurring. As explained in the previous section, the recent

works of non-classic restoration (non B → D in training

sequence) [17], [18] capture our attention. These approaches

show that the addition of a reblurring step improves the de-

blurring performance. Both closely related works of Shen et

al. [14] and Lumentut et al. [16] inspire our works to solve

human deblurring. As described in the previous section,

our method takes advantage of the prior map in generating

realistic augmented blurry data via reblurring module. We

utilize this module to help the deblurring module in achieving

its self-adaptive capability.

b: Synthetic blur generation

The early work of generating a blurry image is initiated

by [29]. Their work produces camera motion with a robot

system that moves the camera in an accurate position. This

approach is bulky and hard to be applied in daily use. A

more complex blurry dataset is introduced by [30] in which

sets of motion blurs that are recorded using the inertial

sensor of a consumer cellphone are collected. These motion

blurs are convolved directly to the sharp image to produce

a synthetic blurry image. Recent approaches show that the

averaging multiple-frames is faithful enough to generate re-

alistic scene blur as expressed by [8]. Another non-typical

approach is introduced by Brooks and Barron [31] wherein

a blurry image is produced from the two successive sharp

frames. Their idea is based on frame interpolation work

as it produced several intermediate frames within the two

inputs to generate a smooth blurry result. The recent work

of [14] provides blurry human images as their dataset to

solve a particular issue, notably human deblurring. However,

their blur result is affected by non-human articulated motion.

Unlike [14], we consider both constraints on generating the

synthetic blur achieved by pursuing the local human body

region. The closest work to ours is by Zhang et al. [32] that

provides a reblurring network to blur the sharp image during

training (R → D). This method, however, relies fully on
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the additional noise at the input. On the contrary, our blur

synthesizer network only requires a single red-green-blue

(RGB) input, which guarantees a consistent reblur output.

c: Meta-learning application

The meta-learning approach paves a unique way for recent

restoration works [20]–[22]. Its objective is to provide an

updated version of a network that is adaptive during test time.

In general, meta-learning is categorized into three groups.

The first group belongs to the metric-based method [33], [34].

This approach has the objective of seeking metric space that

provides efficient learning under a few samples. The second

group belongs to the memory network-based approach [35]–

[37] where its objective is to train a network that learns

across various tasks to be robust to the unseen task. The last

group belongs to the optimization-based approach, wherein

gradient-based learning is employed. The main idea is to

find an initial transferable point that helps the network adapt

within a few gradient updates [19], [38], [39]. The recent

model-agnostic meta-learning [19] method that utilizes gra-

dient descent learning shows a significant impact on super-

resolution studies [20], [22]. Just recently, a test-time adap-

tive version of the motion deblurring method is proposed by

Chi et al. [40]. This work is closely related to ours, however

they only utilize (B → D → R) sequence similar to [17]

which enforces R to be equal to B. As opposed to this setup,

we employ our reblurrer to synthesize R differently to B

as its augmented version. In our experiments, we show that

our proposed strategy succeeds in enhancing the deblurring

network via meta-learning.

III. METHOD

We introduce a set of procedures for training (Figure 2)

and testing (Figure 5) stages that fully utilize the proposed

sequence. Initially, the deblurring network is trained until

it converges (θT ). The deblurring network is then frozen

for training the reblurring network (ΩT ). These outcomes

are utilized in our meta-transfer-learning procedure to obtain

a ready-to-be-adapted deblurring weight (θM ). Finally, the

meta-testing procedure is employed to run the self-adaptation

strategy (θk). In these subsections, we describe briefly on

each particular scheme: initial deblurring training, pseudo-

blur synthesizer training, meta-transfer learning, and meta-

testing procedures.

A. INITIAL DEBLURRING TRAINING

The whole process is started by initially train the deblurring

network. This network is trained with the involvement of Go-

Pro [8] and HIDE [14] dataset. As displayed in Figure 1, the

deblurring network receives an input of blurry RGB image B

and produces deblurred output D. In this stage, training the

deblurring is collaborated with the global deblur discrimina-

tor module. The term global represents the utilization of full

image region. As shown in Figure 1, the deblurring module is

represented by the deblurring generator annotation. Global

deblur discriminator module is also utilized to influence

TABLE 1. Detailed settings of our deblurring generator module. The spatial

output size is downsampled and upsampled according to the stride number.

