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Human-Aware Robotic Assistant for Collaborative

Assembly: Integrating Human Motion Prediction

with Planning in Time

Vaibhav V. Unhelkar*,1, Przemyslaw A. Lasota*,1, Quirin Tyroller2,3,

Rares-Darius Buhai1, Laurie Marceau3, Barbara Deml2 and Julie A. Shah1

Abstract—Introducing mobile robots into the collaborative
assembly process poses unique challenges for ensuring efficient
and safe human-robot interaction. Current human-robot work
cells require the robot to cease operating completely whenever a
human enters a shared region of the given cell, and the robots
do not explicitly model or adapt to the behavior of the human.
In this work, we present a human-aware robotic system with
single-axis mobility that incorporates both predictions of human
motion and planning in time to execute efficient and safe motions
during automotive final assembly. We evaluate our system in
simulation against three alternative methods, including a baseline
approach emulating the behavior of standard safety systems in
factories today. We also assess the system within a factory test
environment. Through both live demonstration and results from
simulated experiments, we show that our approach produces
statistically significant improvements in quantitative measures of
safety and fluency of interaction.

Index Terms—Physical Human-Robot Interaction, Collabora-
tive Robots, Assembly

I. INTRODUCTION

ROBOTS that work in proximity to or collaboratively

with people have been a primary focus for robotics

and automation in recent years [1]. Indeed, several robots

that can safely operate alongside human collaborators have

been recently developed and fielded for assembly applications

[2]. However, despite this promising trend, the majority of

collaborative robots within the manufacturing domain have

a small operating region (e.g., the operating range for the

UR10 is 1300 mm) and remain stationary. These limitations

adversely impact the overall equipment effectiveness [3].

Mobile robots have a larger operating region than stationary

robots, allowing for higher effectiveness and greater flexibility

in the design of manufacturing processes. Here, we focus on
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Fig. 1: The human-aware robotic system delivering parts to

a human associate during an engine assembly task, while

another human performing an unrelated task intercepts its path

between the depot and the workstation.

the application of collaborative robots for delivering parts to

human associates during automotive engine assembly. Such a

system would need to fetch parts from depots and efficiently

deliver them to humans at their workstations, while ensuring

safe interactions (see ISO 10218/2 [4]).

We utilize a human-safe robot arm mounted on a linear

axis unit; both the arm and unit are certified for and used

in industrial applications. Prior work indicates the theoret-

ical potential for a human-aware motion planner to yield

improvements to both the safety and efficiency of human-

robot interaction (HRI) [5]. This paper reports on CobotSAM,

a human-aware robotic system that realizes this benefit. The

system employs human motion prediction in conjunction with

a complete, time-optimal path planner to execute motions

in the shared environment (Fig. 1). The integrated system

was successfully fielded in a BMW test environment that

involved live interactions with human associates. The system

was evaluated against three alternative methods, including a

baseline approach that emulates the behavior of standard robot

safety systems utilized in factories today. Through results from

both live demonstrations and simulated experiments, we show

that our integrated prediction and planning approach results in

fewer safety-related stops, shorter task completion times, and

improved measures of fluency of interaction.

For human motion prediction, collaboration with a mobile

robot in the manufacturing domain requires accurate predic-

tions over both short and long time horizons. For example,

the robot must know where a person will be in the short term
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in order to maintain effective collision avoidance, but also

must know the human’s long-term predicted path in order to

plan efficient motion toward its own goal. To accommodate

this requirement, we employ the Multiple-Predictor System

(MPS) [6], a data-driven approach that synthesizes a high-

performance predictor using a library of component prediction

methods, each with a unique performance profile that varies

as a function of look-ahead time. The MPS enables automatic

selection of the most accurate prediction approaches over both

short and long time horizons.

The robot also requires a method for adapting its own

behavior based on the knowledge of human behavior provided

by the MPS – specifically, a planner that can leverage these

predictions to generate motion for CobotSAM’s linear axis

unit. For example, if the robot receives predictions indicating

that a human will cross in front of it, the robot can plan

to either yield the way to the human or continue moving

depending upon when the cross is predicted to occur. However,

the system has limited freedom to perform such adaptations

due to its single-axis mobility. This necessitates an approach

that can generate plans quickly while reasoning about time

and predictions. Schedule considerations drive the production

environment and it is also crucial that the online planning

system incorporates an explicit representation of time (i.e.

performs planning in time). Thus, we use the Safe-Interval

Path Planner (SIPP), a time-optimal search algorithm for

planning in time, to plan robot trajectories [7].

