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Abs t rac t .  This article describes a tracking method of 3D articulated complex objects 
(for example, the human body), from a monocular sequence of perspective images. These 
objects and their associated articulations must be modelled. The principle of the method 
is based on the interpretation of image features as the 3D perspective projections points 
of the object model and an iterative Levenberg-Marquardt process to compute the model 
pose in accordance with the analysed image. 
This attitude is filtered (Kalman filter) to predict the model pose relative to the fol- 
lowing image of the sequence. The image features are extracted locally according to the 
computed prediction. 
Tracking experiments, illustrated in this article by a cycling sequence, have been con- 
ducted to prove the validity of the approach. 

Key-words : monocular vision, articulated polyhedric model, matchings, localization, 
tracking. 

1 I n t r o d u c t i o n  

In the last ten years, many researchers have tried to locate human body limbs by video or 
cine-film techniques. Their  methods can be classified in function of the type of markers which 
are used. We can mention the marker free and marker based methods. 

With  regard to marker based methods, digitized data  analysis can be done from anatomical 
landmarks by the placement of markers on the specific joints. The body can then be modelled 
using a multi link chain model (Winter [1]). After matchings between the primitives of the 
model and the digitized data, jo int  centers are reconstructed (Yeadon [2]). Automatic tracking 
system (Elite 1989) are also widely used. This system combines the reM-time analysis of video- 
images, the signals acquisition relative to the muscular activity and external forces. The markers 
are passive (reflector markers) or active (infrared blankets, electro-luminescent Light Emit t ing 
Diodes). The active methods make the recognition and the tracking of the markers easier 
because each LED emission can be analysed separately. Yet, the physical constraints are greater. 

Using these kind of markers are problematic. The non-rigidity wrapping during movement 
causes a relative body/markers  displacement and induces uncertainty in the results. Moreover, 
wearing this kind of marker is quite easy for the ankles and wrists, but  is difficult for complex 
articulations like shoulders, knees, hips. Moreover, adding passive or active markers induces 
some psychological effects on the subject such as rigidity in movements. To obtain accurate 
measurement,  it is better  to reduce the constraints on the subject as much as possible. 



519 

With regard to marker free methods, a well known technique in image processing is based 
on model matching using Distance Transformation (DT). It is described for instance in [3]. The 
method consists in making a DT image in which the value of each pixel is the distance to the 
nearest point in the object. The optimal position and orientation of the model can be found 
by minimizing some criteria function of these pixel values. Persson [4] uses this method with a 
simple 2D model of a leg prothesis. 

Like Persson, Geurtz [5] developed a method based to a 2D representation of the body. The 
body limbs of the model are restricted to elliptical curves describing the segment contours. The 
image feature, used in the movement estimation, is only constituted by the contour data. His 
method is interesting but sensitive to noise. Consequently, results obtained on real images are 
somewhat inaccurate. 

To solve the ambiguity (movement-depth), some researchers have proposed volumic models 
based on a priori knowledge of the human body. Rohr [6] introduces a model based approach 
for the recognition of pedestrians. He represents the human body by a 3D model consisting of 
cylinders, whereas for modelling the movement of walking he uses data from medical motion 
studies. The estimation of model parameters in consecutive images is done by applying a kalman 
filter. Wang [7] gives models of the different body limbs with simple geometrical primitives 
(such as cylinders, planar surfaces...) connected together by links which simulate articulations. 
The different images of the sequence are divided into regions by motion segmentation. From 
these detected regions and an affine model of the a priori movement, Wang deduces the 2D 
movement in each image of the set. With the knowledge of the volumic model, he estimates the 
3D parameters of the model pose. 

The modelisation error, due to representation with simple geometrical primitives, can have 
a negative effect on the interpretation result. A more precise modelisation should improve the 
results of the analysis. 

In Robotic field, very few papers address the current problem which corresponds to the 
estimation of the spat!al attitude of an articulated object from a single perspective image. 
Mulligan [8] presents a technique to locate the boom, the stick and the bucket of an excavator. 

Kakadiaris [9] presents a novel approach to segmentation shape and motion estimation of 
articulated objects. Initially, he assumes the object consists of a single part. As the object 
attains new postures, he decides based on certain criteria if and when to replace the initial 
model with two new models. This approach is applied iteratively until all the object 's moving 
parts are identified. Yet, two observed object's moving parts are supposed to be linked by only 
one inner degree of freedom. 

