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Abstract

We conduct large-scale studies on ‘human at-

tention’ in Visual Question Answering (VQA)

to understand where humans choose to look

to answer questions about images. We de-

sign and test multiple game-inspired novel

attention-annotation interfaces that require the

subject to sharpen regions of a blurred im-

age to answer a question. Thus, we in-

troduce the VQA-HAT (Human ATtention)

dataset. We evaluate attention maps generated

by state-of-the-art VQA models against hu-

man attention both qualitatively (via visualiza-

tions) and quantitatively (via rank-order cor-

relation). Overall, our experiments show that

current VQA attention models do not seem to

be looking at the same regions as humans.

1 Introduction

It helps to pay attention. Humans have the ability

to quickly perceive a scene by selectively attending

to parts of the image instead of processing the whole

scene in its entirety (Rensink, 2000). Inspired by hu-

man attention, a recent trend in computer vision and

deep learning is to build computational models of at-

tention. Given an input signal, these models learn

to attend to parts of it for further processing and

have been successfully applied in machine transla-

tion (Bahdanau et al., 2015; Firat et al., 2016), ob-

ject recognition (Ba et al., 2015; Mnih et al., 2014;

Sermanet et al., 2014), image captioning (Xu et al.,

2015; Cho et al., 2015) and visual question answer-

ing (Yang et al., 2016; Lu et al., 2016; Xu and

Saenko, 2015; Xiong et al., 2016).

In this work, we study attention for the task of Vi-

sual Question Answering (VQA). Unlike image cap-

tioning, where a coarse understanding of an image
∗Denotes equal contribution.

Figure 1: Different human attention regions based

on question. (best viewed in color)

is often sufficient for producing generic descriptions

(Devlin et al., 2015), visual questions selectively tar-

get different areas of an image including background

details and underlying context. This suggests that a

VQA model may benefit from an explicit or implicit

attention mechanism to answer a question correctly.

In this work, we are interested in the following ques-

tions: 1) Which image regions do humans choose to

look at in order to answer questions about images?

2) Do deep VQA models with attention mechanisms

attend to the same regions as humans?

We design and conduct studies to collect “human

attention maps”. Figure 1 shows human attention

maps on the same image for two different ques-

tions. When asked ‘What type is the surface?’, hu-

mans choose to look at the floor, while attention

for ‘Which game is being played?’ is concentrated

around the player and racket.

These human attention maps can be used both for

evaluating machine-generated attention maps and

for explicitly training attention-based models.
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(a) (b) (c)

Figure 2: (a-c): Column 1 shows deblurred image, and column 2 shows human attention map.

Contributions. First, we design game-inspired

novel interfaces for collecting human attention maps

of where humans choose to look to answer ques-

tions from the large-scale VQA dataset (Antol et al.,

2015); this VQA-HAT (Human ATtention) dataset

is publicly available at our project webpage1 Sec-

ond, we perform qualitative and quantitative com-

parison of the maps generated by state-of-the-art

attention-based VQA models (Yang et al., 2016; Lu

et al., 2016) and a task-independent saliency base-

line (Judd et al., 2009) against our human atten-

tion maps through visualizations and rank-order cor-

relation. We find that machine-generated attention

maps from the most accurate VQA model have a

mean rank-correlation of 0.26 with human atten-

tion maps, which is worse than task-independent

saliency maps that have a mean rank-correlation of

0.49. It is well understood that task-independent

saliency maps have a ‘center bias’ (Tatler, 2007;

Judd et al., 2009). After we control for this center

bias, we find that the correlation of task-independent

saliency is poor (as expected), while trends for

machine-generated VQA-attention maps remain the

same, which confirms our key finding that current

VQA attention models do not seem to be looking at

the same regions as humans.

2 Related Work

Our work draws on recent work in attention-based

VQA and human studies in saliency prediction.

We work with the free-form and open-ended VQA

dataset released by (Antol et al., 2015).