SIPP generates plans under the assumption that the available

predictions are fixed and accurate; however, in practice, pre-

dictions evolve as available information changes during task

execution. The physical position of the robot will also change

during the time-critical planning process. Hence, along with

SIPP, we incorporate an algorithm to interleave prediction and

planning with the execution of robot motion.

The key contributions of this paper are:

1) The first robot system to employ complete, time-optimal

path planning in time in conjunction with a multiple

predictor system for human motion. The integrated system

interleaves prediction, planning, and execution to produce

anticipatory robot behaviors that are derived automatically

as the robot interacts with a live human.

2) The first physical demonstration of such a prediction,

planning, and execution system using an arm and linear

axis unit, both certified for and used in industrial settings.

3) Evaluation in simulation to assess improvements to safety

and efficiency, compared to state-of-the art approaches

applicable to factory environments. Results demonstrated

reductions in safety-related stops, decreases in task times,

and improvements in measures of fluency of interaction.

The application considered in this paper involves navigation

along a linear axis within a factory environment; however,

the algorithms provided herein are also applicable to general

human-robot co-navigation.

II. TASK DESCRIPTION

During the final assembly of automotive engines, human

workers must move within their environment to fetch the
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Fig. 2: Schematic of a prototypical factory environment for

deploying our robotic system. The collaborative robot moves

along the linear axis unit to assist humans at their workstations.

The robot’s operating region (orange) is shared with human

workers. The set of potential human motions is represented by

green dotted lines.

parts required for the assembly process. The use of mobile

collaborative robots to perform this task offers an alternative

that allows human workers to focus on the dexterous, value-

added work of engine assembly, yielding significant time and

cost savings [8]. Mobility achieved through translation on

a linear axis [9] provides a near term opportunity for new

forms of human-robot collaboration using existing hardware

and control solutions, which come with safety guarantees that

make them readily suitable for a production environment.

Delivery of assembly parts: Figure 2 presents a schematic

of a prototypical factory environment in which the robot

is deployed. The primary task of the system is to transit

between workstations and part depots to deliver parts to

human associates. These humans remain at their workstations

throughout the task and use the parts delivered by the robot

to assemble the engine. As engine assembly is a repetitive

task, the parts and the order in which they are to be delivered

remains fixed – i.e., the robot’s task plan (or, equivalently, the

sequence of goal locations) is pre-specified.

Sharing environment with humans: The set of possible hu-

man motions within the human-robot shared region is depicted

in Fig. 2. The humans moving within this region differ from

those at the workstations, and include workers responsible for

stocking part depots and cleaning. While the sequence of robot

goal locations is predetermined, it requires algorithms to plan

and execute its trajectory to each goal. Humans within the

shared environment may exhibit arbitrary motions (from the

known set of possible motions) at any time during the robot’s

operation. Thus, we provide a system that employs algorithms

for human motion prediction and trajectory planning in time

for CobotSAM’s base to achieve safe and efficient execution

of the part delivery task.

III. RELATED WORK

A. Collaborative Robots in Automotive Manufacturing

In recent years, multiple robotic systems have been re-

searched and developed for operation among humans in au-



UNHELKAR et al.: HUMAN-AWARE ROBOTIC ASSISTANT FOR COLLABORATIVE ASSEMBLY 3

tomotive final assembly [10], [11]. These include stationary

robots designed to provide ergonomic benefits to human

associates during assembly tasks, such as cockpit installation

[12], rear axle assembly [13], or door sealant application

[2]. A few robots with varied degree of mobility have also

been researched and developed [14]–[17], including “Robot

Workmate” a system with single-axis mobility for inspection

tasks [18]. Similarly, our system achieves the desired degree

of mobility using a linear axis unit. However, in contrast to

existing mobile collaborative robots, ours incorporates human

motion prediction and path planning in time, enabling safe and

anticipatory behavior within a shared environment.

B. Human Motion Prediction

Tasks executed within the manufacturing context have an

inherent structure, with people moving between key locations

within their environment to achieve specific goals. One com-

mon approach to predicting human motion in such structured

environments centers around inferring the actions or goals of

humans in order to predict their future motion. This body of

work can be split into two main groups, based on the length

of the prediction time horizon.

The first subset focuses on prediction over short time hori-

zons, often in the context of reaching motions. For instance,

researchers have developed techniques utilizing inverse opti-

mal control [19] and Bayesian classification [20] to generate

motion predictors using labeled data of arm motion. To avoid

the need for manually labeled motions, Luo et al. presented

an unsupervised approach to predicting reaching motions using

Gaussian mixture models of the palm and arm [21]. Besides

considering only the human motion, other works also reason

about environmental constraints and object affordances to

predict human motion [22].