Layer Detail Output size Stride

Input (B or R) - (H ×W × 3) -

Conv 7× 7 IN+ReLU (H ×W × 64) 1

Conv 3× 3 IN+ReLU (H/2×W/2× 64) 2

Conv 3× 3 IN+ReLU (H/4×W/4× 128) 2

Res_Blocks_1-9 3× 3 IN+ReLU (H/4×W/4× 256) 1

ConvTrans 3× 3 IN+ReLU (H/2×W/2× 128) 2

ConvTrans 3× 3 IN+ReLU (H ×W × 64) 2

Conv 7× 7 Tanh (H ×W × 3) 1

TABLE 2. Architecture details of global deblurring discriminator in our

proposed framework.

Layer Detail Output size Stride

Input (S or D) - (H ×W × 3) -

Conv 4× 4 IN+LeakyReLU (H/2×W/2× 64) 2

Conv 4× 4 IN+LeakyReLU (H/4×W/4× 128) 2

Conv 4× 4 IN+LeakyReLU (H/8×W/8× 256) 2

Conv 4× 4 IN+LeakyReLU (H/16×W/16× 512) 2

Conv 4× 4 IN+LeakyReLU (H/16×W/16× 512) 1

Conv 4× 4 IN+Sigmoid (H/16×W/16× 1) 1

the generator. These networks, highlighted with blue color,

are trained using GoPro [8] and HIDE [14] dataset. The

configuration of deblurring generator1 and global deblur

discriminator networks are provided in Table 1 and Table 2,

respectively. 9 Residual Blocks [41] configuration is stacked

to convey intermediate features.

Optimization of deblurring module To optimize the de-

blurring network in the initial deblurring training stage, we

utilize a simple absolute error calculation between deblurred

output D and sharp ground truth image S within a mini-

batch b, represented as (Ldeb
1 = 1

b

∑b

c
‖Sc − Dc‖), where

c represents data on each batch. This loss is countered with

a single global deblur discriminator as shown in Figure 1.

The discriminator receives the input of both sharp S for the

real case and deblurred D for the fake case following the

recent least-square GAN (LSGAN) introduced in [42]. In

detail, the adversarial real and fake losses of the deblurring

discriminator are represented as:

Ldeb

Real =
1

b

b∑

c

ΠGlo(Sc);L
deb

Fake =
1

b

b∑

c

ΠGlo(Dc), (1)

where Π(·) represents the discriminative function. The two

functions are combined in the generator and discriminator

losses of the deblurring, which are written as:

Ldeb

Disc = 0.5× (‖Ldeb

Real − 1‖2 + ‖Ldeb

Fake‖
2); (2)

Ldeb

Gen = Ldeb

1 + 0.5× (‖Ldeb

Fake − 1‖2). (3)

Note that our discriminator requires an input image that is

fully divided by 16; thus, we utilize a patch size of 128×128

in the training procedures.

1The reblurred image R is mentioned in Table 1 as our naive-finetuned
version (Ours-F) utilizes the deblurring module to deblur R in the sequence
of B → D → R → D during training stage (see the Ablation Study in the
subsection IV-B)
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FIGURE 1. The figure above represents the framework of our deblurring-reblurring tasks. Blue modules are utilized for training the deblurring procedure, while red

modules are used to train the reblurring procedure. As emphasized in the smaller rectangular boxes (red and yellow boxes), our synthesized blur result, R, is

different with blurry input B (R 6≈ B). Moreover, R is deblurred again in our algorithm to induce the self-adaptive capability. Viewing it on an electronic screen is

advised.

FIGURE 2. The main scheme of our training phase. The training procedures are run in a progressive stages, namely: initial deblurring training, pseudo-blur

synthesizer training, and meta-transfer deblurring training. In the initial stage, only deblurring modules (blue objects) are trained. Then, in the pseudo-blur

synthesizer training stage, only the reblurring modules (red objects) are trained. In the meta-transfer deblurring training stage, the deblurring modules are furtherly

optimized with the utilization of frozen reblurrer module. Note that, in the final stage, no discriminators are further optimized.

B. PSEUDO-BLUR SYNTHESIZER TRAINING

The next important step is the learning process of the pseudo-

blur synthesizer Ω. The related modules are reflected in

Figure 1 as red-colored objects. The reblur module is fed

with the deblurred image D or sharp image S to produce

the reblurred version R. At the first 50 epochs, we train the

reblurrer generator and global reblur discriminator using S

only to fully learns correct features from the sharp image

while treating B as ground truth. The next 100 epochs are

performed with the input data of D, which is produced by

θT using the dataset of HIDE [14]. Finally, in the last 100

epochs, we utilize an additional dataset that placed the human

image in the middle region. In specific, we utilize the pairs

of ground truth clean S and blurry B human images from

LSP [43] dataset. For simplicity, we denote this modified

dataset as LSPBlur. Its extraction procedure is discussed in

the following discussion.

