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1. Introduction

Automatic recognition of human activities and behaviors is still a challenging problem for
many reasons, including limited accuracy of the data acquired by sensing devices, high

variability of human behaviors, and gap between visual appearance and scene

semantics.

Symbolic approaches can significantly simplify the analysis and turn raw data into chains
of meaningful patterns. This allows getting rid of most of the clutter produced by low-
level processing operations, embedding significant contextual information into the data,
as well as using simple syntactic approaches to perform the matching between incoming

sequences and models.

2. Problem Statement

Human activity is highly variable: people tend to perform same actions using different
paths in normal life. The objective of this work is to define a technique robust to the
noise to represent, detect and classify complex human behaviors.

3. Solution based on a Context Free Grammar

(i) represent incoming path through a set of defined hot spots, in order to bring the the
low level representation to a symbolic one;

(ii) during the training, apply an algorithm to extract the signature of each class and to
code the CFG models based on both positive and negative samples;

(iii)introduce the possibility of efficiently retraining the system in the presence of
misclassified or unrecognized events;

(iv)in the classification, operate a parsing procedure that allows correct detection of the
activities also when they are concatenated and/or nested one with each other.
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Example of intersection between the
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generated by positive samples only.
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generated by positive and negative
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4. Framework description

Training set
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In the training phase (offline), a
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5. Results
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Activity spotting examples:

(a) two consecutive sequences;

(b) hierarchy between two activities;

(c) two nested activities with noisy symbols;

(d) two overlapping activities with noisy symbols.
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The classification is performed

through a parsing strategy
followed by grammar evaluation
using standard derivation rules.
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Model Precision Recall F-measure  Accuracy

Naive Bayes 67.3+17.2 64.8+ 146 658+ 155 953+28

HMM 54.6+17.0 69.5+12.7 60.8+ 149 89.5+84
HSMM 60.2+ 15.4 73.8+ 125 66.0+13.7 91.0+72
CRF 66.2+ 158 65.8+ 140 659+ 146 964+24

Our framework 89.9+ 109 78.3+ 19.6 83.7+ 14.0 855+ 11.8
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