The second subset of work related to goal-based human

motion prediction deals with predictions over longer time

horizons, and is typically focused on ambulatory motion (e.g.,

[23]). One such approach leverages the assumption that people

move in an efficient manner while navigating an environment

in order to model human motions using maximum entropy

inverse optimal control [24]. Environmental constraints and

biases can also be leveraged to predict walking motion, as

shown in work by Karasev et al. [25]. Finally, recent work by

Chen et al. improved the prediction of pedestrian motion by

addressing issues arising from the modeling of human motions

with Gaussian process regression by developing a framework

called the Dirichlet process active region [26].

In the context of HRI within the manufacturing domain,

there is a need for accurate motion predictions over both short

and long time horizons. While the above methods work well

in their respective domains, they are not necessarily suitable

for prediction across the entire time horizon spectrum. Results

from prior work indicate that utilizing a set of complimentary

prediction approaches for different time horizons results in

improved prediction accuracy [6].

C. Path Planning between Humans

For collaborative robots, the need for human-aware task and

motion planning has become evident [27]. Sisbot et al. pro-

vided one of the first human-aware motion planners for robot

navigation by explicitly accounting for human preferences

[28]; however, their planner does not utilize any predictive

information regarding humans. Recently, several factors have

been incorporated for human-aware planning, including gaze

[29], legibility [30], and proxemics [31], [32].

Predictions of human motion have also been previously used

for robot planning. Ziebart et al. shaped a robot’s navigation

cost according to predictions in order to mitigate potential

collision points, and used time-independent path planners to

compute collision-free paths [24]. In contrast, we explore

planners that utilize explicit representation of time.

While our robotic system is not expected to operate in

crowded regions, techniques of note for navigation within

crowds have been developed [33], [34]. By leveraging the

cooperative effect of robot motion on human motion, Trautman

et al. avoid highly conservative robot behavior caused due to

prediction uncertainty in dense environments [35].

Timing is a critical component for HRI [36], [37], and is of

particular importance for planning and executing the motion

of our system, due to its single-axis mobility. However, the

computational burden of path planning with explicit modeling

of time becomes prohibitively large [24] – even more so for

long time horizons encountered while planning paths in factory

environments. Recently, two approaches for efficient path

planning with explicit modeling of time have been explored.

In their work, Khambhaita et al. first generated the global plan

of the robot’s motion without considering human motion, and

then modified the execution of this path using timed elastic

bands [38]. However, this approach does not provide any

guarantees with regard to path optimality.

An alternate approach that does provide such guarantees

is to pose planning in time as a graph search problem

[39]. In their work, Phillips et al. [7] provided SIPP, a

computationally attractive approach for this problem while

maintaining the optimality of the resulting plan. Evaluation of

SIPP assumed perfect prediction of the environment, and thus

involved execution of a single plan generated prior to motion

execution. However, in practice, predictions change during

execution, requiring approaches for both online replanning and

the interleaving of execution with planning. As discussed in

Section VI, we use and develop upon SIPP to provide these

elements for our robotic system.

IV. SYSTEM OVERVIEW

In this section, we briefly summarize the various compo-

nents of our human-aware robotic system (see Figure 3).

1) Physical Robot: A UR10 collaborative robot serves as

the robotic arm for performing manipulation tasks. Desired

system mobility is achieved by mounting the arm on a linear

axis unit. Arm joint angles are controlled using Universal

Robot on-board controllers, and the arm is held in a fixed

configuration while in motion due to the linear axis unit.

2) Safety System: A 2-D laser scanner is mounted on the

robot; the scanner triggers a safety stop when any human (or

object) is within the safety radius of the robot. A threaded

implementation is used for the safety system. Once the stop
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Fig. 3: An overview of the human-aware robotic system.

is triggered, the entire physical robotic system is rendered

immobile until the human leaves the safety radius.

3) Human Motion Prediction: Humans within the shared

region are tracked using a Kinect sensor and the OpenNI

tracker within Robot Operating System (ROS) [40]. The pre-

diction sub-system uses human detection and the algorithms

described in Section V to provide predictions of human

motion, updated at a frequency of 5 Hz. The 2D coordinates

of the human’s head serve as features for the predictors.

4) Trajectory Planning and Execution: Once a goal loca-

tion is issued, the system described in Section VI generates

a plan for CobotSAM’s base and executes the robot motion.

The system checks for changes in predictions and replans at

a frequency of 10 Hz.

5) Communication between Sub-Systems: Communication

between the physical robot components (UR10, linear axis

unit and the sensors) and the software is implemented using

a programmable logic controller, TCP/IP sockets and ROS. A

task plan executive issues a predetermined sequence of goals,

based on the task plan, to initiate the robot task.

