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Human bone marrow- and adipose-
mesenchymal stem cells secrete exosomes
enriched in distinctive miRNA and tRNA species
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Abstract

Introduction: Administration of mesenchymal stem cells (MSCs) represents a promising treatment option for
patients suffering from immunological and degenerative disorders. Accumulating evidence indicates that the healing
effects of MSCs are mainly related to unique paracrine properties, opening opportunities for secretome-based therapies.
Apart from soluble factors, MSCs release functional small RNAs via extracellular vesicles (EVs) that seem to convey
essential features of MSCs. Here we set out to characterize the full small RNAome of MSC-produced exosomes.

Methods: We set up a protocol for isolating exosomes released by early passage adipose- (ASC) and bone
marrow-MSCs (BMSC) and characterized them via electron microscopy, protein analysis and small RNA-sequencing.
We developed a bioinformatics pipeline to define the exosome-enclosed RNA species and performed the first
complete small RNA characterization of BMSCs and ASCs and their corresponding exosomes in biological replicates.

Results: Our analysis revealed that primary ASCs and BMSCs have highly similar small RNA expression profiles
dominated by miRNAs and snoRNAs (together 64-71 %), of which 150–200 miRNAs are present at physiological levels.
In contrast, the miRNA pool in MSC exosomes is only 2-5 % of the total small RNAome and is dominated by a minor
subset of miRNAs. Nevertheless, the miRNAs in exosomes do not merely reflect the cellular content and a defined set
of miRNAs are overrepresented in exosomes compared to the cell of origin. Moreover, multiple highly expressed
miRNAs are precluded from exosomal sorting, consistent with the notion that these miRNAs are involved in functional
repression of RNA targets. While ASC and BMSC exosomes are similar in RNA class distribution and composition, we
observed striking differences in the sorting of evolutionary conserved tRNA species that seems associated with the
differentiation status of MSCs, as defined by Sox2, POU5F1A/B and Nanog expression.

Conclusions: We demonstrate that primary MSCs release small RNAs via exosomes, which are increasingly implicated
in intercellular communications. tRNAs species, and in particular tRNA halves, are preferentially released and their
specific sorting into exosomes is related to MSC tissue origin and stemness. These findings may help to understand
how MSCs impact neighboring or distant cells with possible consequences for their therapeutic usage.
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Introduction
Mesenchymal stem cells (MSCs) are intensively studied

because they exhibit unique biological properties in vivo

that are exploited for the treatment of many pathological

conditions, most notably bone defects, degenerative ill-

nesses, and autoimmunity [1].

MSCs are adult multipotent stem cells with self-

renewal potential [2] that can differentiate into alternate

phenotypes of the mesenchymal germ layer, namely oste-

oblasts, chondrocytes, and adipocytes [3]. The most

common source of MSCs is the bone marrow [4, 5];

however, MSCs reside in many other tissues, notably

adipose tissue, which is highly relevant because it is an

easy accessible abundant source of stem cells [6].

Whether MSCs from different sources can be considered

as the same cell type and whether distinct environments

may influence their phenotype and function are still

under debate [7, 8].

Recent advances suggest that the beneficial effects of

MSCs derive from secreted factors rather than from

their tissue intercalation and differentiation. The MSC

secretome drives organ healing by inducing a shift from

proinflammatory to anti-inflammatory cytokine produc-

tion at the site of injury [9–11]. These observations sup-

port the development of cell-free, secretome-based

therapies that circumvent the risks associated with stem

cell-based therapies such as immune-mediated rejection,

accumulation of genomic alterations, and senescence-

induced genetic instability [12–14], and might require

simpler safety regulations compared with their cell coun-

terparts for clinical use [11].

The interest behind the MSC secretome goes beyond

its application in tissue repair. Indeed, MSCs are strong

contributors to tumor growth and progression in differ-

ent cancer types [15–17], although anti-tumor activities

have also been reported underscoring their pleiotropic

properties [18, 19]. A unique aspect of MSCs is that they

strongly respond to inflammatory signals causing homing

to active tumor sites, where they provide paracrine sur-

vival, proangiogenic and immune-modulatory signals,

similar to those that promote wound healing. Previous

studies have focused on characterizing MSC-produced

soluble factors (i.e. cytokines, chemokines, and growth

factors). However, it is now clear that, in addition to sol-

uble factors, extracellular vesicles (EVs) are a key instru-

ment in cell–cell communication [20]. Among the many

subtypes of EVs, endosome-derived exosomes have

emerged as physiologically relevant and powerful com-

ponents of the MSC secretome [11, 12, 21].

Exosomes are nano-sized EVs with remarkable physio-

logical properties, originating through inward budding

of the limiting membrane of late endosomes called mul-

tivesicular bodies (MVBs). Upon fusion of MVBs with

the plasma membrane, exosomes are released into the

extracellular milieu and can be either taken up by target

cells residing in the microenvironment or carried to dis-

tant sites via biological fluids. Besides transporting charac-

teristic protein and lipid signatures, exosomes package

nucleic acids, most notably various RNA species with

regulatory functions [22]. Arguably the most studied class

of exosome-enclosed RNAs is the class of microRNAs

(miRNAs), which function in repressing their target

mRNAs in recipient cells in vitro [23–26] and in vivo [27].

However, we recently showed in B cells that miRNAs only

account for a fraction of the exosomal RNA. Indeed, other

noncoding transcripts, including repeats and structural

RNAs, complete the exosomal RNA repertoire produced

in B cells but also in other cell types [28, 29].

MSC-derived vesicles own remarkable properties typ-

ical of functional MSCs. Kordelas et al. [11] demon-

strated the clinical efficacy of MSC exosomes to treat

therapy-refractory graft-versus-host disease. Moreover,

MSC-EVs regulate neurite outgrowth [30], promote

angiogenesis both in vitro and in vivo [31], reduce myo-

cardial ischemia/reperfusion injury [21], and repair acute

kidney injury [32, 33]. Thus, it is reasonable to postulate

that MSC-EVs transport key MSC-associated molecules

which change the physiology of target cells in a specific

manner. Proteomic analysis suggests that MSC-EVs or

subclasses thereof contain critical surface markers and

signaling molecules characteristic of the MSCs [34].

Moreover, prior quantitative PCR profiling analysis [35]

showed that while some miRNAs are present both in

MSCs and in their corresponding microvesicles, others

are selectively represented.

To optimally understand and exploit the clinical po-

tential of adult MSC-derived exosomes, it is important

to define the relevant functional molecules they enclose.

Comprehensive information on the complete RNA con-

tent of MSC exosomes is currently not available, and

whether adult MSCs from different sources share similar

small RNA repertoires or whether their content is differ-

ent remains unknown.

Here we describe the first comprehensive deep-

sequencing analysis of the small RNA profile of exosomes

released by adult MSCs from two different sources:

adipose-derived MSCs (ASCs) and bone marrow-derived

MSCs (BMSCs). Our analysis of the exosomal content is

useful for understanding how MSCs impact their micro-

environment in resident niches and upon homing to dam-

aged and inflamed tissues, which may have consequences

for their therapeutic usage.