To produce the desired blurs in LSPBlur, we incorporate

a region-separation method that splits both human (fore-

ground) and scene (background) regions. This operation pro-

duces 2 prior binary maps, namelyMu andMv . The task of

Mu is to cover blurry regions inside and the nearby human

body. This is done as our LSPBlur is defined by human-

articulated motion blur (foreground) and scene-motion blur
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FIGURE 3. Single sharp image S is utilized to produce multiple images with

changed human-pose and translated scene background. These images are

averaged together to produce the blurry image B.

(background). Simply utilizing any human segmentation al-

gorithm is ineffective as it excludes the blurry region nearby

the human body. The complete procedure of this map ex-

traction is described in the following discussion Finally, to

obtain the scene-blur region map, the reversed version of

Mv = 1−Mu is utilized.

This module is trained using LSGAN [42]; specifically

optimizing the reblurring generator along with the global,

human, and scene reblur discriminators. Both human and

scene reblur discriminators utilize the prior maps Mu and

Mv to explicitly penalize human and scene regions. The first

50 and 100 epochs (using S and D from HIDE) only include

global discriminator. Full discriminators are employed in the

last 100 epochs (using LSPBlur dataset). Take note that,

in this stage, the optimized deblurring network is frozen

so that the framework is focused on training the reblurring

module. The details of the pseudo-blur synthesizer training

are elaborated in the following passages.

1) Training Preliminary

Training this module is divided into 3 categories: (i) first

50 epochs using S of HIDE dataset, (ii) next 100 epochs

using the deblurred result D of HIDE dataset, and (iii)

last 100 epochs using the sharp image obtained from our

LSPBlur dataset. The HIDE dataset is chosen as it provides

the characteristic of a single sharp image as ground truth

and multiple blurry images as output (one-to-many effect).

Although HIDE dataset [14] is known for providing human

presence, their motion blurs are affected only by the scene

blur. The LSPBlur is utilized to tackle this issue.

Acquiring the LSPBlur We realize this drawback and

generate a new blurry human dataset that contains human-

articulated and scene motions. This dataset is collected from

the Leeds Sport Dataset (LSP) [43] that contains a human in

the middle region of each image. Using this image as input,

we synthesize a new image with a new human pose and a

newly translated scene-background. The scene translation

is generated randomly while the human pose changes are

obtained from various Youtube sources.

TABLE 3. Detailed settings of the pseudo-blur synthesizer generator module.

The spatial output size is also downsampled and upsampled according to the

stride number.

Layer Detail Output size Stride

Input (S or D) - (H ×W × 3) -

Conv 7× 7 IN+ReLU (H ×W × 64) 1

Conv 3× 3 IN+ReLU (H/2×W/2× 64) 2

Conv 3× 3 IN+ReLU (H/4×W/4× 128) 2

Res_Blocks_1-9 3× 3 IN+ReLU (H/4×W/4× 256) 1

ConvTrans 3× 3 IN+ReLU (H/2×W/2× 128) 2

ConvTrans 3× 3 IN+ReLU (H ×W × 64) 2

Conv 7× 7 Tanh (H ×W × 3) 1

TABLE 4. Architecture details of the global, scene, and body reblurring

discriminators in our framework.

Layer Detail Output size Stride

Input (B or R) - (H ×W × 3) -

Conv 4× 4 IN+LeakyReLU (H/2×W/2× 64) 2

Conv 4× 4 IN+LeakyReLU (H/4×W/4× 128) 2

Conv 4× 4 IN+LeakyReLU (H/8×W/8× 256) 2

Conv 4× 4 IN+LeakyReLU (H/16×W/16× 512) 2

Conv 4× 4 IN+LeakyReLU (H/16×W/16× 512) 1

Conv 4× 4 IN+Sigmoid (H/16×W/16× 1) 1

In detail, from the example of Figure 3, the sharp S image

of a man playing baseball is obtained from the LSP dataset.

We then collect the poses of people playing baseball from

YouTube video using AlphaPose [44], and the pose differ-

ence between each video frame is taken as the change param-

eters (∆). ∆ values are then utilized to transform the original

human pose of the input image S into its new pose printed in

the new image at a specific time-stamp t. This procedure is

done by employing the pose-synthesizer method [45]. Take

note that this work is done for the human part (foreground)

while the scene background is translated randomly. In our ex-

periment, we empirically produce 7 consecutive frames with

slightly different body poses and translated backgrounds, as

shown in Figure 3. These images are then averaged together

to generate a single blurry output. This modified dataset

(LSPBlur) contains 2,000 pairs of sharp and blurry images.