V. HUMAN MOTION PREDICTION

1) Challenges: One of the main challenges of predicting

human motion in the context of collaboration with a mobile

robot within a factory setting is that accurate predictions are

necessary over both short and long time horizons. Short-term

predictions are critical for effective collision avoidance, as

the robot must have accurate knowledge of where a person

will be in the immediate future in order to stop or execute

an evasive motion. While a safety system can serve as a

fallback to prevent collisions, it is not a sufficient solution

for ensuring that interaction feels safe and comfortable for

human workers [5] – an essential requirement for human-robot

interaction [41]–[43]. As efficiency is also imperative within

the manufacturing domain, there is also a need for accurate

long-term predictions. These predictions, when combined with

planning in time, allow the robot to make intelligent decisions

about how to move toward its own goal in a manner that

minimizes interference with humans.

In the scenario considered, the humans whose motions the

system is trying to predict are associates passing through the

shared space who are not actively involved in the robot’s task.

As such, from the robot’s perspective, the motions executed

in the work cell occur in a random order, meaning that human

task sequence information cannot be leveraged for prediction.
2) Multiple-Predictor System: In order to accommodate the

need for accurate human motion prediction in both the short

and long term, we utilize the Multiple-Predictor System (MPS)

[6]. This method uses given motion data to learn how to best

combine a set of complementary prediction methods based on

their relative performances at various time horizons of interest.

One benefit of this data-driven approach is that it is designed to

generalize to different types of tasks and motions. While in [6]

the MPS was evaluated on short reaching motions (1.88±0.48

s) with a prediction time horizon range of 0.05-0.5 s, in this

work we demonstrate and evaluate its use for long, ambulatory

motions (16.05±2.41 s) with a prediction time horizon ranging

from 0.1-6.0 s.

The implemented version of the MPS is composed of three

prediction methods. The first method, velocity-based position

projection (VBPP), estimates future locations by projecting

the human’s current position through an estimate of his or

her velocity as computed via the Savitzky-Golay Filter [44].

Once the velocity is estimated, the VBPP assumes that the

person will continue moving at that speed for the duration

of the time horizon of interest. The second predictor is the

time series classification (TSC) method, which builds upon

the goal-based time series classification approach presented

by Pérez-D’Arpino and Shah [20]. The final predictor in the

MPS is a sequence prediction (SP) method that reasons on

observed sequences of actions instead of the motion itself.

The sequence prediction method uses previously observed

action sequences to learn which sets of actions occur before

others [45]. As described in [6], for both the TSC and SP

methods, the original approaches were extended to predict a

human’s future positions by identifying a point on the mean

trajectory of the predicted action that corresponds with the

current location of the human, and advancing forward by the

queried time horizon.

The MPS is trained via a two-stage process. First, a subset

of the data is used to train the parameters of the individual

prediction methods as a function of a discrete set of prediction

time horizons. Next, a second subset of the data is utilized in

a predictor fusion technique based on the Polynomial Weights

algorithm [46], where the loss function for each predictor i is

defined as the magnitude of the prediction error normalized by

the sum of the mean and standard deviation of the prediction

errors encountered during training, with an upper limit of 1:

Li
t = min

{
‖x̂xxi−xxx‖
µ+σ

,1
}

.

VI. TRAJECTORY PLANNING AND EXECUTION

1) Challenges: Given a robot goal, one approach for robot

motion is to execute pre-programmed paths and maintain

safety through reactive systems [47]; this is the method

used for repetitive robot motion within many factories today.

However, as shown in Sec. VII, such a system yields poor task

efficiency and fluency of interaction in the absence of a means

to anticipate and adapt to human behavior.

Our system, thus, leverages human motion predictions to

generate robot motions. Planning with predictions, however,
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Algorithm 1 Interleaving Planning and Execution

1: procedure MAIN(Rgoal)
2: Hpredictions← MPS() ⊲ Get predictions
3: Rstart← Rposition ⊲ Get robot start state
4: Rtrajectory← SIPP(Rstart,Rgoal,Hpredictions) ⊲ Plan robot trajectory

5: while Goal not reached do ⊲ Executed at replanning rate
6: if Safety stop triggered then

7: return False

8: Update robot command (Rcommand) using Rtrajectory

9: Issue Rcommand to hardware controller
10: Hpredictions← MPS() ⊲ Update predictions
11: replan ← Predictions changed or Rtrajectory is empty
12: if replan then

13: Rstart← Rcommand ⊲ Update start state
14: Rnew-trajectory← SIPP(Rstart,Rgoal,Hpredictions) ⊲ Replan
15: if PLANCHANGED (Rtrajectory,Rnew-trajectory) then