Materials and methods

Cell culture

Human adipose tissue samples from elective plastic sur-

gery were obtained from the Department of Plastic Sur-

gery of Tergooi Hospital after the approval of the Medical
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Ethical Committee of the VUmc (METC, Amsterdam, the

Netherlands) and written informed consent. Adipose

tissue was processed within 24 hours as described previ-

ously [36]. Briefly, adipose tissue was minced using a

surgical scalpel and digested with 0.1 % collagenase A

(Roche Mannheim, Germany) in phosphate-buffered

saline (PBS) 1 % bovine serum albumin (BSA; Roche

Diagnostics) under continuous shaking for 45 minutes

at 37 °C. After Ficoll density separation (Lymphoprep;

Axis-Shield, Oslo, Norway) cells were seeded at a dens-

ity of 100,000 cells/cm2. The bone marrow of patients

undergoing hip replacement was obtained from the

Rizzoli Orthopedic Institute after the approval of the

Comitato Etico dell’Istituto Ortopedico Rizzoli (Bologna,

Italy) and written informed consent. Mononuclear cells

were isolated by Ficoll Hystopaque gradient (Sigma-

Aldrich, Milan, Italy) and seeded at a density of 250,000

cells/cm2. After 4 days, nonadherent cells were removed

and fresh medium was added to the cultures. ASCs and

BMSCs were expanded in alpha-minimum essential

medium (α-MEM; Lonza, Breda, The Netherlands) con-

taining 100 U/ml penicillin, 100 μg/ml streptomycin

(Gibco, Bleiswijk, the Netherlands), and 10 % fetal

bovine serum (FBS) or 5 % platelet lysate (PL) [37]

and 10 U/ml heparin (Leo Pharma, Amsterdam, the

Netherlands), in a humidified atmosphere of 5 % CO2 at

37 °C. The expression of typical MSC surface markers

was analyzed by fluorescence-activated cell sorting

(FACS), and the ability of the MSCs to undergo osteo-

genic differentiation was assessed by Alizarin red stain-

ing upon induction with ascorbic acid, dexamethasone,

and β-glycerophosphate [38].

Exosome isolation

MSC exosomes were collected from approximately 3.2 ×

107 cells at early passages (passages 2–3). Once MSC cul-

tures reached 70 % confluence, cells were cultured for 24–

48 hours in α-MEM containing exosome-depleted FBS or

PL. Exosome-depleted FBS and PL were obtained by over-

night centrifugation at 70,000 × g at 4 °C. Exosomes were

isolated as described previously [39]. Briefly, MSC condi-

tioned medium was centrifuged twice at 500× g for 10

minutes, twice at 2000 × g for 15 minutes and twice at

10,000 × g for 30 minutes. The supernatant was then

transferred to Ultra-Clear tubes and centrifuged at 70,000

× g for 1 hour at 4 °C in a SW32Ti rotor (Beckman Coulter

Inc., Woerden, The Netherlands). The exosome-containing

pellet was washed with PBS and centrifuged at 70,000 × g

for 1 hour. The pellet was then carefully resuspended in

200 μl PBS and used immediately or stored at −80 °C.

Confocal laser scanning microscopy

For confocal laser scanning microscopy analysis, MSCs

were seeded on poly-L-lysine-coated (Sigma-Aldrich)

coverslips, fixed with 4 % paraformaldehyde, perme-

abilized with 0.1 % Triton-X 100 and blocked with PBS

10 % FBS (30 minutes). Slides were incubated with the

primary antibodies against CD63 (BD Biosciences,

Breda, The Netherlands) or EEA1 (Cell Signaling,

Leiden, The Netherlands) and then with rabbit anti-

mouse fluorescein isothiocyanate (FITC) antibody

(DAKO, Heverlee, Belgium) for 30 minutes at room

temperature. LysoTracker red (Molecular Probes, Bleis-

wijk, The Netherlands) was incubated with living cells be-

fore fixation. All stainings were imaged with a Leica

DMRB microscope (Leica, Son, The Netherlands). Images

were obtained through sequential scanning with the pin-

hole set at 1AE (standard). Fluorophores were excited

using 488 nm (FITC) and 561 nm (Alexa594) laser lines.

Western blotting

For western blot analysis, cells were lysed with RIPA

buffer containing protease inhibitor cocktail (Roche),

and the protein concentration was determined by BCA

assay (Pierce, Etten-Leur, The Netherlands). Cell lysates

and exosome preparations diluted in sample buffer

were run on a 10 % SDS gel and blotted on a nitrocellu-

lose membrane (GE Healthcare, Eindhoven, The

Netherlands). Membranes were incubated with monoclo-

nal antibodies against CD63, CD81, or cytochrome C (BD

Biosciences) and horseradish peroxidase-conjugated rabbit

anti-mouse secondary antibody (DAKO). Gels for CD63

and CD81 detection were run under nonreducing

conditions.

Transmission electron microscopy

Cell pellets were fixed with 2.5 % glutaraldehyde (Merck

KGaA, Darmstadt, Germany) in phosphate buffer for 2

hours, post fixed with 1 % osmium tetroxide, dehydrated

in a graded series of ethanol, and embedded in Epon

(Electron Microscopy Sciences, Hatfield, PA,USA). Ul-

trathin sections were stained with uranyl acetate and

lead citrate. Exosome preparations were mixed with an

equal volume of 4 % paraformaldehyde (Sigma) in phos-

phate buffer. Then 5 μl solution were deposited on 200

mesh Formvar-carbon-coated electron microscopy (EM)

nickel grids and left to adsorb for 20 minutes at room

temperature. Samples were fixed with 1 % glutaralde-

hyde (Merck) in phosphate buffer, contrasted with ur-

anyl oxalate (pH 7.0), and embedded in a mixture of 4 %

uranyl acetate and 2 % methyl cellulose (25 cps; Sigma)

in a 1:9 ratio on ice. Grids were then removed with

stainless steel loops and the excess fluid was blotted with

filter paper to ensure an appropriate thickness of the

methyl cellulose film. After drying, grids were examined

with a Zeiss EM109 transmission electron microscope

(Zeiss, Oberkochen, Germany). Images were captured

using a Nikon digital camera Dmx 1200F (Nikon
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Corporation, Tokyo, Japan), and ACT-1 software (Nikon

Corporation).