2) Reblurring Module Configuration

Detailed configurations of our reblurrer module are shown

in Table 3 while the reblurrer discriminators are displayed

in Table 4. Note that the body and scene discriminators

receive the input that is masked with the map M that is

extracted using the human prior. The prior extraction is ex-

plained in the next section. Both deblurring (Tables 1-2) and

reblurring (Tables 3-4) modules are processed through the

Instance Normalization (IN). In both generators, we utilize

9 Res_Blocks [41] layers. Each block is constructed by the

pattern of Conv→IN→ReLU→Conv→IN added with initial

input.

3) Optimization of Reblurring Module

Content loss The reblurring module is trained to translate S

or D into its reblurred version R. The real blurry image B

from the dataset is treated as the label. In our experiment,

the one-to-many effect of HIDE dataset may produce a slight

color change between B and R. Therefore, we utilize the

VOLUME 4, 2016 5
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Y channel only in the reblurring loss (Lreb
1 ) after these

parameters are converted from RGB to YUV spaces. The full

representation of Lreb
1 is written as follows:

Lreb

1 =
1

b

b∑

c

‖y(Bc)− y(Rc)‖, (4)

where y(·) represents the Y channel extraction function.

Human and scene prior extraction To fully utilize the

adversarial losses, we firstly elaborate the detail of extracting

the human and scene prior maps that penalize the input

of body reblur and scene reblur discriminators (refer to

Figure 1). The prior is defined as a binary map (M), and its

ultimate goal is to find human-motion blur inside and nearby

human body region in an image of our LSPBlur dataset. In

detail, this map is firstly obtained by finding human body

keypoints from deblurred image D detected using the sophis-

ticated body predictor module of Kanazawa et al. [46]. This

module extracts the human body-joint and shape parameters

from the input image using the statistical body model [47].

Instead of shape, we opt to utilize body-joint parameter

that extracts 14 body keypoints. These keypoints are then

connected with lines to cover the region inside human body.

We denote this map as body-joint map.

To obtain the blurry region nearby human body, we firstly

find the edge difference between D and R using the Sobel

filter. This difference map is max-pool-ed to fill the holes

and then cropped using the most-top, -right, -bottom, and -

left coordinates of the extracted keypoints. We then combine

the difference and body-joint maps to produce single binary

map Mu that fully covers the region inside and nearby

human body. Its reversed versionMv is utilized to cover the

remaining scene region.

Adversarial losses Finally, we determine the discriminator

losses to distinguish the real and fake reblurred data. The

discriminator losses for the real case of the body, scene, and

non-masked (global) images are represented as:

Lreb

Real =
1

3b

b∑

c

ΠGlo(Bc)+Πu(Mu⊙Bc)+Πv(Mv⊙Bc).

(5)

Similarly, we modeled the losses for fake case in the reblur-

ring as follows:

Lreb

Fake =
1

3b

b∑

c

ΠGlo(Rc)+Πu(Mu⊙Rc)+Πv(Mv⊙Rc).

(6)

Finally, we construct them together as generator and discrim-

inator losses through LSGAN [42] approach as:

Lreb

Disc = 0.5× (‖Lreb

Real − 1‖2 + ‖Lreb

Fake‖
2); (7)

Lreb

Gen = Lreb

1 + 0.5× (‖Lreb

Fake − 1‖2). (8)

Note that the LSGAN implementation is only applied up

to this stage. The next meta-learning-based training stages

FIGURE 4. Example of our synthesized blurry results (R) or pseudo-blurred

on the third row using ΩT that are different with the blurry input (B) in the

second row. The first row indicates sharp image input (S).

exclude these discriminator modules as both the reblurring

and deblurring generator modules are learned.

Pseudo-blur data examples The clear visual representation

of our synthesized blur results are demonstrated in Figure 4.

Our reblurred results R in the second rows expose different

blur patterns than the original blurry input B in the third

rows. The scene blur example is shown in the first two

columns from the left. The articulated motion blur that

receives the full human body from the image input is shown

in the last two columns from the right. During training, if

a batch is contained with our dataset (LSPBlur), then the

global, scene, and human reblur discriminators are utilized.

If the HIDE [14] dataset is selected, only the global reblur

discriminator is employed. The dataset selection is done

randomly at each training iteration.