16: Rtrajectory← Rnew-trajectory

17: Issue stop Rcommand to hardware controller

18: return True

can be computationally expensive. State-of-the-art human-

aware collaborative manipulation systems typically utilize

short-term predictions [48]; however, predictions involving

significantly longer time horizons may be useful for planning

long robot paths (≈ 10m) in a factory setting. Further, due to its

single-axis mobility, our robotic system has limited freedom

to adapt to the behavior of nearby humans. If the planning

time is lengthy and the robot reacts to human too late, it

might be unable to exhibit anticipatory behavior despite the

existence of predictions that include the desired anticipatory

information. This emphasizes the need for computationally

tractable approaches that account for the critical effect of

timing for path planning, and allow for interleaving online

planning with execution.

2) Safe-Interval Path Planning: To account for the time-

critical nature of the robot planning problem, we use a rep-

resentation that explicitly models time. We incorporate SIPP

as the underlying planner for our system [7]. By using safe

time-intervals, SIPP significantly reduces the cardinality of the

state space and provides a computationally efficient approach

for planning despite explicit modeling of time. Using time-

indexed predictions of human motion, SIPP provides a feasible

robot trajectory if one exists, and returns a failure otherwise.

Given accurate predictions, SIPP is both complete and time-

optimal. We implement the planner as an extension to the

Search-Based Planning Library [49] and ROS.

3) Interleaving Planning and Execution: Due to changing

human motion predictions, SIPP alone is not sufficient for

executing robot motion. SIPP assumes the predictions to be

accurate, and thus does not include a mechanism for updating

the robot plan online. To incorporate the latest predictions, our

robotic system additionally requires online replanning, during

which the robot itself may be in motion. It is undesirable to

stop the robot during replanning; therefore, an approach to

interleave replanning and execution is required.

We provide Algorithm 1 in order to achieve interleaved

planning and execution. Upon receiving the goal location as

input, Algorithm 1 uses the current predictions from the MPS,

and the start state of the robot, to compute the robot’s trajec-

tory via SIPP (lines 1-4). To interleave trajectory execution and

planning, motion commands are executed using the planned

trajectory, which is updated at the replanning rate (lines 5-17).

The algorithm returns a failure if a safety stop is triggered

during execution (lines 6-7); to complete the goal once the

stop is deactivated, the goal is reissued in order to reinitiate

Algorithm 1.

As long as the goal is not reached and a safety stop is

not triggered, motion commands are sent to the hardware

controller according to the latest planned trajectory (lines

8-9). If SIPP could not identify a feasible solution a stop

command is issued to the robot. The robot then updates

its safe time-interval representation according to the latest

available predictions (line 10). If the predictions change, or

if the previous planner call returned a failure, replanning is

performed (line 12-17). To account for change to the robot

state (due to motion) between when the planner is called and

the resulting plan is executed, the latest commanded pose of

the robot is used as the start state for replanning with SIPP.

Human motion predictions continue to evolve over the

course of task execution; however, not all changes to predic-

tions result in plan changes. The new plan, generated in line

14, is thus compared against the plan currently being executed

via the PLANCHANGED() method. The method returns success

if either the trajectory lengths differ by a time threshold

(1s) or the L∞-norm of the difference in the two trajectories

exceeds a distance threshold (0.5m), and prevents fluctuations

in robot trajectory due to minor updates to predictions. If

PLANCHANGED() returns success, the robot is stopped and

the updated trajectory is used for execution from the following

timestep. The algorithm returns success once the goal has been

reached (line 17). By interleaving planning in time and motion

execution, our system can adapt quickly and efficiently to the

behavior of nearby humans.

VII. SYSTEM EVALUATION

A. Physical System Demonstrations

We demonstrated our system using the physical robots

described in Section IV within the environment depicted in

Fig. 1 in a BMW test environment. In our demonstrations, the

robot operated in one of three modes. In all modes, the current

task and goal of the human was unknown to the robot. In the

“Baseline” mode, no information about the human’s current or

predicted position is given to the planner, and the robot simply

pauses its motion whenever a human enters the shared area of

the work cell. This mode emulates the behavior of state-of-the-

art reactive safety systems designed for factory environments,

such as SafetyEye [47]. In the “Planning with Detection”

mode, the planner incorporates the human’s current position

by assuming that the human will remain in that location

until a new position is received. Finally, in our approach

(the “Planning with Prediction” mode), the robot uses both

the currently detected human location and a set of position

predictions obtained from the MPS. These predictions are

made at a discrete set of time horizons ranging from 0.1-

3 s in increments of 0.1 s, and are recomputed at a rate of

5 Hz. Video attachments representing the operation of these

three modes are included with the paper and also available at

http://tiny.cc/cobotSAM (see Fig. 4 for illustrative snapshots).