VQA Models. Attention-based models for VQA

typically use convolutional neural networks to high-

1http://computing.ece.vt.edu/˜abhshkdz/

vqa-hat

light relevant regions of image given a question.

Stacked Attention Networks (SAN) proposed in

(Yang et al., 2016) use LSTM encodings of ques-

tion words to produce a spatial attention distribution

over the convolutional layer features of the image.

Hierarchical Co-Attention Network (Lu et al., 2016)

generates multiple levels of image attention based

on words, phrases and complete questions, and is

the top entry on the VQA Challenge2 as of the time

of this submission. Another interesting approach

uses question parsing to compose the neural network

from modules, attention being one of the sub-tasks

addressed by these modules (Andreas et al., 2016).

Note that all these works are unsupervised attention

models, where “attention” is simply an intermedi-

ate variable (a spatial distribution) that is produced

by the model to optimize downstream loss (VQA

cross-entropy). The fact that some (it’s unclear how

many) of these spatial distributions end up being

interpretable is simply fortuitous. In contrast, we

study where humans choose to look to answer vi-

sual questions. These human attention maps can be

used to evaluate unsupervised maps.

Human Studies. There’s a rich history of work in

collecting eye tracking data from human subjects

to gain an understanding of image saliency and vi-

sual perception (Jiang et al., 2014; Judd et al., 2009;

Fei-Fei et al., 2007; Yarbus, 1967). Eye tracking

data to study natural visual exploration (Jiang et

al., 2014; Judd et al., 2009) is useful but difficult

and expensive to collect on a large scale. (Jiang et

al., 2015) established mouse tracking as an accu-

rate alternative to eye tracking for collecting atten-

tion maps. They collected large-scale attention an-

notations for MS COCO (Lin et al., 2014) on Ama-

2http://visualqa.org/challenge.html
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zon Mechanical Turk (AMT). While (Jiang et al.,

2015) studies natural exploration and collects task-

independent human annotations by asking subjects

to freely move the mouse cursor to anywhere they

wanted to look on a blurred image, our approach is

task-driven. (Jia Deng and Jonathan Krause and Li

Fei-Fei, 2013; Deng et al., 2015) leverage crowd-

sourcing to help computers select discriminative fea-

tures for fine-grained recognition. They introduce a

novel gamified setting where the humans can reveal

regions with certain penalty which ensures discrim-

inative regions with assured quality. Related to this

is the work of (von Ahn and Dabbish, 2004) who ex-

plore gamification to locate objects in an image. To

the best of our knowledge, this is the first work to

collect human attention maps for VQA.

Specifically, as described in Section 3, we collect

ground truth attention annotations by instructing

subjects to sharpen parts of a blurred image that are

important for answering the questions accurately.

Section 4 covers evaluation of unsupervised atten-

tion maps generated by VQA models against our hu-

man attention maps.

3 VQA-HAT (Human ATtention) Dataset

We design and test multiple game-inspired novel in-

terfaces for conducting large-scale human studies on

AMT. Our basic interface design consists of a “de-

blurring” exercise for answering visual questions.

Specifically, we present subjects with a blurred im-

age and a question about the image, and ask subjects

to sharpen regions of the image that will help them

answer the question correctly, in a smooth, click-

and-drag, ‘coloring’ motion with the mouse. The

sharpening is gradual: successively scrubbing the

same region progressively sharpens it.

We experiment with multiple variants of the data

collection interface. Analysis of the interfaces as

well as details of the human evaluation studies con-

ducted to converge on the final interface used for re-

sults in this main document have been included in

the supplement. The human evaluation studies con-

sisted of showing these attention-sharpened images

to humans and asking them to answer the question.

Based on these human studies, we pick the “Blurred

Image with Answer” interface, where subjects were

shown the correct answer in addition to the ques-

tion and blurred image, and asked to deblur as few

regions as possible such that someone can answer

the question just by looking at the sharpened re-

gions. Since the payment structure on AMT encour-

age completing tasks as quickly as possible, this im-

plicitly incentivizes subjects to deblur as few regions

as possible. Our followup human studies on these

collected maps show that other subjects are able to

answer questions based on these collected maps (de-

tails in supplement). Thus, overall we achieve a bal-

ance between highlighting too little or too much.