2 A i m  o f  t h e  m e t h o d  

The research deals with the automatic analysis of 3D human movement based on a vision sys- 
tem. Like most of the developed methods, we need some prerequisites which are the knowledges 
of the observed object, free matchings between 2D image primitives and 3D model elements, 
and assumption about the projection of the real world on the image (perspective in our case). 
Our analysis will be based on the articulated volumic model and a localization process which 
computes the attitude of the 3D object model such that the selected model elements are pro- 
jected on the matched 2D image primitives. A similar approach can be found in [10] where Lowe 
proposes a technic to fit a parametrized 3D model to a perspective image. Nevertheless, our 
method differs from Lowe's one in the minimized criterion: Lowe uses a 2D criterion calculated 
in the image plane. Our criterion is 3D one which permits to greatly simplify the computations 
involved. 

To give more precision about the model, the human body model will be deduced from Reson- 
nance Magnetic lmaging (RMI) measurements and will be manipulate like a set of rigid parts 
which are articulated to each other. A cycling sequence was taken to illustrate this research. 
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3 M e t h o d  

3.1 M o d e l  de sc r ip t i on  

The modelisation of the human body is similar to the results of work carried out in the labo- 
ratory on articulated objects (Yassine [11]). We describe them briefly. 

In our system, the articulated object comprises several Computer Assisted Design models 
(CAD) connected by articulations which describe the possible relative displacements between 
parts. Each CAD model corresponds to the polyhedrical approximation of the real part of the 
object. It is composed by a set of 3D vertices, a set of links between vertices to define the ridges 
and a set of links between ridges to build the different faces. 

Each articulation is characterized by a set of degrees of freedom. Each inner degree of 
freedom is defined by its type (rotation and translation) and its 3D axis. 

To animate the model, we have defined operators which allow us to place, in the observer 
frame, a 3D model vertice whid~ initially defined in the model frame (see Yassine [11]). 

3.2 M a t c h i n g s  2D-3D 

Before the localization process, we nmst extract some image features and match them with the 
associated geometrical primitives of the articulated model. Dhome [12] computes the pose of a 
simple polyhedrical object from matchings between all the visible model ridges and segments 
extracted from grey images, In our application, where the CAD model associated with each 
part (shank, thigh...) has a repetitive structure (comparable to a skew netted surface), such 
an approach is not applied. Only ridges, which are limbs, will be matched. A limb is a ridge 
common both to a visible surface and all invisible surface, after projection of the model in the 
image plane. Obviously, the non-rigidity of the bodily wrapper, during the movement, causes 
an incoherence comparatively to the static model (and so comparatively to the detected limbs). 
Yet, for smooth movement (like pedaling), deformations are quite insignificant. 

To bring more constraints, some random points are chosen on the model surface and are 
matched with their features detected in the image. This tracking of specific points is comparable 
to a classic technique of marker tracking, but the advantages are obvious : the number and the 
location of these characteristic points are not pre-defined compared to markers. These points 
can be ignored or replaced by other random points during the tracking process. 

The primitives extracted from the image are also straight segments or points. 

M a t c h i n g s  2D-3D f r o m  poin ts :  Given the model pose relative to the image 11, some 2D 
points p~ are selected in this first image and their 3D coordinates are deduced by reverse 
perspective projection. The equivalents p}* (i = I..p) of the points pl are searched in the 
consecutive images (noted I n) of the sequence by ai~alysis of the images grey levels. 

A priori, it is necessary to search the points p}' in a sufficiently large zone of the image 
I n to include the displacement existing between the homologous points of the two images. To 
reduce the combinative, we take the predicted position estimated for the image I "  into account. 
This prediction will be computed by a Kalnlan filter ([131, [14]). The points p,." in the image 
I"  will be researched in proximity of tile predict projected point (noted p}~pred) of the model. 
Each point p}~ is obtained after maximizing correlation scores on grey levels windows included 
respectively in images 1 and n (Lerasle [15]). In fact, the predict pose makes it possible to 
restrict the research domain for the correlation and thus to reduce the processing cost. 