Through the results from our integrated system demon-

strations, we observed that our system can anticipate and
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(a) Start configuration. (b) Baseline mode. (c) Planning with detection. (d) Planning with prediction.

Fig. 4: Stills of the three modes (b-d) from the factory test environment demonstration. The robot’s task is to navigate to the

other side of the linear axis, while a human attempts to go to the depot. The black line parallel to the rail denotes the boundary

of the shared region. The difference in the robot’s position on the linear axis (yellow arrow) at the start (a) and between the

three modes (b-d) when the human arrives at the depot illustrates the anticipatory behavior of our approach (d).

adapt to the behavior of nearby humans when utilizing both

prediction and planning techniques. In one example of an

observed adaptive behavior, the robot paused its motion and

even moved backwards (Fig. 4(d)) to allow a human to

reach the depot, then automatically resumed its task after the

person moved back toward the workbench. Importantly, this

behavior was automatically derived during execution, without

the need for preprogramming. In contrast, when planning

without anticipation of human motion, the robot was unable

to effectively adapt its motion to unexpected human behavior,

resulting in less fluent interaction, with the robot blocking the

human’s path and triggering safety stop more frequently (Fig.

4(c)). Lastly, while in the Baseline mode, the system yielded

safe but inefficient robot motion (Fig. 4(b)), as the robot often

stopped unnecessarily, sometimes in a position that interfered

with the human’s path.

B. Evaluation in Simulation

While the physical demonstrations provide intuitive, quali-

tative examples of the benefits of our system, the context for

these demonstrations consisted of one robot assisting a single

worker in a small work cell, which is not representative of

how a robotic assistant would be deployed in a real factory.

Therefore, we also performed a more thorough, quantitative

analysis of the benefits of our system in simulation, with a

much larger work cell in an analogue factory environment, as

depicted in Fig. 2.

In the simulation, the length of the rail was 10 m and the

shared workspace was 10 m by 3.1 m. The robot performed a

pre-set sequence of tasks, simulating the pickup and delivery

of components between depots and workbenches. The robot

utilized the planning approach described in Section VI to plan

its motions toward the task plan’s goal locations. We used a

grid size of 10 cm and a replanning rate of 10 Hz for the

planner, and set the maximum speed of the robot to 1 m/s.

We simulated the laser scanner safety system by stopping the

robot whenever a human came within a safety radius of 0.75

m. The simulated robot operated in the same three modes

as those used during the physical demonstrations: Baseline,

Planning with Detection, and Planning with Prediction. Due

to the larger workspace and longer trajectories, the discrete

set of time horizons at which the MPS made predictions was

extended to a range of 0.1-6 s in increments of 0.1 s, with the

same prediction recomputation rate as before (5 Hz).

In order to make the simulated human motions and predic-

tions more realistic, we collected human walking trajectories

via a motion capture system. We defined a set of four possible

human actions corresponding to the four trajectories depicted

in Fig. 2. The “pause” symbols in the figure represent places

where the human would pause for ≈ 3 seconds before con-

tinuing along their trajectory, which is intended to simulate a

worker stopping in order to perform a task (e.g., picking up

a tool or reading a value from a monitor). Two participants

performed each of the four motions 10 times each, while the

2D position and orientation of their head was recorded at a

rate of 120 Hz. The trajectories were then downsampled to

10 Hz and used for training and evaluation of the MPS, with

50% of the trajectories serving to train the individual predictor

parameters, 20% for the predictor fusion, and 30% for use in

the simulation.

We ran a total of 30 trials in each of the three robot

modes, with a different sequence of simulated human actions

occurring in each trial. Each sequence consisted of a random

permutation of eight actions, with each of the four actions

occurring twice. The motion of the human while performing

each action in the sequence was simulated by playing back

a sample trajectory of that action chosen at random from the

holdout set. To further improve the realism of our simulation

and model variability in human motion, we also incorporated a

waiting behavior for the simulated human whenever the robot

was in its path. Specifically, when the human was within the

robot’s safety radius and the human’s approach angle towards

the robot was less than 30°, the simulated human would pause

for a period between 4 and 5 seconds sampled from a uniform

distribution, and then resume motion at 50% of the original

speed until clear of the robot. This slower resumption of

motion is intended to simulate a human carefully moving past

the robot after the initial stop.