RNA isolation, RT-PCR, and generation of libraries for

small RNA sequencing

Total RNA was isolated using Trizol Reagent (Invitrogen,

Breda, The Netherlands) as described previously [39]. Exo-

some preparations were pretreated with RNase A (Sigma-

Aldrich) at a final concentration of 400 ng/μl at 37 °C for 1

hour to degrade unprotected RNAs. The RNA quantity

and purity were assessed with the Agilent 2100 Bioanalyzer

system (Agilent, Amstelveen, The Netherlands). The ex-

pression analyses of differentiation and stemness-related

genes were carried out using SYBR Green PCR master mix

(Roche) in a LightCycler 480 real-time PCR system

(Roche). Results were normalized with respect to glyceral-

dehyde 3-phosphate dehydrogenase (GAPDH) according

to the ΔΔCt method [40]. cDNA libraries for sequencing

were prepared using the TruSeq Small RNA Sample Prep-

aration Kit (Illumina, Eindhoven, The Netherlands) follow-

ing the manufacturer’s instructions. Amplified cDNA

constructs were purified on 6 % PAGE gel and DNA mole-

cules corresponding to 15–90 nucleotide transcripts were

excised, eluted from gel, and concentrated by ethanol pre-

cipitation. Libraries were validated on the Bioanalyzer

using the High Sensitivity DNA Chip (Agilent) and equi-

molarly pooled for the sequencing run. Sequencing was

performed on a HiSeq 2000 (Illumina) paired end 100 cycle

(PE100) run.

Assignment of features to reads

Adapter sequences were trimmed from the 3′ ends of

raw data using cutadapt (v1.1) [41] and the parameters

“-O 12 -e 0..25”. Trimmed reads were aligned to the hu-

man genome (build hg19) using bowtie (v2.0.6) [42], and

multiple valid alignments per read were reported (up to

50) using the parameters “–seed 42 –gbar 100 -D 10 -R

2 -L 20 -N 0 -i C,1 -k 50 –score-min L,0,-0.4”. For each

read, only the alignments with the best score were used

in subsequent analyses.

Several sources of genome annotation were used.

GENCODE v.15 [43] was used, but transcripts with a

total length larger than 120 were excluded, as well as

genes of type “sense_intronic”, “sense_overlapping”, and

“miRNA”. For miRNAs, annotations from miRBase

(v.19) [44] were used, for both primary and mature tran-

script annotations. tRNA annotations were obtained

from GENCODE/tRNA and were supplemented with

metadata from GtRNAdb [45]. piRNA annotations from

the piRNA database [46] were used while collapsing

overlapping annotations into clusters. Repeat annota-

tions and metadata from RepeatMasker were obtained

from the UCSC (University of California Santa Cruz)

genome browser (27 March 2013) [47].

Using the (possibly multiple) alignments per read, and

the annotations described before, the set of (possibly

partially) overlapping genes was determined. In the case

that the set of genes all belonged to a certain “feature-

type” (i.e. RNA type), the featuretype was assigned to

that read. In the case that the featuretype was ambigu-

ous, the following steps were taken. If the length of the

read was larger than 25 nucleotides, the featuretype

“miRNA, processed” was eliminated; otherwise, the fea-

turetype “miRNA, premature” was eliminated. If the

length of the read was larger than 32 nucleotides, the

featuretype “piRNA” was eliminated. If at this point the

featuretype could be determined unambiguously, this

featuretype was assigned. Otherwise, if there were two

possible featuretypes, of which one was a repeat, the

nonrepeat featuretype was assigned to the read. If this

was not the case, and the read had two or more possible

alignments, all featuretypes which were indicated by only

one alignment were eliminated. Again, if at this point

the featuretype could be determined unambiguously, this

featuretype was assigned. In other cases, where the fea-

turetype was not determined unambiguously, the read

was designated as “Ambiguous” (Figure S1 in Additional

file 1).

For further analyses, the alignments were processed

and tables enumerating the featuretype, unique se-

quence, and count were created. This process enabled

the analyses of sequence lengths split out by featuretype,

and the analyses of fractions of RNA types per sample.

For the analysis of differential expression of specific

miRNA, the featuretype of miRNAs was further refined

to resolve the miRNA name. Analogously, for detailed

analysis of tRNAs and repeats, the featuretypes of these

two classes were further refined to include the tRNA

anti-codon and repeat family, respectively.

Correlations of samples

Correlations were only performed on genes which had at

least a total number of 15 reads over the cell samples, or

five reads over the exosome samples. Counts were normal-

ized using the trimmed-mean-of-M-values normalization.

Log values were calculated, and log values over zero were

imputed per sample, by taking the lowest nonzero normal-

ized value, dividing by two, and taking the log of that

value (i.e. zero counts were imputed by an estimation of

the lower limit of detection). Pearson correlation coeffi-

cients between the samples were calculated. In heat-

maps, genes were clustered by their standardized

euclidean distance, and samples were clustered by their

correlation coefficients.

tRNA/mRNA 3′ UTR complementarity analysis

A nonredundant list of tRNA fragment sequences was

made from the 20 most abundant tRNA fragments per
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sample. A BLAST database of mRNA 3′ UTRs was pre-

pared using GENCODE v15 transcript annotations (only

for transcripts having a complete CDS annotation). tRNA

fragment sequences were searched for complementarity to

3′ UTRs using BLAST (blastn v.2.2.25), with parameters

allowing only ungapped, complementary hits (“-u T -S 2”),

seed length 6, and an adjusted effective search space size

which was set to the total genomic length spanned by the

3′ UTRs used in the database (to adjust for overlapping 3′

UTRs originating from the same genomic sequence). The

maximum allowed e value was 1.0. For each hit, the con-

servation of the genomic region that matched to the tRNA

was inspected using phyloP 100-way data (obtained from

UCSC tracks, dd. 20MAR2015). Additionally, the conser-

vation of the matching region relative to the shortest over-

lapping 3′ UTR was calculated.

Statistical analyses

All statistical analyses were carried out in R software

(http://www.r-project.org/). Differential expression was

determined using the exactTest routine from the edgeR

package [48] and common library dispersions. Counts

were normalized using the supplied trimmed-mean-of-

M-values algorithm, except in the analysis of high-level

feature types (e.g. “miRNA”, “piRNA”, “repeat”), in which

case total library sizes were used to normalize.

Research was carried out in compliance with the

Helsinki Declaration and all experimental protocols were

approved by the Ethical Committee of the VU University

Medical Center and of the Rizzoli Orthopaedic Institute.

Results

Mesenchymal stem cells from adipose tissue and bone

marrow release exosome-like EVs enriched in small RNAs

To study the mesenchymal stem cell-released EVs we

isolated primary adult MSCs from human bone marrow

(BMSCs, n = 4) and adipose tissue (ASCs, n = 3) (Figure

S2 in Additional file 1). Early passage MSCs (passages

0–2) were expanded in exosome-depleted FBS or PL to

support in vitro expansion [36].

The MSC endosomal compartment was analyzed by im-

munofluorescence and by EM. The immunofluorescent

staining showed high punctate expression of CD63, which

was mainly localized in nonacidic vesicles in the perinuclear

region of the cells, as determined by lysotracker (Fig. 1a,

top left). The early endosome antigen A1 (EEA1) staining

highlighted the presence of numerous early endosomes dis-

tributed throughout the cell body (Fig. 1a, bottom left).

However, despite the expression of endosomal markers, the

ultrastructure of the stem cells revealed relatively low num-

bers of late endosomes with internal vesicular structures,

suggestive of MVB-like compartments and/or secretory

lysosomes. These compartments had a diameter of about

500 nm and enclosed 40–100 nm intraluminal vesicles

(Fig. 1a, right). The low abundance of MVB-like organelles

detectable by EM suggests that the high amount of CD63

observed in the perinuclear space of MSCs is associated

with intracellular membranes not related to MVBs.