To sum up the method, some 3D points of the model are associated to textured figures 
(centred at points p~) of the initial grey level image. These points are localized in the following 
images of the sequence after correlation on the grey levels. The localization of these 2D points, 
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in the different images of the sequence, will be bet ter  if the texture included in the images is 
rich. For this reason, during the film, the observed subject is wearing a pair of t ights with non 
repetitive texture. 

Moreover, to manage the possible vanishing of these 3D points and thus the textured designs 
associated with the initial image, this list of 3D model points will be modified during tracking. 
From one image to another, from the computed att i tude,  some points are removed from the 
list and replaced by others chosen randomly in their  proximities to respect the initial spatial 
spread. This modification is managed like a stack L~st In First Out so tha t  after n localizations 
corresponding to the n first images of the sequence, all the points in the initial list have been 
removed. It is in fact, a markers system (or rather textured designs markers) sliding. 

M a t c h i n g s  2 D - 3 D  f r o m  l imbs :  At step n of the tracking (image I~),  for the at t i tude 
according to the image I ~-1 , a Z-buffer or depth-buffer method (Catmull  [16]) allows to extract 
the model ridges which correspond with limbs. 

The idea of wearing a textured dark pair of tights moving in front of a white background 
A i B i ) of the limbs Li are can also be used. Projections of the points extremities (noted n-a  ~-1 

removed on to the whi te /dark  transitions of the image I n - t .  Then,  the correspondents A~B~ 
(in the image I n) of the points A']-IB7 -1 will be deduced after correlation on the respective 
grey levels. The segment A'~B'~ will be matched with the l imb Li and so with the 3D associated 
ridge of the model. 

3.3 L o c a l i z a t i o n  p r oce s s  

We describe the problem of the localization of all articulated object, give briefly tile mathemat -  
ical equations and the algorithm used to solve them. The validity of this algorithm was proved 
by Yassine [ll] on articulated polyhedrics objects like an operator arm. The pose est imation 
of an articulated object from a monocular perspective image depends on 10 + q parameters.  
The first four ones are the intrinsic camera parameters. The six following ones are the extrinsic 
parameters (noted a, 13, % u, v, w). These parameters correspond to the three rotations and the 
three translations around and along the observer frame axis which permit  to locate a rigid 
object. In the present process, these parameters determine the pose of the reference part  of the 
viewed articulated Object. The q following ones (noted al .... , aq) represent the inner degrees of 
freedom. 

The problem we intend to address can be described as follows. We suppose known : the 
perspective projection as a model of image formation, tile intrinsic parameters of the acquisition 
system, the CAD model of the viewed object and a sufficient set of matchings between image 
features and model primitives. 

Then, we must  obtain the 6 + q parameters which define the object location minimizing the 
sum of the distance between the matched model primitives and the interpretation planes(planes 
through the optical center of the camera and the considered segments). Thus, for the model 
primitives like ridges, only the extremities of these ridges are considered. For each matched 
ridge, we minimize the sum of the distance between the two extremities of the model ridges 
and the correspondent interpretation plane. For the matchings on points, the matched points 
in the image (pl in figure 1) will be replaced by two segments which will be perpendicular in 
the image. Then, we will minimize the distance between the 3D point (P1 in the figure 1) of 
the model and these two perpendicular interpretation planes. 
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F i g ,  1. example of in terpre ta t ion planes 

D i s t a n c e s  to  i n t e r p r e t a t i o n  planes:  In the following equations, the index c refers to the 
observer frame, m refers to the model frame and the variable A refers to the position vector 
with A = (c~,~,',/,u,v,w, al, ..,aq). Let p image segments li be matched respectively with p 
model points Pi '~. It was assumed that all the vectors and points are expressed in the camera 
coordinate system. To compute the vector A, we merely express that the transformed point p/c 
by the transformation represented by A of the point Pi m must lie in the interpretation plane 

Hi (normal ~ )  of the corresponding image segment. This can be written by a product scalar 
function. A method to linearize this function consists in approximing this function near the 
value (A)k, A a.t step k, by a first order Taylor development : 

OF(At,, p~n) (A - A~) 
F(A,  P~)  = (~.O--~Pi) ~-, F(Ak, P ~ )  + OA 

where i = 1..n is the index of the matched point (n the number of matched points). 