C. Simulation Results and Discussion

1) Multiple-Predictor System: We assessed the perfor-

mance of the individual predictors and the MPS with a

leave-one-out cross-validation. For each iteration of the cross-

validation, we held out one set of demonstrations for testing

(one example of each action), 13 for training, and 6 for
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Fig. 5: Simulation outcomes (mean and std. error) for human

idle times and safety stop times (the time during which the

robot was idle due to a safety stop) across the three modes.

model selection. The overall mean prediction errors across all

time horizons and iterations for the velocity-based position

projection (VBPP), time series classification (TSC), sequence

prediction (SP), and MPS were 181.9 cm, 43.0 cm, 174.3 cm,

and 41.2 cm, respectively. We applied the Friedman test to

verify that the prediction method had a significant effect on

these prediction errors (p < 0.001, χ2 = 50.22) and then used

the Wilcoxon signed rank test to perform pairwise comparisons

to the MPS. Given the above averages, the MPS outperformed

the VBPP and SP methods by a large margin, and exhibited a

small improvement over the TSC method (VBPP and SP: p <

0.001; TSC: p = 0.015). As expected, due to the randomness of

the human motion sequences, the sequence prediction method

performed poorly across all time horizons. Consequently, the

MPS was composed of only the other two methods, with

the intuitive assignment of the VBPP method for short time

horizons (0.1-0.6 s) and TSC method for the remaining time

horizons (0.7-6 s).

2) Safety, Efficiency, and Fluency: Using the simulation,

we examined various objective measures of human safety, task

efficiency, and fluency of interaction. To assess the statistical

significance of our results, we applied the Friedman test

to determine the effect of the given robot mode (Baseline,

Planning with Detection, or Planning with Prediction) on these

measures, and the Wilcoxon signed rank test to assess pairwise

comparisons. Results from these evaluations are summarized

in Fig. 5 and Table I.

One key measure of human safety in our evaluation is the

number of times the robot’s safety stop was triggered – i.e.,

the inability of the robotic system to anticipate and avoid the

movement of nearby humans. We observed that as compared to

both the Baseline and Planning with Detection modes, which

resulted in an average of 3.5 and 5.1 safety stop triggers,

respectively, our system resulted in fewer safety stops (mean

0.5). This effect is statistically significant, and is also evident

through the correlated measure of safety stop time depicted in

Fig. 5. When compared with the Baseline mode, our system

also statistically significantly shortened both idle and task

times for both the human and the robot, with human and

robot idle times reduced by 81.8% and 44.1%, respectively,

and task times reduced by 5.8% and 16.9%, respectively. This

demonstrates that not only did the incorporation of prediction

and planning result in fewer safety stop triggers, but also

improved task efficiency.

TABLE I: Simulation Resultsa

Dependent

Variable

Baseline Planning +

Detection

Planning +

Prediction

Friedman

Test

Safety Stop
Triggers (#)

3.5
p < 0.001

5.1
p < 0.001

0.5 χ2 = 50.04
p < 0.001

Human Idle
Time (s)

11.7
p < 0.001

12.6
p < 0.001

2.13 χ2 = 28.92
p < 0.001

Robot Idle
Time (s)

91.7
p < 0.001

46.4
p = 0.086

51.3 χ2 = 46.07
p < 0.001

Human Task
Time (s)

165.2
p < 0.001

168.1
p < 0.001

155.7 χ2 = 27.27
p < 0.001

Robot Task
Time (s)

204.0
p < 0.001

159.6
p = 0.002

169.5 χ2 = 51.67
p < 0.001

Safety Stop
Time (s)

18.1
p < 0.001

21.0
p < 0.001

2.85 χ2 = 37.49
p < 0.001

a Mean values of the dependent variables. The p values in the Baseline
and Planning + Detection columns correspond with the pairwise comparisons
between these modes and Planning + Prediction mode.

Compared with the Planning with Detection mode, our

system also statistically significantly reduced human idle and

task times by 83.1% and 7.4%, respectively. Interestingly, the

Planning with Detection mode resulted in robot idle and task

times comparable to our own approach. The total robot idle

time is composed of the sum of time the robot stopped due to

the safety system being engaged (specified as “Safety Stop

Time” in Table I) and the time during which the planner

commanded the robot to pause. On further inspection, we

observed that the robot idle time due to safety stops is insignif-

icant for our system as compared with that observed while

the robot operated under the Planning with Detection mode.

Indeed, this unplanned idle time contributed to only 5.56%

of total robot idle time when using predictions, whereas its

contribution increased to 45.33% when using only detections.

This indicates that, although the robot remains idle using our

approach for a similar amount of time as that observed in the

Planning with Detection mode, this behavior was due to the

planner commanding the robot to pause in order to yield to

the human, improving safety and reducing human idle time.

