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Abstract: There is consistent evidence that brain volume changes in early and late life. Most longitudinal
studies usually only span a few years and include a limited number of participants. In this review, we
integrate findings from 56 longitudinal magnetic resonance imaging (MRI) studies on whole brain volume
change in healthy individuals. The individual longitudinal MRI studies describe only the development in
a limited age range. In total, 2,211 participants were included. Age at first measurement varied between 4
and 88 years of age. The studies included in this review were performed using a large range of methods
(e.g., different scanner protocols and different acquisition parameters). We applied a weighted regression
analysis to estimate the age dependency of the rate of relative annual brain volume change across studies.
The results indicate that whole brain volume changes throughout the life span. A wave of growth occurs
during childhood/adolescence, where around 9 years of age a 1% annual brain growth is found which lev-
els off until at age 13 a gradual volume decrease sets in. During young adulthood, between �18 and 35
years of age, possibly another wave of growth occurs or at least a period of no brain tissue loss. After age
35 years, a steady volume loss is found of 0.2% per year, which accelerates gradually to an annual brain
volume loss of 0.5% at age 60. The brains of people over 60 years of age show a steady volume loss of
more than 0.5%. Understanding the mechanisms underlying these plastic brain changes may contribute to
distinguishing progressive brain changes in psychiatric and neurological diseases from healthy aging proc-
esses. Hum Brain Mapp 33:1987–2002, 2012. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Comparison of brain weight between people at different
ages has suggested that considerable volume change takes
place during development in humans. It has been shown
in an autopsy study that included more than 4,000 indi-
viduals across the full age range that the most pronounced
increase in brain weight occurs during the first 3 years of
life [Dekaban, 1978]. Between age 3 and 18, the brain
increases in weight to about 5 times that of a newborn. At
�45–50 years of age, a progressive decline in brain weight
begins and reaches the lowest values after the age of 86.
By then, it is about 11% smaller relative to the maximum
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brain weight attained around 19 years of age. Another
postmortem study suggests that it is after the age of 80
that the brain mass is rapidly decreasing [Ho et al., 1980].
Cross-sectional studies suggest a linear decline in cerebral
volume throughout adulthood [Raz et al., 2004] with an
estimated volume loss of an average of 14% at age 90 [Jer-
nigan et al., 2001].

Magnetic resonance imaging (MRI) provides us with the
opportunity to study brain development within subjects
over time. In longitudinal studies, participants can serve
as their own control and therefore subtle changes can be
identified on an individual level. Longitudinal studies
have revealed that brain changes occur in childhood and
in adulthood including in old age. However, to date, indi-
vidual longitudinal MRI studies describe only the develop-
ment in a limited age range as scanning subjects across
their whole life span requires a very long interval. While
having shown that brain changes occur during the whole
life span, each of these studies provides a keyhole repre-
sentation of these changes at a limited age span. Specifi-
cally, these studies do not allow for a direct comparison
between childhood and adult changes and between young
adult and old adult changes. It is during these transitions
that important changes may take place. Therefore, we
reviewed and integrated the findings of longitudinal MRI
studies in healthy subjects throughout the life span on
whole brain volume change.

METHODS

Data Sources

A systematic search was conducted to identify MRI
studies that quantitatively examined longitudinal whole
brain volume changes in healthy individuals with at least
two MRI scans at different time points. These studies were
obtained through the computerized database PUBMED for
English-language articles published until January 1, 2010.
The keywords combinations used in the computerized
search were ‘‘MRI and longitudinal and ‘‘whole brain,’’
‘‘Brain volume change(s) and longitudinal and MRI and
healthy subjects.’’ Articles were examined to investigate
whether papers reached the inclusion criteria (see below).
Additional studies were obtained by hand search of cross-
references in already identified papers.

From the studies that were found, those that also
reported on volume change over time in gray matter (GM)
and/or white matter (WM) volume were identified.

Study Selection

Studies were included if they (1) were longitudinal MRI
studies with at least two MRI scans, (2) investigated
healthy individuals, (3) provided quantitative measures of
whole brain volume change, and (4) were published in the
English language in scientific peer review journals.