EVs were isolated by differential centrifugation as de-

scribed previously [39] and their purity was confirmed

by EM and western blotting for CD63 and CD81. Cyto-

chrome C was assessed to exclude contamination by

apoptotic bodies (Fig. 1b). Although differential centrifu-

gation is the most commonly used method to isolate

exosomes from culture supernatant [49], it is not pos-

sible to rule out the presence of other types of EVs in

the exosome preparations when using this procedure.

However, because our preparations obtained by ultra-

centrifugation seem to be enriched for exosomes in

terms of size, shape, and tetraspanin content, we con-

sider these MSC-EVs as “exosomes”. To exclude poten-

tial contamination of MSC-exosome preparations by PL

or FBS-derived EVs, we analyzed CD63 and CD81 in

exosome-depleted culture media subjected to differential

centrifugation. Since no CD63 was detectable, we con-

cluded that our preparations contained mainly MSC-

derived exosomes (Figure S3A in Additional file 1).

To define the small RNA composition of the MSC

exosomes we degraded any unprotected RNA in exo-

some preparations by adding exogenous RNase A. Sub-

sequently, we isolated cellular and exosomal RNA,

which was subjected to Bioanalyzer profiling. The small

RNA profile of exosomes revealed characteristic peaks

between 20 and 70 nucleotides, suggestive of the pres-

ence of miRNAs and tRNAs. The size distribution in

cells was more heterogeneous and included longer tran-

scripts (Fig. 1c). We constructed cDNA libraries of MSC

cellular and exosomal RNA molecules with a length

ranging between approximately 15 and 90 nucleotides

(Figure S3B in Additional file 1).

We observed that early passage primary MSCs contain

relatively few MVBs, which suggests that these cells se-

crete relatively few exosomes compared with other cell

types [23, 50, 51]. However, MSC-released exosomes in-

corporate a small RNA population that is protected from

exogenous RNases.

Mesenchymal stem cells and their exosomes have a

different RNA composition

The sequencing of the libraries yielded a total of 25 mil-

lion reads. The cell samples showed a wide distribution

of read length, with a predominant peak around 22 nu-

cleotides (Fig. 2a), regardless of the tissue origin and

donor. Exosomes released by ASCs had a major peak be-

tween 31 and 36 nucleotides, while BMSC exosome

samples showed two different profiles and were there-

fore classified into subtypes (BMSC I and BMSC II).
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BMSC I exosomes had a length distribution similar to

that of ASC, while BMSC II exosomes displayed add-

itional peaks at 15 and 70 nucleotides. In order to assess

the variability among samples we performed an unsuper-

vised hierarchical clustering analysis. Clustering analysis

revealed a strong similarity among MSC samples irre-

spective of the stem cell source (Fig. 2b). Interestingly,

however, when looking at the exosome preparations,

ASC samples cluster tightly together, while BMSC I and

BMSC II exosome samples appear dissimilar from each

other. In accordance, the correlation analysis (Fig. 3a) in-

dicated a strong correlation among cellular samples

(0.87 <r <0.94). This correlation decreased when

comparing exosome libraries: the Pearson coefficient

within the BMSC I and BMSC II subtypes was 0.90 and

0.87 respectively, while it ranged from 0.66 and 0.73 be-

tween the two subgroups. Among ASC exosomes the

coefficient ranged from 0.84 to 0.88, while collectively

was between 0.65 and 0.84 between ASC and BMSC

exosomes.

The relatively low correlation between the two sub-

types of BMSC exosomes prompted us to investigate

whether the producing cells may represent different dif-

ferentiation stages. Because MSCs can spontaneously

undergo osteogenic differentiation during in-vitro expan-

sion [52], we analyzed the expression of early osteogenic
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markers—i.e. Runx2, alkaline phosphatase (ALP), and

collagen type 1 alpha 1 (COL1A1)—and of the stemness-

related genes SOX2, POU5F1A/B, and Nanog by quantita-

tive PCR (Fig. 3b). While we did not observe differences

in the expression of bone-related genes, BMSC II subtype

cells had elevated expression of Sox2, POU5F1A/B, and

Nanog as compared with the other subtypes (ANOVA

test, Fisher’s PLSD correction: p <0.05 BMSC II vs. ASC

and BMSC II vs. BMSC I for Sox2, and POU5F1A/B, and

BMSC II vs. ASC for Nanog). The different expression

levels of the pluripotency genes reflecting the stemness

of the MSCs might explain the dissimilarity in exosome

small RNA composition.

The correlation matrix analysis (Fig. 3a) highlighted a

weak correlation between cells and corresponding exo-

somes (r ≤0.57). This implies that exosomes do not

strictly reflect the RNA composition of the cells of ori-

gin, but selectively incorporate a variety of RNA species.

Indeed, we observed enrichment of distinct RNA classes

in cells while others were overrepresented in exosomes

(Fig. 4a, b). In all MSC samples, miRNAs and small nu-

cleolar RNAs (snoRNAs) were the most abundant clas-

ses of RNA in the cells, although their proportion was

variable independently of the tissue source (19–49 %

and 21–49 %, respectively) (Fig. 4a). These two classes

together accounted for 64–71 % of the entire cellular

Fig. 2 MSCs and their exosomes display a different small RNA composition. a Length distribution of RNAseq aligned reads in ASCs and BMSCs
and corresponding exosomes (one representative donor). b Unsupervised hierarchical clustering analysis of MSCs and exosomes based on the
total small RNA content. ASC adipose-derived mesenchymal stem cell, BMSC bone marrow-derived mesenchymal stem cell, exo exosome
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Fig. 3 Exosomes released by MSCs at different stages of differentiation correlate moderately with each other. a Correlation matrix of MSC and
exosome samples. b Relative expression levels of early osteogenic differentiation (top) and multipotency (bottom) genes analyzed by quantitative
PCR. Data were normalized to GAPDH. BMSC II express higher levels of Sox2 (ANOVA test: p = 0.006; Fisher’s PLSD test: p = 0.02 BMSC II vs. ASC,
p = 0.03 BMSC II vs. BMSC I), POU5F1A/B (ANOVA test: p = 0.01; Fisher’s PLSD test: p = 0.03 BMSC II vs. ASC, p = 0.01 BMSC II vs. BMSC I) and
Nanog (ANOVA test: p = 0.03; Fisher’s PLSD test: p = 0.056 BMSC II vs. ASC) compared with the other subtypes. ALP alkaline phosphatase, ANOVA
analysis of variance, ASC adipose-derived mesenchymal stem cell, BMSC bone marrow-derived mesenchymal stem cell, COL1A1 collagen type 1
alpha 1, exo exosome, GAPDH glyceraldehyde 3-phosphate dehydrogenase, Fisher's PLSD Fisher's Protected Least Significant Difference
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small RNA pool, followed by repeats (6–11 %), tRNA

(5–11 %), and rRNAs (up to 8 %). In contrast, exosome

libraries were highly enriched in the class of tRNAs,

which represented >50 % of total small RNAs in

adipose-derived exosomes and 23–35 % in bone marrow

exosomes, and repeats, ranging from 17–30 % in adi-

pose exosomes to 24–40 % in bone marrow exosomes

(Fig. 4a). The dominance of tRNAs in exosomes is con-

sistent with their function and abundance in the cellu-

lar cytoplasm. Other represented classes in exosomes

were miscellaneous RNAs, rRNAs, and miRNAs, the

latter representing only 2–5 % of the small RNA reper-

toire. In sharp contrast with that observed in MSC li-

braries, snoRNAs only represented a very small

proportion of the exosomal RNA content (<0.6 %).