Note that the “Blurred Image with Answer” inter-

face used to collect attention maps is a verification

task as opposed to actual question answering. We

show subjects an answer and ask them to sharpen

regions that will help them answer the question cor-

rectly, as opposed to showing them just the ques-

tion and asking them for the answer as well as rel-

evant sharpened regions in the image (“Blurred Im-

age without Answer” interface). Attention maps col-

lected via this verification task “Blurred Image with

Answer” are more informative (in terms of human

VQA accuracy) than those collected for “Blurred

Image without Answer” – 78.7% vs. 75.2%.

We collected human attention maps for 58475 train

(out of 248349 total) and 1374 val (out of 121512

total) question-image pairs from the VQA dataset.

This dataset is publicly available1. Overall, we con-

ducted approximately 20000 Human Intelligence

Tasks (HITs) on AMT, among 800 unique workers.

Figure 2 shows examples of collected human atten-

tion maps.

Figure 3

To visualize the collected dataset, we cluster the hu-

man attention maps and visualize the average atten-

tion map and example questions falling in each of

them for 6 selected clusters in Figure 3.

934



4 Human Attention Maps vs Unsupervised

Attention Models

Now that we have collected these human attention

maps, we can ask the following question – do unsu-

pervised attention models learn to predict attention

maps that are similar to human attention maps? To

rephrase, do neural networks look at the same re-

gions as humans to answer a visual question?

VQA Attention Models. We evaluate maps gener-

ated by the following unsupervised models:

• Stacked Attention Network (SAN) (Yang et al.,

2016) with two attention layers (SAN-2)3.

• Hierarchical Co-Attention Network

(HieCoAtt) (Lu et al., 2016) with word-level

(HieCoAtt-W), phrase-level (HieCoAtt-P) and

question-level (HieCoAtt-Q) attention maps;

we evaluate all three maps4.

Comparison Metric: Rank Correlation. We first

scale both the machine-generated and human atten-

tion maps to 14x14, rank the pixels according to

their spatial attention and then compute correlation

between these two ranked lists. We choose an order-

based metric so as to make the evaluation invariant

to absolute spatial probability values which can be

made peaky or diffuse by tweaking a ‘temperature’

parameter.

Table 1 shows rank-order correlation averaged over

all image-question pairs on the validation set. We

compare with random attention maps and task-

independent saliency maps generated by a model

trained to predict human eye fixation locations

where subjects are asked to freely view an image

for 3 seconds (Judd et al., 2009). Both SAN-2

and HieCoAtt attention maps are positively corre-

lated with human attention maps, but not as strongly

as task-independent Judd saliency maps. Our find-

ings lead to two take-away messages with signifi-

cant potential impact on future research in this ac-

tive field. First, current VQA attention models do

not seem to be ‘looking’ at the same regions as hu-

mans to produce an answer. Second, as attention-

based VQA models become more accurate (58.9%

SAN → 62.1% HieCoAtt), they seem to be (slightly)

better correlated with humans in terms of where they

3https://github.com/zcyang/imageqa-san
4https://github.com/jiasenlu/

HieCoAttenVQA

Model Rank-correlation

SAN-2 (Yang et al., 2016) 0.249 ± 0.004

HieCoAtt-W (Lu et al., 2016) 0.246 ± 0.004

HieCoAtt-P (Lu et al., 2016) 0.256 ± 0.004

HieCoAtt-Q (Lu et al., 2016) 0.264 ± 0.004

Random 0.000 ± 0.001

Judd et al. (Judd et al., 2009) 0.497 ± 0.004

Human 0.623 ± 0.003

Table 1: Mean rank-correlation coefficients (higher

is better); error bars show standard error of means.

We can see that both SAN-2 and HieCoAtt attention

maps are positively correlated with human attention

maps, but not as strongly as task-independent Judd

saliency maps.