Statistical Analysis and Data Extraction

Whole brain, GM, and WM volume change in percent
change per year (Q) was extracted from the studies. The
formula for this calculation was

Q ¼ DV=ðV1 � DtÞ � 100%

with DV ¼ V2�V1 representing the volume change
between volume (V1) at baseline (t1) and volume (V2) at
follow-up (t2), and Dt ¼ t2�t1 representing the time
between t1 and t2. For each study, mean age of the sample
was defined as the mean age halfway the interval. It was
measured based on either mean age at t1 or t2 in years
(dependent on what was available) and the interval of the
longitudinal measurement in years as follows: [t1 þ (fol-
low-up interval)/2] or [t2 � (follow-up interval)/2].

For whole brain volume change, regression analysis in
the form of a locally weighted running-line smoother
[Cleveland and Devlin, 1988; Hastie and Tibshirani, 1990]
was used to obtain the dependence of Q on age. Software
for these analyses was developed in house [van Haren
et al., 2008]. First, the data were split into two age ranges
based on the mean age of the sample, i.e., from 7 to 19
years and from 19 to 84 years. This was done because
there are only a limited number of studies available cover-
ing the age range between 18 and 21 years, preventing us
from making a reliable connection between development
during childhood and adolescence and development dur-
ing the adult age range. The degree of freedom of the fits
was set to a conservative value of 3, the lowest number
allowing some curvature in the fits, since there is no (sta-
tistical) support for higher values.

Smoothed Q was numerically integrated to obtain vol-
ume as a function of age: Volume(age) ¼ Volume(age0) *
exp(Integrate[Q(age’)/100, {age’, age0, age}]). The division
by 100 is because Q is given in %; the ‘‘exp’’ is because
integration of Q leads to the log of Volume, since Q is a
relative measure. Age0 and Volume(age0) are taken from
the study of 9-year-olds by Peper et al. [2009]; the end-
point of the integration of the younger age group was the
starting point of the integration of the older age group (19
year).

For GM and WM volume change, percent change per
year was calculated according to the same procedure as
described previously. For those studies in the adult age
range (>19 years), we smoothed the GM and WM data
using the locally weighted running-line smoother (3 dfs).
The studies in childhood and adolescence were excluded
from the smoothing procedure as there were too few stud-
ies that provided data on GM/WM changes.

RESULTS

Fifty-six studies were identified as suitable for our
review. Table I lists the included articles. DeLisi et al. [1992]
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published the first longitudinal study that included healthy
controls. The number of participants per study ranged from
7 [Henley et al., 2006] to 228 [Lenroot et al., 2007]. Minimum
interval between the MRI scans was 29 days [Pfefferbaum
et al., 1995] while the maximum interval was 10 years
[DeLisi et al., 2004]. Out of these 56, nine studies provided
data on GM and WM matter volume change over time, and
one study provided data on only GM volume change. Table
II lists the articles with GM and WM volume change. When-
ever it states ‘‘no results’’ in the tables for the column(s)
‘‘Relative rate of % brain/GM/WM volume change/year,’’
it means that there was no information available to extract
percentage change per year. These studies were left out
from the smoothing analysis.

MRI Acquisition and Processing Specifics

The majority of the MRI studies acquired T1-weighted
images (SPGR, FFE, or MPRAGE depending on manufac-
turer being GE, Philips, or Siemens, respectively) on a 1.5
Tesla scanner. Brain scans were obtained in either axial,
sagittal, or coronal plane with slice thickness ranging from
0.9 to 5 mm. Images were segmented using manual, semi-
automated, or automated procedures or with a combina-
tion of these. For details see Table I.

Study Specific Details

Several studies published data on totally or partly over-
lapping samples. To prevent bias, these studies were iden-
tified, and the study with the highest number of
participants (usually the most recent study) was included
in the regression plots (see Table I).

One study included only female subjects [Cohen et al.,
2001], and two studies included only male subjects [Pfef-
ferbaum et al., 1995; Withworth et al., 2005]. Eighteen
studies measured cerebrum volume, and the remainder of
the studies (N ¼ 38) measured whole brain volume. As we
were interested in relative brain volume change, this was
not a problem in this study. Findings from 20 studies were
corrected for intracranial volume (ICV) and 17 studies for
baseline brain volume. Seventeen studies reported brain
volume change after correcting for age and sex. An addi-
tional four studies only corrected for age, while another
six studies corrected only for sex. Here, the rate of change
for whole brain, GM, and WM volumes is based on the
uncorrected data (if present).