3) Interleaving Prediction, Planning and Execution: We

conducted an additional 30 simulation trials in which the

robot planned its motion using SIPP but without interleaving

planning and execution (similar to how SIPP was employed

in [7]). The robot created a plan using SIPP and available

predictions at the outset of its motion execution and executed

it till either the goal was reached or safety stop was triggered.

As compared to Planning with Prediction, this “SIPP-baseline”

mode resulted in higher numbers of safety stops (5.5, p <

0.001) and cumulative duration (19.48 s, p < 0.001), higher

human idle time (10.8 s, p < 0.001) and task time (173.0 s, p

< 0.001), and a higher ratio of unplanned idle time (42.5%).

D. Future Directions

Our evaluations demonstrated safe and efficient performance

of the CobotSAM system, and raise a number of directions

for future research. For instance, the prediction sub-system

assumed that all human actions come from a known set and

was not designed to handle previously unseen motions. While

the constrained nature of the factory domain lent itself well to

this assumption, anomalous motions can still occur. To address

this issue, we plan to incorporate the ability to recognize
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unmodeled motion and adjust the composition of the MPS

online in future work. Further, the robot’s trajectory planner

replanned from scratch once new predictive information was

made available. Hence, we are investigating the development

of incremental planners for planning in time that can replan

efficiently by reusing their previous planning process.

VIII. CONCLUSION

We present CobotSAM, a human-aware robotic assistant

designed to deliver parts to human associates performing

dexterous assembly tasks. The robot is equipped with algo-

rithms for prediction of the motion of nearby humans, along

with a planning algorithm that leverages these predictions by

planning in time. We demonstrate the efficacy of our system in

a BMW test environment. Through the use of these algorithms,

our system exhibits anticipatory behavior and results in safe

and efficient execution of a part-delivery task while sharing

its environment with humans in the factory.
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[32] R. Mead and M. J. Matarić, “Autonomous human–robot proxemics:
socially aware navigation based on interaction potential,” Autonomous

Robots, vol. 41, no. 5, pp. 1189–1201, 2017.
[33] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-

based prediction of trajectories for socially compliant navigation,” in
R:SS, 2012.

[34] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
IJRR, vol. 35, no. 11, pp. 1289–1307, 2016.

[35] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation
in dense human crowds: Statistical models and experimental studies of
human–robot cooperation,” IJRR, vol. 34, no. 3, pp. 335–356, 2015.

[36] G. Hoffman, M. Cakmak, and C. Chao, “Workshop on timing in human-
robot interaction,” in HRI. ACM, 2014.

[37] F. Broz, I. R. Nourbakhsh, and R. G. Simmons, “Planning for Human-
Robot Interaction Using Time-State Aggregated POMDPs,” in AAAI,
2008.

[38] H. Khambhaita and R. Alami, “A human-robot cooperative navigation
planner,” in HRI. ACM, 2017.

[39] M. Kollmitz, K. Hsiao, J. Gaa, and W. Burgard, “Time dependent plan-
ning on a layered social cost map for human-aware robot navigation,”
in European Conference on Mobile Robots. IEEE, 2015.

[40] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[41] X. Broquere, D. Sidobre, and I. Herrera-Aguilar, “Soft motion trajectory
planner for service manipulator robot,” in IROS. IEEE, 2008.

[42] T. Arai, R. Kato, and M. Fujita, “Assessment of operator stress induced
by robot collaboration in assembly,” CIRP Annals - Manufacturing

Technology, vol. 59, no. 1, pp. 5–8, Jan 2010.
[43] E. A. Sisbot, L. F. Marin-Urias, X. Broquère, D. Sidobre, and R. Alami,

“Synthesizing Robot Motions Adapted to Human Presence,” Interna-

tional Journal of Social Robotics, vol. 2, no. 3, Jun 2010.
[44] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data

by simplified least squares procedures.” Analytical chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

[45] B. Letham, C. Rudin, and D. Madigan, “Sequential event prediction,”
Machine Learning, vol. 93, no. 2-3, pp. 357–380, Nov 2013.

[46] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic

game theory. Cambridge University Press Cambridge, 2007.
[47] “Pilz Safe Camera System SafetyEye,” http://www.eltron.pl/uploads/

manufacturer catalogs/16/10338/SafetyEYE EN.pdf.
[48] J. S. Park, C. Park, and D. Manocha, “Intention-aware motion planning

using learning based human motion prediction,” in R:SS, 2017.
[49] “Search-Based Planning Library (SBPL),” http://www.sbpl.net/Software,

[Online].