Model Rank-correlation

SAN-2 (Yang et al., 2016) 0.038 ± 0.011

HieCoAtt-W (Lu et al., 2016) 0.062 ± 0.012

HieCoAtt-P (Lu et al., 2016) 0.048 ± 0.010

HieCoAtt-Q (Lu et al., 2016) 0.114 ± 0.012

Judd et al. (Judd et al., 2009) -0.063 ± 0.009

Table 2: Correlation on the reduced set without cen-

ter bias goes down significantly for Judd saliency

since they have a strong center bias. Relative trends

among SAN-2 & HieCoAtt are similar to those over

the whole validation set (reported in Table 1).

look. Our dataset will allow for a more thorough val-

idation of this observation as future attention-based

VQA models are proposed. Figure 4 shows ex-

amples of human and machine-generated attention

maps with their rank-correlation coefficients.

To put these numbers in perspective, we computed

inter-human agreement on the validation set by col-

lecting 3 human attention maps per image-question

pair and computing mean rank-correlation, which

is 0.623. Lastly, all reported correlations are aver-

aged over 3 trials by adding random noise (order of

10−14) to human attention maps to account for rank-

ing variations in case of uniformly weighted regions.

Center Bias. Judd saliency maps aim to predict hu-

man eye fixations during natural visual exploration.

These tend to have a strong center bias (Tatler, 2007;

Judd et al., 2009). Although our human attention

maps dataset is not an eye tracking study, the cen-
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Figure 4: Random example of human attention (column 2) v/s machine-generated attention (columns 3-5)

ter bias still exists albeit not as severely as in eye-

tracking. A potential source of center bias is the fact

that the VQA dataset was human-generated by sub-

jects looking at images. Thus, salient objects in the

center of the image are likely to be potential subjects

of questions. We compute rank-correlation of a syn-

thetically generated central attention map with Judd

saliency and human attention maps. Judd saliency

maps have a mean rank-correlation of 0.877 and hu-

man attention maps have a mean rank-correlation of

0.458 on the validation set.

To eliminate the effect of center bias in this evalua-

tion, we removed human attention maps that have

positive rank-correlation with the center attention

map. We compute rank-correlation of machine-

generated attention with human attention on this re-

duced set. See Table 2. Mean correlation goes down

significantly for Judd saliency maps since they have

a strong center bias. Relative trends among SAN-2

& HieCoAtt are similar to those over the whole val-

idation set (reported in Table 1). HieCoAtt-Q now

has higher correlation with human attention maps

than Judd saliency. Thus discounting the center bias,

VQA-specific machine attention maps correlate bet-

ter with VQA-specific human attention maps than

task-independent machine saliency maps.

5 Conclusion & Discussion

We introduce and release the VQA-HAT dataset1.

This dataset can be used to evaluate attention

maps generated in an unsupervised manner by

attention-based VQA models, or to explicitly train

models with attention supervision for VQA. We

quantify whether current attention-based VQA

models are ‘looking’ at the same regions of the

image as humans do to produce an answer.

Necessary vs Sufficient Maps. Are human atten-

tion maps ‘necessary’ and/or ‘sufficient’? If regions

highlighted by the human attention maps are suffi-

cient to answer the question accurately, then so is

any region that is a superset. For example, if atten-

tion mass is concentrated on a ‘cat’ for ‘What animal

is present in the picture?’, then an attention map that

assigns weights to any arbitrary-sized region that in-

cludes the ‘cat’ is sufficient as well. On the contrary,

a necessary and sufficient attention map would be

the smallest visual region sufficient for answering

the question accurately. It is an ill-posed problem to

define a necessary attention map in the space of pix-

els; random pixels can be blacked out and chances

are that humans would still be able to answer the

question given the resulting subset attention map.

Our work thus poses an interesting question for fu-

ture work – what is the right semantic space in which

it is meaningful to talk about necessary and suffi-

cient attention maps for humans?
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