In the study by Lieberman et al. [2005], the follow-up
interval with 52 weeks with N ¼ 44 was used in the
review, but baseline volumes of N ¼ 52 were used to cal-
culate the rate of change per year.

Two studies were designed to investigate the effect of
Apolipoprotein Epsilon e4þ (ApoE e4þ) on whole brain vol-
ume change [Chen et al., 2007; Cohen et al., 2001]. Groups
were either defined as ApoE e4þ carrier or noncarrier
[Cohen et al., 2001], or subjects were divided in three groups

being either homozygous (noncarriers or carriers) or hetero-
zygous for ApoE e4þ [Chen et al., 2007]. The frequency of
ApoE e4þ carriers in the total population of white Cauca-
sians is 15% [Cumming and Robertson, 1984]. In addition,
the frequency of being homozygous or heterozygous for
ApoE e4þ is �2% and 26.5%, respectively [Hill et al., 2007].
Weighted means of rate of whole brain volume change per
year were calculated using these known frequency distribu-
tions. For ApoE e4þ carriers [Cohen et al., 2001], the formula
is as follows: (0.15 * Q in ApoE 4þ carriers) þ (0.85 * Q in
ApoE e4þ noncarriers). The formula for the study by Chen
et al. [2007] is as follows: (homozygous: 0.02 * Q) þ (hetero-
zygous: 0.27 * Q) þ (noncarriers: 0.71 * Q).

Schott et al. [2005] compared two segmentation meth-
ods, i.e., brain boundary shift integrals (BBSIs) and manual
segmentation. Here, the findings from the manual segmen-
tation were chosen as this is still considered to be the
golden standard.

One study included monozygotic (MZ) and dizygotic
(DZ) twin pairs and reported whole brain volume change
for each group separately [Brans et al., 2008a]. For our
purpose, relative rate of volume change per year was
weighted according to the number of DZ and MZ twins.

In Figure 1, all studies for which relative rate of brain
volume change per year was calculated are shown (N ¼
33). Eight studies did not present sufficient information to
extract relative rate of whole brain volume change per
year. Fifteen studies were excluded as they reported on
overlapping samples.

Several studies reported results for different age groups
[Liu et al., 2003; Mueller et al., 1998; Scahill et al., 2003],
and these individual age groups are depicted separately.
As a result 41 data points are shown. Two studies
reported their data as nonlinear trajectories [Lenroot et al.,
2007; van Haren et al., 2008], and their respective trajecto-
ries are also shown here.

Figure 2 shows the relative rate of brain volume change
per year for each individual study as circles. The area of
the circle scales with the number of included subjects. One
study is excluded from this analysis since it deviates from
all the other studies [Tang et al., 2001]. Therefore, fits were
based on 32 studies, including 1,393 participants.

In Figure 3, whole brain volume is presented as a func-
tion of age, obtained by integration of the fits from Figure
2 with respect to age. As starting volume mean, whole
brain volume was used from a study of N ¼ 210 nine-
year-old twins [Peper et al., 2009].

The results indicate that a wave of growth in whole
brain volume occurs during childhood and adolescence,
i.e., around 9 years of age, a 1% annual brain growth is
found which levels off until at age 13 a gradual volume
decrease sets in. During young adulthood, between �18
and 35 years of age, possibly another wave of growth
occurs or at least a period of no brain tissue loss. After
age 35 years, a steady volume loss is found of 0.2% per
year, which accelerates gradually to an annual brain vol-
ume loss of 0.5% at age 60.

r 1995 r

r Brain Volume Changes in Healthy Individuals r
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Figure 4a,b shows the relative rate of GM and WM vol-

ume change per year for each individual study as circles.

The area of the circle scales as the number of included

subjects. A decrease is found in percent GM volume per

year in all studies except for one [Lieberman et al., 2005].

Those studies that included individuals below the age of

�45 years show an increase in percent WM volume per

year while studies with subjects older than 45 years of age

show decreases. Two studies provided age-related trajecto-

ries of GM and WM changes with age [Lenroot et al.,

2007; van Haren et al., 2008]. These are added to Figure

4a,b.

DISCUSSION

In this review, findings from longitudinal MRI studies
on whole brain volume change in healthy individuals over
the full life span are integrated. Fifty-six studies were
selected, including a total of 2,211 healthy individuals. We
find that brain volume changes throughout life, not only
in childhood and adolescence but also in adulthood. More
specifically, the results indicate that brain volume
increases during childhood and young adolescence until
the age of �13 years. After age 13 years, a decrease in
whole brain volume sets in. The main finding from the
current study is that we provide evidence for a possible

Figure 1.