C. META-TRANSFER-LEARNING FOR DEBLURRING

Until the previous step, our method achieves initial deblur-

ring θT and reblurring weights ΩT , as shown in Figure 2. The

next objective is to find an optimized deblurring parameter

that is suitable for the B → D → R → D procedures. To

achieve it, we apply a meta-transfer-learning operation that

seeks to find the initial stable weight θM to be transferred dur-

ing meta-testing. Algorithm 1 explains our approach, where

lines 6–17 illustrate the inner loop implementation. The

weight is gradually updated via Gradient Descent optimizer

with α = 0.01 within each task Ti using Ltr(θ). The meta-

learner updates the final weight in line 18 using the average

of task-test loss (ΣiL
te(θi)) that is optimized using ADAM

with β = 0.0001. The large learning rate of α is empirically

utilized to obtain fast updates on each task. β is determined

with a smaller value to carefully backpropagate through the

average of the task-test loss (line 18). The 2× downsamplings

are applied in lines 8 and 13 aims to simulate a clear blur

difference during augmentation. The B → D → R → D
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Algorithm 1 Meta-Transfer Training

Input: Pairs of blurry B and sharp images S from data

distribution D, reblurring model ΩT , and learning rates α, β

Output: Deblurring model θM

1: Initialize θ with θT
2: Initialize Ω with ΩT

3: Generate task distribution p(T ) from D
4: while not done do

5: Sample task batch T tr
i

and T te
i

from p(T )
6: for i do

7: if T tr
i

then

8: Data augmentation :

(Btr, Str)→ (Btr
∗ , Str

∗ )
9: Apply proposed sequence :

Btr
∗

θ
−→ Dtr

in

Ω
−→ Rtr θ

−→ Dtr
out

10: Evaluate task-training loss :

Ltr(θ) = ||Str
∗ −Dtr

in
||+ ||y(Str

∗ )− y(Dtr
out)||

11: Adapt : θi ← θ − α∇θL
tr(θ)

12: else if T te
i

then

13: Data augmentation :

(Bte, Ste)→ (Bte
∗ , Ste

∗ )
14: Apply proposed sequence :

Bte
∗

θi−→ Dte
in

Ω
−→ Rte θi−→ Dte

out

15: Evaluate task-testing loss :

Lte(θi) = ||S
te
∗ −Dte

in
||+ ||y(Ste

∗ )− y(Dte
out)||

16: end if

17: end for

18: Update θM with respect to average test loss :

θM ← θ − β∇θΣiL
te(θi)

19: end while

20: return meta-transferred θ : θM

Algorithm 2 Meta Testing

Input: Blurry image B, meta-transfer trained model θM ,

number of gradient updates n, and learning rate α

Output: Deblurred image D

1: Initialize Ω with ΩT

2: Initialize θ with θM

3: Initial deblurring : B
θ
−→ D

4: Augmentation : (B,D)→ B∗, D∗

5: Apply sequence : B∗
θ
−→ Din

Ω
−→ R

θ
−→ Dout

6: for n do

7: Evaluate test loss :

L(θ) = ||D∗ −Din||+ ||y(D∗)− y(Dout)||
8: Update : θk ← θ − α∇θL(θ)
9: end for

10: Final deblur using adapted weight : B
θk−→ D

is identified at lines 9 and 14 for training (T tr
i

) and testing

(T te
i

) tasks, respectively. The loss functions are compared

between the deblurring results (Dtr
in
, Dtr

out, D
te
in
, Dte

out) with

the sharp versions (Str
∗ , Ste

∗ ,) from both training and testing

tasks, respectively (Lines 10 and 15 of Algorithm 1).

FIGURE 5. The main scheme of our testing phase. Test-time adaptations

(θM → θk) are applied to perform the internal learning using the proposed

sequence. Final adapted θk is used for producing final deblurred output.

TABLE 5. Ablation study results of our approach. The scores are shown to

display the pseudo-blur synthesizer’s effect in the fine-tuned (-F) and

meta-learned (-M) versions of our deblurring.

Methods Ours-0 Ours-F Ours-M(1) Ours-M(5) Ours-M(10)

SSIM 0.7588 0.8235 0.8470 0.8470 0.8472

PSNR 32.2870 33.1490 33.4614 33.4750 33.4776

Time (s) 0.1446 0.1446 5.5567 27.205 54.266

Complex O(m) O(m) O(mn +m) O(mn +m) O(mn +m)

D. META-TESTING FOR DEBLURRING

The objective of this stage is to perform the testing procedure

using the self-adapted weight. As illustrated in Figure 5, the

meta-testing procedure of Algorithm 2 transfers the weight

of a meta-learned position (θM ) into its new adapted position

(θk). This procedure is done individually in each input data

to induce the self-adaptation capability. Similar to meta-

training, our algorithm applies the proposed sequence (Line

5) after the initial deblurring and augmentation. However, in

this test stage, where no sharp label is available, we opt to

utilize the initial deblurred result D∗ as the supervisor. As

shown in Line 7 (Algorithm 2), the test-loss L(θ) is evalu-

ated using the self-extracted data (D∗, Din, Dout). The self-

adaptation process is performed by gradually updating θ in

the iteration (Line 6-9) using α = 10−2 via Gradient Descent

optimizer similar to the inner-loop scope of Algorithm 1.