In summary, our data indicate that miRNAs and snoR-

NAs are significantly enriched in the cells (miRNA:

logFC 3.35, FDR 3.3 × 10–10; snoRNA: logFC 6.65, FDR

4.9 × 10–27) while tRNAs and repeats form a defined

pool of RNAs heavily enriched in exosomes (tRNA:

logFC 2.46, FDR 1.59 × 10–6; repeats: logFC 1.88, FDR

2.1 × 10–4), suggestive of preferential sorting and release.

The length distribution (Fig. 2a) showed predominant

peaks between 31 and 36 nucleotides in ASC and BMSC

I exosomes and additional peaks at around 15 and 70

nucleotides in BMSC II exosomes, suggestive of the

presence of full-length tRNA and tRNA fragments in

exosomes. Since tRNAs and tRNA fragments are in-

volved in translation regulation and RNA silencing,

these observations may point to a physiological link be-

tween post-transcriptional regulation and exosome bio-

genesis in MSCs [53, 54].

Mesenchymal stem cell exosomes selectively incorporate

specific miRNAs

A substantial proportion of the cellular small RNA con-

tent in MSCs (19–49 %) is miRNA. However, this class

is underrepresented in exosomes (2–5 % of the total

small RNA) (Fig. 4a). Because of this discrepancy we in-

vestigated whether cells and exosomes share similar

miRNA content.

Fig. 4 Mesenchymal stem cells and their exosomes have a different RNA class distribution. a Relative distribution of overrepresented RNA species in MSCs
and exosomes. b Differential representation of RNA classes in MSC exosomes versus cells ordered by logFC. ASC adipose-derived mesenchymal stem cell,
BMSC bone marrow-derived mesenchymal stem cell, exo exosome, snoRNA small nucleolar RNA, logFC log fold-change, FDR false discovery rate
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In line with our previous findings on the total small

RNA profile, unsupervised clustering analysis and correl-

ation analysis based on the miRNA content only re-

vealed high similarity within cellular samples (0.89 <r

<0.96), while exosome samples displayed greater vari-

ability (0.75 <r <0.90). Overall, the correlation between

cells and exosomes appears weak (Fig. 5a; and Figure

S4A in Additional file 1).

To assess whether miRNAs were present as precursors

or fully processed transcripts we looked at the length

distribution of the miRNA reads (Fig. 5b), and found

that in all MSC subtypes, both in exosomes and corre-

sponding cells, the vast majority of miRNA sequences

ranged between 20 and 25 nucleotides. Accordingly, the

sequencing coverage of the most represented miRNA

genes (UCSC genome browser) (Fig. 5c) predominantly

shows the presence of mature miRNAs mapping to the

5p and/or 3p arms of the precursor.

We then examined the relative proportion of individ-

ual miRNAs in the repertoire of total miRNA reads

(Fig. 6a; and Figure S4B in Additional file 1). Surpris-

ingly, the five most abundant miRNAs (miR-486-5p,

miR-10a-5p, miR-10b-5p, miR-191-5p, and miR-222-3p

in ASC exosomes; and miR-143-3p, miR-10b-5p, miR-

486-5p, miR-22-3p, and miR-21-5p in BMSC exosomes)

accounted for 43–59 % of the total miRNA reads. To

evaluate the relative distribution of miRNAs in cells and

exosomes, we ranked cellular and exosomal miRNA

based on the reads per million (rpm) values and com-

pared the 20 most represented miRNAs in cells and exo-

somes (Table 1). miR-21-5p, miR-22-3p, miR-10b-5p,

and miR-222-3p were among the most represented in

both cells and exosomes; however, various miRNAs

(shown in bold in Table 1) were only present either in

the list of cellular or in the list of exosomal highly repre-

sented miRNAs. We next asked whether specific miR-

NAs may be preferentially excreted or retained in the

cells. Figure 6b shows the top four miRNAs overrepre-

sented in exosomes compared with MSCs (logFC >7;

FDR <5 × 10–15). On the other hand, miR-34a-5p, miR-

34c-5p, miR-15a-5p, and miR-136-3p were significantly

overrepresented in cells compared with exosomes (logFC

>3; FDR <3 × 10–6) (Fig. 6c). The relative abundance of

these miRNAs is shown in Figure S4C in Additional file

1. Altogether, the nonrandom distribution of miRNAs is

consistent with a sorting mechanism for disposal of “un-

used” small RNAs or for communication with the sur-

rounding environment as shown in other cell types [55].

tRNA-derived RNA fragments are highly represented in

MSC exosomes

The dramatic overrepresentation of tRNA sequences in

MSC exosomes prompted us to investigate which tRNAs

were the most represented and whether these could

be functional processed transcripts or degradation

products.

Our analysis revealed that generally the adult MSC

subtypes have similar tRNA profiles irrespective of the

tissue source (Fig. 7a, top). tRNA CTC (Glu) was highly

represented both in ASCs and in BMSCs, accounting for

43–72 % of the total tRNA reads. In order to exclude

potential experimental biases leading to high representa-

tion of one specific tRNA sequence, we also analyzed

the tRNA profile obtained by small RNAseq in an unre-

lated cell type—i.e. lymphoblastoid cells (LCLs) (Figure

S5A in Additional file 1). Interestingly, we found a very

distinct tRNA distribution in these cells suggesting that,

similar to miRNAs, tRNA profiles may be useful as indi-

cators of tissue origin. Overall, exosomal tRNA profiles

appeared distinct from the cellular profiles (Figure S6 in

Additional file 1) and displayed more intergroup vari-

ability (Fig. 7a, bottom). The five most prevalent tRNA

sequences in MSC exosomes accounted for 87–97 % of

the total exosomal tRNA pool (consisting of 40–54 dif-

ferent acceptors). Interestingly, while in BMSCs and

LCLs the most abundant tRNAs in cells and exosomes

clearly correspond, the most abundant tRNA in ASC

exosomes, tRNA GCC (Gly), only represented a small

fraction (5 %) of the total cellular tRNA (Fig. 7a). Moreover,

this tRNA was overrepresented in ASC exosomes com-

pared with BMSC exosomes (logFC 3.8; FDR 1.1 × 10–7)

(Figure S5B in Additional file 1).