R e s o l u t i o n o f  t h e  sys tem:  IfA is the solution, F(A,  Pi m) = 0 and thus the set of 3D matched 
points allows to construct a syst, em with n linear equations : [J]T.(Ek) = [J]T.[J]t,.(AA)k with 

I (AA)k = alk -- al ,(E)k = 

\ aqk aq 

F(Ak, Pi ~) 

F(AI ,  P~) 

, (J)k = 

r 
of(a,;PF) ~ | 

Oaq / 



523 

This system will be solved by an iterative Levenberg-Marquardt approach [17]. By this way, 
the global criterion to minimize is : 

P 
= 

i = 1  

At each iteration of the iterative process, we obtain a correction vector to apply to the 
position vector (A)k : (A)k+l = (A)k + (.-SA)k 

The iterative process is repeated until a stable attitude is reached meaning Error  < e. In 
any case, the matrix of partial derivatives (J)k must be computed and these calculations will be 
set out in detail in [15]. The computation of the covariance associated with the model attitude 
have been detailed in [15] too. 

4 E x p e r i m e n t s  a n d  r e s u l t s  o n  t r a c k i n g  

The matchings between 3D model primitives in the attitude linked to an image of the sequence 
and 2D primitives in the following image are automatic. At the step n of the tracking (image 
In), the matchings process takes the attitude computed for the image I n-1 into account. So, 
the attitude linked to the first image of the sequence and the set of markers linked to this image 
must be known in advance. In fact, initialization of the tracking process requires two steps : 

1. manually, the operator superimposed the model to the first image of the sequence, 
2. for this attitude, the operator manually selects some visible points from the model. A good 

spatial spread of the set of these points increases the constraints caused by these points. 

For example, the following figure represents the first image of the cycling sequence and the 
markers which have been choosen. 

F i g .  2. initial grey level image with selected 3D points  project ion 

The tracking process have been validated on real images sequences. We have choosen to 
present the results obtained on a cycling sequence. First, we have built the shank and thigh 
CAD models of the cyclist. These models have been deduced from images provided by an RMI 
scan. This scan consisted in 34 cross-sections of the legs. Low level treatement (smoothing and 
contours detection) makes it possible to extract peripheral contours of each cross-section. The 
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contour points coordinates z and y of each cross-section, associated with its height z, enables 
us to determine the 3D vertices of the model (see figure 3). 

Moreover, we had to compute the articulation model of the knee which is quite complex. 
An articulation model with three rotations, corresponding to the flexion-extension (axis Oy), 
to the internal rotation (axis Oz) and the valrus-valgus rotation (axis Ox) has been choosen. 

The figure 4 represents the projection of the attitudes computed during the sequence from 
a point of view located in the cycling plan. The six following figures (end of article) represent 
the model projection superimposition on different images of the sequence. Obviously, the model 
surfaces which are not really compatible with the grey-level image target are distort surfaces 
like the back of the leg or calf. 

F ig .  3. leg model used for the pedaling sequence 

Fig.  4. model tracking from a point of view situed in front of the bicycle 
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5 C o n c l u s i o n  

This paper presents a new method for estimating, in the viewed coordinate system, the spatial 
attitude of an articulated object from a single perspective view. 

The approach is based : 

- on the a priori knowledge of the visualised object meaning the knowledge of its model, 
- on the interpretation of some image points as the perspective projection of 3D model points, 
- on an iterative search of the model attitude consistent with these projections, 
- on a calculation of the covariance matrix associated with these projections. 

The presented method is quite different from the markers method because we don't  use real 
but fictitious markers (through a textured pair of tights). Thus, the proposed method is more 
flexible because the number of these markers and their emplacements are not a priori fixed. 
Moreover, wearing a pair of tights causes no psychological effects, no physical constraints and 
no added techniques (comparatively to active markers method). 

The inaccuracies of the method are in process initialization and especially in the approximate 
estimation of the model attitude compatible with the first image. This first pose has an effect on 
the quality of the localizations obtained during the tracking. Moreover, the defined articulated 
static model is not always consistent with the image target because the body wrapping is not 
always constant during the movement. 

Our next purpose will be to improve both the initialization and the modelisation, and 
to analyze occulting movement, for example the occulting of one leg by one another. The 
implemented Kalman formalism should help us to cope with this kind of problem. 

To our knowledge, such marker free method has never been applied to human movement 
and could be useful to further study biomechanical and energetics of muscular activity aspects. 
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Fig.  5. model projection superimposed to the images 1,10,20,30,40,50 of the sequence 