After a certain number of iterations (n), the adapted weight

θk is utilized for final deblurring (Line 10).

IV. EXPERIMENT

A. IMPLEMENTATION DETAILS

Our implementations are written using TensorFlow and run

on a Titan RTX GPU. The meta-training procedure is fed

with 128 × 128 patches and processed with a mini-batch

of 8 (T tr = 4 and T te = 4). The loss functions of ‖∗‖
and ‖∗‖

2
in all equations and algorithms denote standard
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TABLE 6. Quantitative comparisons using PSNR and SSIM metrics betweeen deblurring algorithms in HIDE [14] test set. The blue- and red-colored texts represent

the first and second best results.

Methods DebGAN-V1 [9] DebGAN-V2 [10] DHMP [12] HIDE [14] SAPH [13] Ours-F Ours-M(1)

SSIM 0.7424 0.8485 0.8376 0.9310 0.9300 0.8096 0.8319
PSNR 29.17 33.29 33.12 28.89 29.98 32.96 33.24
Complex O(m) O(m) O(m) O(m) O(m) O(m) O(mn+m)

TABLE 7. Quantitative comparisons using PSNR and SSIM metrics betweeen deblurring algorithms in GoPro [8] test set. The blue- and red-colored texts represent

the first and second best results.

Methods DebGAN-V1 [9] DebGAN-V2 [10] DHMP [12] HIDE [14] SAPH [13] RDeb [18] Ours-F Ours-M(1)

SSIM 0.9580 0.9340 0.9453 0.9400 0.9530 0.9424 0.8073 0.8253
PSNR 28.70 29.55 31.20 30.26 32.02 31.10 32.62 32.85
Complex O(m) O(m) O(m) O(m) O(m) O(m) O(m) O(mn+m)

FIGURE 6. Example of deblurring results from our ablation study.

Top-left-to-right: blurry input and Ours-F. Bottom-left-to-right: Ours-M(1) and

Ours-M(10).

absolute and mean-squared errors, respectively. Our whole

training scheme involves 3 particular datasets: (i) GoPro [8]

and HIDE [14] for deblurring and (ii) LSPBlur for the

reblurring module, respectively. Total time required to train

the networks from θ0,Ω0 to θM ,ΩT (from initial deblurring

training stage up to meta-transfer deblurring training stage

refer to Figure 2) is 3 days.

For clarity, we re-explain the parameter details in the

following. In initial deblurring training (θ0,Ω0 → θT ,Ω0),

ADAM with the learning rate of 10−4 that is utilized. Same

setting with the learning rate of 10−4 is also applied for the

reblurring training (θT ,Ω0 → θT ,ΩT ). In the meta-transfer

training scheme for deblurring (θT ,ΩT → θM ,ΩT ), the

learning rate of α = 10−2 with Gradient Descent optimizer is

utilized in the inner-loop scope, while β = 10−4 and ADAM

optimizer are determined in the outer-loop, respectively. Fi-

nally, during meta-testing, the self-adaptation of Algorithm 2

utilized α = 10−2 learned via gradient-descent optimizer.

B. ABLATION STUDY

In this work, the key factor that determines the meta-learning

performance is the reblurring module. As the main contribu-

tion of this paper is the addition of the reblurring task via

pseudo-blur synthesizer module, we provide ablation studies

regarding its effect in various conditions, namely:

• Ours-0 ⊲ No-reblurrer influence in training and testing

stages (training/testing: B → D).

• Ours-F ⊲ Reblurrer utilization only in training stage

(training: B → D → R → D ; testing: B → D).

• Ours-M ⊲ Full utilization of reblurrer in training and

testing stages (training/testing: B → D → R → D).