Longitudinal magnetic resonance brain imaging studies measuring

whole brain volume change with age in humans. The total num-

ber of studies, after excluding overlapping samples, was 33. Each

data point represents a study or a particular age group from an

individual study. The relative whole brain volume change in %/

year (Q) was set out against the mean age in between the two

time points. The horizontal bars represent the standard devia-

tion for age at baseline for all subjects included in the study.

The zero-line indicates no whole brain volume change. Above

zero indicates an increase in the whole brain volume while

below zero represents a decrease in whole brain volume. Sev-

eral studies reported results for different age groups [Liu et al.,

2003; Mueller et al., 1998; Scahill et al., 2003]. These individual

age groups are depicted separately in Figure 1; therefore, 41

data points are shown. Two studies reported their data as non-

linear trajectories [Lenroot et al., 2007; van Haren et al., 2008],

and their respective trajectories are also shown here.
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Figure 2.

Fits that show the association between relative rate of whole

brain volume change and age. Whole brain volume change data

from the individual studies are shown as circles. The area of the

circles scales with the number of subjects in the study (a larger

area of the circle corresponds to more participants). Fits (with

3 degrees of freedom) were calculated to the data below and

above age 19 separately (thick lines). Two studies reported their

data as trajectories [Lenroot et al., 2007; van Haren et al.,

2008], and these are made visible (thin lines).

Figure 3.

Whole brain volume across the life span between 4 and 88

years of age. Whole brain volume as a function of age is

obtained by numerical integration of the whole brain volume

change fits with respect to age from Figure 2. As starting vol-

ume, the mean whole brain volume from a study of N ¼ 210

nine-year-old twins was used [Peper et al., 2009]. The curves

are dashed around age 18–21, indicating the uncertainty in this

area, since only few data were available for fitting this age range.

Two separate fits were calculated for the younger (<19 years)

and older (>19 years) group.

Figure 4.

a and b. GM and WM volume change with age. Total number of

studies that presented data on GM (after excluding overlapping

studies) was 10, while 9 studies presented data on WM. The

relative GM and WM volume change in %/year (Q) was set out

against the mean age in between the two time points. The zero-

line indicates no volume change. Above zero indicates an

increase in the volume, whereas below zero represents a

decrease in volume. The area of the circles scales as the number

of subjects in the study. Fits for both GM and WM with age

(with 3 degrees of freedom) were calculated to the data above

age 19 (thick line). Two studies reported their GM and WM

data as trajectories [Lenroot et al., 2007; van Haren et al.,

2008], and these are made visible (thin lines). Liu et al. [2003]

reported results for different age groups. These individual age

groups are depicted separately; therefore, 12 data circles are

shown for GM, while 11 data circles are shown for WM.
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second wave of brain volume growth or at least a stable
period in early adulthood preceding a brain volume
decrease from the age of 35 years with accelerating tissue
loss occurring with increasing age.

As is shown in Figure 1, there are three studies that
show brain growth in young adulthood [age 20–30 years;
Ho et al., 2003; Lieberman et al., 2005; Whitworth et al.,
2005; symbols above zero], and two studies showing a
decrease [DeLisi et al., 1997; Liu et al., 2003; symbols
below zero]. Fitting the data from these studies suggests
that brain volume slightly increases over time in this age
range, but given the fact that there is no agreement
between the different studies, we interpret this result with
caution and suggest a possible growth or a plateau period
where no change in volume takes place.

Most likely these whole brain volumes changes are a net
consequence of many different factors such as focal
growth and shrinkage of GM and WM. Until now, only a
limited number of studies have investigated GM and WM
volume change over time in longitudinal studies. Our
findings suggest an increase in GM volume in childhood
after which a decrease sets in, while WM increases till the
age of �45 years and thereafter starts to decrease.