To investigate whether MSC libraries contain full-length

tRNAs or processed transcripts we analyzed the length

distribution of the tRNA reads (Fig. 7b). Surprisingly, both

in cells and exosomes, tRNA fragments constitute a con-

siderable fraction of the total tRNA. Although MSCs from

both tissue origins display a broad range of tRNA lengths,

exosomal tRNA sequences have specific fragment sizes.

ASC exosomes and BMSC I exosomes mainly contained

fragments of 30–35 nucleotides, whereas BMSC II exo-

somes also show a dominant peak at 70–75 nucleotides.

Intrigued by these findings we zoomed into the genomic

coverage and length distribution of the most represented

tRNA genes (Fig. 7c; and Figure S5C in Additional file 1).

Strikingly, while at the cellular level adipose and bone

marrow MSCs contain the full-length form of the most

abundant tRNA, tRNA CTC (Glu), exosomes released by

ASC and BMSC I exosomes consistently display the 33-

nucleotide 5′ halves of the most abundant sequences

(Fig. 7c; and Figure S5C in Additional file 1). BMSC II

exosomes that are produced by cells with high expression

of pluripotency factors seem to preferentially enclose the

full-length form of tRNA CTC (Glu), and the 33-

nucleotide fragments of other abundant tRNA species

(Figure S5C in Additional file 1). The remarkable differ-

ences in tRNA composition observed between adipose

and bone marrow exosomes warrant future investigations
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Fig. 5 MSCs and their exosomes display a different miRNA repertoire. a Unsupervised hierarchical clustering analysis of MSCs and their exosomes
based on the miRNA content. b Length distribution of miRNA reads in ASC and BMSC I and BMSC II cells and exosomes (one representative
donor). c Sequence coverage of highly represented miRNA genes (based on UCSC genome browser custom tracks) showing a predominant
presence of mature forms (one or both miRNA arms) in MSCs and exosomes. Y axis indicates the normalized counts (rpm). ASC adipose-derived
mesenchymal stem cell, BMSC bone marrow-derived mesenchymal stem cell, exo exosome
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into the paracrine effects of adult stem cells from different

sources and at different stages of differentiation.

Although the function of tRNA fragments and tRNA

halves in mammalian cells is still largely unknown, a

miRNA/siRNA (small interfering RNA)-like function for

these tRNA species has been recently suggested [56].

Here we performed a bioinformatic analysis to evaluate

the antisense complementarity of the most abundant

tRNA species in cells and exosomes to the 3′ UTRs of

annotated protein-coding transcripts. We found a group

of putative candidate targets (Table 2; and Additional file

2), many of which have undefined biological function.

Interestingly, among the potential targets we found fac-

tors involved in stem cell self-renewal and MSC differen-

tiation, such as TFCP2L1, RUNX2, and SOX11, the

transforming growth factor-beta (TGFβ) signaling medi-

ator SMAD3, and immune-related factors such as

HHLA2, EMR2, and TRIM62.

Discussion

The administration of MSC-EVs is advantageous over

cell-based therapy because it eliminates the safety con-

cerns associated with the injection of multipotent cells

into patients [12]. MSC-secreted exosomes have recently

Fig. 6 MSC exosomes selectively incorporate specific miRNAs. a Relative proportion of miRNAs in the repertoire of total miRNA reads. The five
most abundant miRNAs represent 50 % of the total miRNA reads. b Overrepresented and c underrepresented miRNAs in MSC exosomes as
compared with producing cells (LogFC >3; FDR <0.0002). ASC adipose-derived mesenchymal stem cell, BMSC bone marrow-derived mesenchymal
stem cell, exo exosome
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Table 1 Most abundant miRNAs in MSC exosomes and cells

Rank Most represented miRNA in exosomes Most represented miRNA in cells

miRNA rpm ASC exosomes miRNA rpm ASC cells

1 miR-486-5p 172,837 miR-21-5p 145,332

2 miR-10a-5p 117,453 miR-22-3p 92,902

3 miR-10b-5p 104,447 miR-10b-5p 82,089

4 miR-191-5p 92,545 miR-222-3p 74,725

5 miR-222-3p 49,405 miR-143-3p 73,794

6 miR-22-3p 37,205 let-7a-5p 71,686

7 let-7a-5p 28,814 miR-10a-5p 44,303

8 miR-21-5p 27,233 miR-92a-3p 33,827

9 miR-127-3p 27,071 let-7f-5p 33,248

10 miR-143-3p 22,579 let-7i-5p 22,624

11 miR-99b-5p 21,471 miR-127-3p 17,303

12 miR-100-5p 18,836 miR-148a-3p 17,109

13 miR-92a-3p 18,217 miR-26a-5p 16,127

14 let-7f-5p 17,589 miR-92b-3p 14,852

15 miR-92b-3p 16,124 miR-21-3p 14,548

16 miR-26a-5p 13,207 miR-221-3p 12,481

17 miR-146a-5p 12,212 miR-16-5p 11,544

18 miR-4485 10,656 miR-100-5p 11,180

19 miR-146b-5p 10,,558 miR-31-5p 9521

20 miR-151a-3p 10,262 miR-411-5p 8051

miRNA rpm BMSC exosomes miRNA rpm BMSC cells

1 miR-143-3p 124,950 miR-143-3p 185,884

2 miR-10b-5p 103,485 miR-21-5p 150,993

3 miR-486-5p 91,274 miR-22-3p 105,358

4 miR-22-3p 74,730 let-7a-5p 91,387

5 miR-21-5p 47,445 miR-10b-5p 42,729

6 miR-222-3p 46,094 miR-222-3p 38,076

7 miR-191-5p 45,054 miR-27b-3p 35,496

8 miR-100-5p 41,668 let-7f-5p 29,054

9 let-7a-5p 38,486 let-7i-5p 21,993

10 miR-99b-5p 29,011 miR-26a-5p 21,934

11 miR-92a-3p 24,941 miR-100-5p 21,157

12 miR-127-3p 21,319 miR-127-3p 14,836

13 let-7f-5p 21,203 miR-148a-3p 12,789

14 miR-92b-3p 20,938 miR-92b-3p 12,306

15 miR-423-5p 19,807 miR-92a-3p 11,840

16 miR-10a-5p 14,716 miR-191-5p 11,384

17 miR-27b-3p 13,604 miR-21-3p 11,372

18 let-7i-5p 11,997 miR-125b-5p 10,699

19 miR-28-3p 10,554 let-7b-5p 9603

20 miR-125b-5p 10,378 miR-16-5p 9583

miRNAs present only in the list of cellular or in the list of exosomal miRNAs are highlighted in bold

ASC adipose-derived mesenchymal stem cell, BMSC bone marrow-derived mesenchymal stem cell, miRNA microRNA, MSC mesenchymal stem cell, rpm reads

per million
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Fig. 7 tRNA-derived RNA fragments are highly represented in MSC exosomes. a Relative distribution of highly represented tRNAs in MSCs and
respective exosomes. b Length distribution of tRNA sequencing reads in ASC and BMSC I and II cells and exosomes. c Sequence coverage of
highly represented tRNA genes (based on UCSC genome browser custom tracks). Y axis indicates the normalized counts (rpm). ASC adipose-derived
mesenchymal stem cell, BMSC bone marrow-derived mesenchymal stem cell, exo exosome
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Table 2 Complementarity analysis of tRNA species to 3′ untranslated regions of protein-coding genes