Ours-F utilizes a naive-learning strategy, where trained re-

blurrer ΩT is utilized to further fine-tunes θT (along with

global deblur discriminator) by providing the additional aug-

mented blurred data R during training. We demonstrate this

ablation study on a recent HIDE dataset [14] as it focuses

on human and scene motion deblurring cases. We utilize

the long-shot test-cases of [14] where the scores of each

condition is shown in Table 5. Number of adaptation n

(scripted in Line 6 of Algorithm 2) is placed next to each

Ours-M method. In our results, increasing the number of

adaptations (n) improves the performance and indicates that

Ours-M setting succeeds in performing self-adaptation using

the meta-transferred weight. The proposed work that utilizes

self-adaptation, Ours-M, performs superior compared to the

naive fine-tuned (Ours-F) and the classic versions (Ours-0)

where the qualitative evidences are shown in Figure 6.

Moreover, to clearly display the performance, we also

included the time and complexity scores as shown in Table 5.

The complexity formula is defined by big O(.) notation

with the parameters of m, which denotes the number of

tested data, and n, the number of adaptations. Without any

self-adaptation (Ours-0 and Ours-F), the execution is only

affected by number of data (m). Each test data (m = 1)

requires the computational footprint of 0.1446 seconds in

a TITAN RTX GPU for processing a 1280 × 720 image.

On the case of Ours-M, the computational time required

in performing single-adaptation (Ours-M(1) or n = 1) is

5.4121 seconds. Thus, the total time required for performing

the adaptations and final meta-testing (O(mn + m)) of

Algorithm 2 is 5.5567 seconds. As the quantitative scores of

Ours-M(1), (5), and (10) are marginal (shown in Table 5), we

utilize n = 1 in the further experiment to avoid large time-

consumption. In the next discussions, we elaborate our exper-

iment using the common benchmark dataset (train-available

dataset) and recent real-world motion-blurred dataset.
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FIGURE 7. Qualitative results of recent deblurring algorithms compared to our approaches using HIDE [14] test set.

FIGURE 8. Qualitative results of recent deblurring algorithms compared to our approaches using GoPro [8] test set.

C. TEST USING TRAIN-AVAILABLE DATASET

In this stage, we demonstrate the performance of our ap-

proach along with other state-of-the-art deblurring meth-

ods of DebGAN-V1 [9], DebGAN-V2 [10], DHMP [12],

HIDE [14], SAPH [13], and RDeb [18]. We utilize the test

set of recent blurry human (HIDE) [14], and general (Go-

Pro) [8] dataset for measuring the quantitative performance.

The quantitative scores of this experiment are reflected in

Table 6 for the HIDE case and Table 7 for the GoPro case.

Blue and red colors annotate the top 1 and 2 achievers. The

qualitative results are visualized in Figures 7 and 8 for HIDE

and GoPro cases, respectively.

In the quantitative measurement, we include: Ours-F and

Ours-M(1), as both approaches have the assistance of the

blurry synthesizer. In the HIDE test case, as seen in Table 6,

Ours-M achieves a high PSNR result compared with the

recent algorithms. The score of Ours-M is faithful enough

as it achieves similar PSNR compared with the recent deep

architecture method [12]. Our high quantitative scores on

the HIDE case are supported by the results in Figure 7.

From the observation on the electronic screen, our qualita-

tive results in Figure 7 are close to DebGAN-V2 [10] in a

positive manner. DebGAN-V2 [10] provides clear restored

edge output; however, it suffers from an artifact that is seen

in the homogeneous region (e.g., face in Figure 7). Since

DebGAN-V2 [10] is optimized via dual discriminators, we

believe this artifact is a product of the synthesizing procedure

rather than the restoration. Our method that is also coupled

with multiple discriminators also produces a similar issue;

yet, it still preserves realistic output in these regions. This

benefit is obtained as our method initially learns the internal

features of the input image during the test stage (Line 8 of

Algorithm 2).

In the GoPro [8] case, we show that Ours-M achieves the
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FIGURE 9. Qualitative results of recent deblurring algorithms compared to our approach using in-the-wild blurry data from RWBI [18].

best performance in terms of PSNR score (Table 7). Although

both datasets contain humans, the GoPro [8] dataset is closely

related to the scene and human-articulated motion blur sce-

nario. This characteristic is obtained because the blur in the

GoPro dataset is extracted from the sequential video frames

that automatically capture the natural scene and human mo-

tion blurs. As shown in Figure 8, all deblurring results in the

GoPro case are visually similar. While the proposed work is

robust in restoring the blurry input, our deblurring approach

came with two limitations, namely: realistic but unreliable

structures and longer execution times.

In the first case, our deblurring module is prone to extract

structures that are unmatched to the ground truth sharp im-

age, which cost the SSIM scores to be low in all quanti-

tative measurements (Tables 5-7). We believe this anomaly

is caused by the GAN method that basically synthesizes the

deblurring output rather than restoring it. Our GAN-based

approach is crafted with multiple, precisely 4, discriminators

that contribute fully to each initial deblurring and reblurring

training. Nonetheless, our deblurring approach still produces

realistic results with consistent color formation, as expressed

by the competitive yet high PSNR scores. As argued in the

previous discussion, this achievement is obtained through the

internal learning procedure, which includes the pseudo-blur

synthesizer role through the reblurring.

In the second case, our method requires longer runtime

as it is designed to perform test-time improvements through

several n adaptations (our complexity is O(mn +m) as de-
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scribed in the ablation study subsection). The other methods

have their own unique architectures that are designed to solve

dynamic scenes. Our deblurring generator module, on the

other hand, is designed equally to DebGAN-V1 [9] which

guarantees that our major contributions are located on the

reblurrer and the algorithms themselves. Other methods that

only rely on single-forward pass surely surpass our runtime

since their execution is only affected by the number of test-

data m. By utilizing single batch in test-time, the iterations

of other methods only reach the complexity of O(m) in

Tables 6-7. However, we believe our case with n = 1
iteration (Ours-M(1)) is still tolerable as our ultimate goal

is to invoke the self-adaptive capability of the deblurring

module in solving unknown data.

As seen in Tables 6-7, the recent deblurring methods are

already adjusted to this scenario as HIDE [14] and GoPro [8]

test sets are extracted in a similar way to their training sets.

Certainly, the compared state-of-the-art works are able to

solve them with marginal scores. The recent deblurring meth-

ods crafted with sophisticated deep-learning functions are

already robust to these benchmarks. To fully witness the self-

adaptive capability of our approach, other unknown test cases

not relevant to the training set (GoPro [8] and HIDE [14]) are

demanded. In the next experiment, we perform an in-the-wild

deblurring test using Ours-M(1) to tackle this issue.

D. TEST USING IN-THE-WILD DATASET

Our method’s superiority is reflected in the scenario of real-

world (in-the-wild) blurry data restoration. To demonstrate

it, we utilize the recent Real-World Blurry Images (RWBI)

dataset released by Zhang et al. [18], where no training nor

sharp ground truth data are available. This dataset is captured

using various devices, namely: iPhone XS, Samsung S9 Plus,

Huawei P30 Pro, and GoPro Hero 5 Black. The previous

deep-learning-based deblurring methods mostly rely on the

provided training set. This practice seems limited as the real-

world blurry case can differ in terms of motion blur patterns

or scales or color distribution.

As shown in Figure 9, other deblurring methods suffer

from several issues. To be precise, the method of DebGAN-

V1 [9] fails to preserve consistent color information where

the deblurred version tends to be brighter than its blurry

input. Large-scale blur pattern cases are also not solved using

this method. Its improved version, DebGAN-V2 [10], solves

the consistency but still lacks to restore large motion blur

pattern. Another recent work by DHMP [12] seems to suffer

in restoring regions with strong and weak edges. This issue

is shown by large and small blur patterns that are failed to be

restored by the recent methods.

This phenomenon shows that Ours-M is more reliable

and adaptive than other methods [9], [10], [12] that still

utilize traditional way (B → D). As shown in Figure 9,

our approach is able to restore various cases, including text,

human, and other object’s motion, with consistent results. By

this exploration, we believe that the proposed sequence can

be utilized in any deblurring scenario, although the training

data is limited. More convincing results are provided in our

supplementary video. Readers are encouraged to check all

results on an electronic screen.

V. CONCLUSION

In this work, we present an unorthodox approach of deblur-

ring under B → D → R → D strategy, which includes in-

the-fly reblurring operation during training and testing stages.

To achieve it, we supply our network with a pseudo-blur

synthesizer module. The synthesizer acts as a blurry data

augmenter, which helps improve the deblurring network’s

performance. To form a reliable blurry synthesizer, we opt to

utilize hand-crafted prior extracted from the human statistical

model. Its objective is to let the network learns to produce

human-articulated and scene motion blurs simultaneously.

This is achieved in the image spatial domain where blurry

regions of scene and human are distinguished by the prior.

Finally, we show that by employing the blur synthe-

sizer, the deblurring module learns new blur information,

which subsequently improves the performance. This benefit

is clearly shown in our experiments, especially in restoring

the real-world blurry data. We believe this finding is gainful

in deblurring studies where only limited training data is

available. Furthermore, our method emboldens future works

to shift from traditional way (B → D) to the more-adaptive

proposed sequence (B → D → R → D) for deblurring. We

leave the study of the best network architecture that fits our

sequence as part of future contributions.
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