Query Query sequence Hit length e value Bitscore Gene name Conservation value Normalized
conservation value

tRNA; Glu; CTC AGTGGTTAGGATTCGGC
GCTCTCACCGCCGCGGCCC

14 0.19 28.2 GOLGA6A 0.510 0.970

tRNA; Glu; TTC TCCCTGGTGGTCTAGTG
GCTAGGATTCGGCGCTTT

24 0.012 32.2 TFCP2L1 0.146 1.067

14 0.19 28.2 NELF -0.303 0.962

17 0.74 26.3 KIAA0513 -0.367 1.013

13 0.74 26.3 ZBTB45 -0.447 0.950

13 0.74 26.3 HHIPL1 -1.103 0.808

13 0.74 26.3 HSP90AA1 -0.248 0.982

13 0.74 26.3 TULP4 1.937 1.345

13 0.74 26.3 SMAD3 0.259 1.001

13 0.74 26.3 RPS19 -0.474 0.984

13 0.74 26.3 ZNF662 0.140 0.990

13 0.74 26.3 AC104841.2 2.810 1.542

tRNA; Gly; GCC GCATGGGTGGTTCAG
TGGGAGAATTCTCGCCT

18 0.19 28.2 PHF13 0.042 0.914

14 0.19 28.2 KDSR -0.243 0.904

14 0.19 28.2 PLAGL2 0.634 0.881

13 0.74 26.3 NOX5 -0.231 0.982

13 0.74 26.3 EPM2AIP1 0.373 0.996

13 0.74 26.3 GTF3C1 -0.476 1.095

13 0.74 26.3 GPR110 0.293 1.053

13 0.74 26.3 TPI1 0.241 0.971

13 0.74 26.3 PPP2R1B -0.302 0.875

13 0.74 26.3 LUZP2 0.125 0.998

13 0.74 26.3 VPS41 -0.243 0.977

13 0.74 26.3 SSR1 0.187 1.025

13 0.74 26.3 RUNX2 1.358 0.956

13 0.74 26.3 MAP1LC3B -0.254 0.890

GCATGGGTGGTTCA
GTGGTAGAATTCTCGCCG

14 0.19 28.2 GCM1 0.127 1.032

17 0.74 26.3 SLC2A13 0.507 0.983

13 0.74 26.3 GTF3C1 -0.476 1.095

13 0.74 26.3 HHLA2 -0.075 1.004

13 0.74 26.3 TPI1 0.241 0.971

13 0.74 26.3 PEG10 -0.126 0.806

13 0.74 26.3 EMR2 -0.166 0.954

13 0.74 26.3 SSR1 0.187 1.025

11 0.7 22.3 THAP5 0.155 0.979

11 0.7 22.3 THAP5 0.393 1.029

GCATGGGTGGTTCA
GTGGTAGAATTCTCGCCTG

14 0.19 28.2 GCM1 0.127 1.032

17 0.74 26.3 SLC2A13 0.507 0.983

13 0.74 26.3 GTF3C1 -0.476 1.095

13 0.74 26.3 HHLA2 -0.075 1.004
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been shown to improve therapy-refractory graft-versus-

host disease [11] and to promote organ healing in vari-

ous preclinical models [21, 32, 33]. Comprehensive

characterization of these vesicles is therefore a critical

step in understanding their biological activity to

maximize clinical utility.

MSCs have been described before as prolific producers

of exosomes when compared with some other cell types

[57]. However, this conclusion was based on the use of

myc-transformed (immortalized) human embryonic stem

cell-derived MSCs [58], which was required to overcome

the limited in-vitro expansion potential. Because immor-

talized cells may secrete pro-oncogenic material via EVs

[59], the clinical usefulness of these vesicles is uncertain.

In addition, immortalized MSCs may produce EVs with

an altered content, casting additional doubt as to

whether these EVs are representative of their natural

counterparts [60]. We show here that unmanipulated

MSCs in culture produce few EVs with exosome charac-

teristics. Accordingly, MSCs in culture possess relatively

few prototypical MVBs compared with most cell types

analyzed thus far in our laboratory [23, 50]. Although

MSC exosomes have the same morphology as exosomes

from B-cell blasts and carry typical marker proteins, they

may differ in compartmentalization, biogenesis, and

therefore RNA composition. Moreover, we presume that

factors such as tissue origin (adult or embryonic) and

stemness could influence both exosome production and

content.

The very low intragroup and intergroup variability

among MSC samples indicates that donor-specific char-

acteristics and the tissue-specific microenvironment do

not significantly influence the small RNA expression

profile of the cells. However, important differences

emerged when comparing EV preparations. The variabil-

ity between ASC and BMSC EVs suggests that the

tissue-specific microenvironment might influence the

exosomal sorting of the MSCs. The intragroup variability

indicates that cell-intrinsic factors, such as the differenti-

ation status of the cells, might dictate which signals are

conferred by the cells, as previously reported for cyto-

kines and growth factors [61, 62].

Although most studies show that miRNAs only repre-

sent a small fraction of exosomal RNA [28, 63, 64], miR-

NAs transferred via exosomes can be functional in

repressing their target in vitro and in vivo [23–27]. In

our analysis, we found that the five most abundant miR-

NAs in MSC exosomes accounted for 50 % of the total

miRNA reads. Thus, specific miRNAs present in high

amounts might have physiological effects. In a previous

study, Chen et al. [65] showed that particles secreted by

human embryonic stem cell-derived MSCs are enriched

in pre-miRNAs. In contrast, our study reveals that adult

MSC exosomes mainly contain mature transcripts.

Table 2 Complementarity analysis of tRNA species to 3′ untranslated regions of protein-coding genes (Continued)

13 0.74 26.3 TPI1 0.241 0.971

13 0.74 26.3 PEG10 -0.126 0.806

13 0.74 26.3 EMR2 -0.166 0.954

13 0.74 26.3 SSR1 0.187 1.025

11 0.73 22.3 THAP5 0.155 0.979

11 0.73 22.3 THAP5 0.393 1.029

GCATTGGTGGTTCAGTGGTAGAATTCT
CGCCTGCCACGCGGGAGGCCCGGGT

20 0.012 32.2 SOX11 0.180 0.752

14 0.19 28.2 GCM1 0.127 1.032

17 0.74 26.3 SLC2A13 0.507 0.983

17 0.74 26.3 FAM57B -0.158 0.849

13 0.74 26.3 HHLA2 -0.075 1.004

13 0.74 26.3 C1orf159 -0.663 0.984

13 0.74 26.3 KLC2 -0.224 0.835

13 0.74 26.3 PEG10 -0.126 0.806

13 0.74 26.3 DRG2 -0.468 0.817

13 0.74 26.3 VPRBP 1.514 0.913

13 0.74 26.3 TRIM62 -0.098 0.921

13 0.74 26.3 EMR2 -0.166 0.954

13 0.74 26.3 ANXA8L2 2.926 1.223
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While it is possible that the EVs released by embryonic

and adult MSCs preferentially enclose different miRNA

forms, conditioned medium as a whole presumably con-

tains heterogeneous populations of RNA when compared

with exosomes purified by differential ultracentrifugation,

as analyzed in this study. Possibly, the pre-miRNAs are

not released in association with exosomes but are incor-

porated into vesicles of different nature. Although there is

a substantial similarity between the most represented

miRNAs in ASC and BMSC exosomes, their relative pro-

portions are different, raising the possibility that ASCs

and BMSCs might deliver different information into their

microenvironments. Some of these miRNAs have been

implicated in MSC biology [66]. miR-486 is involved in

ASC replicative senescence [67], miR-143 has been related

to the immune modulatory function of MSCs [68], miR-

10a and miR-22 are important regulators of MSC differen-

tiation [69, 70], and miR-10b promotes the migration of

mouse BMSCs [71]. The release of these miRNAs by

ASCs and BMSCs could play a role in stem cell niche

maintenance by controlling and fine-tuning proliferation,

differentiation, and homing. In addition, multiple miRNAs

highly represented in adult MSC exosomes regulate cell

cycle progression and proliferation (miR-191, miR-222,

miR-21, let-7a), and modulate angiogenesis (miR-222,

miR-21, let-7f) and endothelial cell differentiation (miR-

6087) [72–74]. The uptake of these miRNAs at sites of in-

jury might promote the proliferation of multiple cell types

and stimulate the formation of new blood vessels for tis-

sue repair.

While most of the focus on functional small RNAs in

exosomes has been on the class of miRNAs, in contrast

with what was previously reported for immune and

neuronal cells [28, 63], MSC exosomes are highly

enriched in tRNAs, specifically tRNA halves, and repeats

compared with the producing cells.

Recent findings suggest that tRNA pools in proliferating

cells versus differentiating cells are distinct. Importantly,

it was noted that genes involved in cell-autonomous

functions carry codons corresponding to proliferation-

associated tRNAs, while genes linked to multicellularity

require differentiation-associated tRNAs [75]. Therefore it

would be very interesting to investigate the correlation

between the most abundant tRNA species produced and

released via exosomes by MSCs and the cellular protein

composition, and how this might change upon activation

of specific differentiation programs.

Post-transcriptional processing of tRNAs into tRNA

fragments is a nonrandom evolutionary conserved mech-

anism [53, 54, 76]. Strikingly, tRNA fragments of defined

sizes are highly represented in adult MSCs and tRNA

halves appear to be massively sorted into MSC exosomes.

The 14–30-nucleotide tRNA-derived RNA fragments

(tRFs) are known to associate with Argonaute proteins

and have similar properties to miRNAs [53]. Moreover,

these fragments can define transformed cells [77]. The

function of tRNA halves in mammalian cells, however,

is largely unknown. Protein biosynthesis inhibition in

response to stress conditions has been initially proposed

as the most plausible explanation for tRNA cleavage.

However, the two halves of the tRNA are usually un-

equally stable, suggesting more complex roles for these

tRNA pieces [54]. More recently, 5′ halves have been

implicated in stress-induced translation inhibition and

stress granule formation [78]. In MSCs it seems that

tRNA halves are expressed at relatively high levels

under standard culture conditions, possibly indicating

physiological functions.

We found that ASC exosomes predominantly carry

tRNA halves and are virtually devoid of full-length tran-

scripts. BMSC exosomes have two different tRNA length

profiles that seem to be related to differentiation status.

Indeed, BMSCs expressing a high level of key stemness

markers (BMSC II) package both full-length transcripts

and 33-nucleotide fragments, while more differentiated

cells (BMSC I) display the same tRNA length profile as

ASC exosomes. Interestingly, however, the most abundant

tRNAs in exosomes do not always correspond to those in

cells, suggesting that cells can sort specific tRNAs perhaps

as a mechanism for gene expression regulation. Analyzing

the genomic coverage of the most abundant tRNA reads

we found that ASC and BMSC I exosomes consistently

display the 5′ halves of the most represented tRNA se-

quences, tRNA GCC (Gly) and CTC (Glu), respectively.

The 5′ half of tRNA CTC (Glu) was recently shown to act

in a miRNA/siRNA-like fashion to silence target mRNAs

[56], although putative target transcripts for this and other

fragments have not yet been identified.

The complementarity analysis of the most abundant

tRNA species in cells and exosomes to the 3′ UTRs of

protein-coding genes highlighted interesting putative tRNA

targets involved in stem cell renewal, differentiation, and

immune modulation. For instance, we found: TFCP2L1, a

transcription factor involved in stem cell self-renewal [79];

RUNX2 and SOX11, master transcription factors in

MSC differentiation [80, 81]; SMAD3, mediator of TGF-β-

induced proliferation, differentiation, and survival; RPS19,

involved in erythropoietic differentiation and proliferation

[82]; and immune-related factors and inflammation

mediators such as HHLA2, EMR2, and TRIM62 [83–85].

Further studies will be required to elucidate the biological

function of the tRNA fragments and to evaluate whether

their release via exosomes is involved in orchestrating

tissue architectures.

Conclusions
The role of EV-transferred RNA in physiological pro-

cesses in vivo remains unclear, partly because the
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minimum amount of individual RNA molecules that is

required for causing physiological changes in target cells

is difficult to predict, and is likely to involve many fac-

tors. One recent hypothesis is that the most abundant

and enriched RNA species in EVs play a dominant role.

Using RNAseq analysis we could demonstrate that the

most abundant and enriched small RNAs in adult MSC

exosomes are defined tRNA species. Moreover, adipose

and bone marrow MSC subtypes secrete different tRNA

species that may be relevant for clinical applications. Fu-

ture studies should focus on how these tRNA molecules

are transported by MSC exosomes under physiological

conditions and whether they influence their microenvir-

onment in a cell type-dependent manner.

Additional files

Additional file 1: Figure S1. Shows the Bioinformatics workflow. Figure
S2 shows MSC origin (A), expression of surface markers analyzed by FACS
(B), and osteogenic differentiation assessed by Alizarin red staining (C).
Figure S3 shows detection of CD63 and CD81 in MSC and exosomes, PL
and FBS (A), and cDNA libraries of MSC cellular and exosomal RNA (B).
Figure S4 shows correlation matrix of MSC and exosome samples based
on the miRNA profiles (A), relative proportion of individual miRNAs in
the repertoire of total miRNA reads in cells (B), and rpm of miRNAs
differentially represented in cells and exosomes (C). Figure S5 shows
relative distribution of tRNAs in MSCs, LCLs, and respective exosomes
(A), differentially represented tRNAs in BMSC exosomes compared with
ASC exosomes (B), and length distribution of the most represented
tRNAs in MSC cells and exosomes (C). Figure S6 shows tRNAs differentially
represented in exosomes compared with cells.

Additional file 2: Table S1. Presents antisense complementarity of the
most abundant tRNA species to the 3′ UTRs of annotated protein-coding
transcripts.
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