Indeed, the NIMH group showed that cerebral GM vol-
ume increases in preadolescence [Giedd et al., 1999a,b;
Gogtay et al., 2004; Lenroot et al., 2007; Sporn et al., 2003],
after which it starts to decrease in postadolescence, while
cerebral WM continues to increase in volume [Giedd et al.,
1999b]. It has been suggested that GM is replaced by WM
in childhood and adolescence [Giedd et al., 1999b; Jernigan
et al., 1991]. In line with our findings, others have sug-
gested that GM shows a linear age-related decrease in
adulthood but an increase in WM until midlife which
started to decrease after that in an inverted U-shaped
curve [Taki et al., 2009; van Haren et al., 2008]. If indeed
there is subtle brain growth in young adulthood as is sug-
gested by the plots in the current review, this might then
be explained by WM increasing more than GM is
decreasing.

Most studies did not provide sufficient data to investi-
gate differential effects between males and females while
those that did report inconsistent findings. One study
showed a greater decline in cerebral volume in girls as
compared with boys in cerebral volume during the 2nd
decade of life [Lenroot et al., 2007]. The developmental tra-
jectories suggest that brain volume in girls peaked at 10.5
years while that in boys peaked at 14.5 years. One study,
however, was not able to replicate this in children between
the ages of 8 and 12 years [Ment et al., 2009]. In older age,
a significant sex difference with more pronounced volume
loss in males relative to females has been reported [Dris-
coll et al., 2009]. However, most studies suggested that in
adulthood and old age rate of change in whole brain vol-
ume is similar in males and females [Autti et al., 2008;
Chan et al., 2001; DeLisi et al., 2004; Fotenos et al., 2005;
Fotenos et al., 2008; Liu et al., 2003; Resnick et al., 2003;
Ridha et al., 2006; Scahill et al., 2003; Tang et al., 2001].

Here, we focus on volume change in global measures such
as whole brain or GM and WM. Males do indeed have
larger brains, but the available literature in adults on gen-
der differences suggests that males and females have simi-
lar rates of change in global brain volume measures.

As to the mechanisms underlying the brain changes
throughout life, we can only speculate at this point. Our
finding of brain changes over the entire life span suggests
continuous brain plasticity throughout life. Brain plasticity
can be referred to as the changing of neurons, the reorgan-
ization of their networks, and their change in function as a
consequence of new experiences. Obviously and fortu-
nately, experiencing new events does not stop at reaching
adulthood. In the aging brain, it has been proposed that cell
shrinkage, degeneration of key neurons, and circuits could
explain the age-related decrease in brain volume [Morrison
and Hof, 1997]. We recently found that genes are impli-
cated in brain structure changes in adulthood [Brans et al.,
2010]. In contrast, there is no evidence that it is synaptic
density that explains the adult volume change since a post-
mortem study showed that the synaptic density is constant
throughout adult life (ages 16–72 years) [Huttenlocher,
1979]. Disentangling the processes underlying brain plastic-
ity is important for healthy development and also provides
insight into what may be arrested in brain disorders that
have their first symptoms at a particular age.

There are several limitations to the study that have to be
considered when interpreting its findings. A limited num-
ber of studies were available covering the age range
between 18 and 21 years, preventing us from making a
reliable connection between development during child-
hood and adolescence and development during the adult
age range. For this reason, the data were split into two age
ranges. However, since the (mathematical) integration was
determined over the full age range, and only the integrand
(i.e., the rate of change) was derived from two separate
regressions, we can conclude that after the growth wave
during childhood and adolescence, a second wave of
growth or at least a plateau period occurs in young adult-
hood. Since there remains some uncertainty as to what
exactly happens between 18 and 21 years, this finding
requires confirmation from longitudinal study in subjects
between 16 and 25 years.

A few studies did not fit the regression line well and
can be considered as outliers. One study included subjects
over the age of 80 years and found remarkable losses in
brain volume of 2.1% per year [Tang et al., 2001]. An ex-
planation for this finding may be that it is the only study
that used the Cavalieri method to estimate the whole brain
volume. One study included subjects with a mean age of
�25 years and reported a relatively large decrease of
�0.70% per year [DeLisi et al., 1997]. Consideration men-
tioned by the authors was possible artifacts in the scanner
over time [see DeLisi et al., 1997].

The differences in acquisition methods and study design
may have affected the results, specifically the regression
lines. Studies with high-resolution scans are expected to be
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more sensitive to brain volume changes than studies using
thicker MRI slices. The high/low-resolution studies were
more or less evenly distributed over the age range. Studies
with large age ranges have to be dealt with carefully, since
they tend to average out the change-rate-per-age values. In
our analysis, we assume that the scan intervals are short
enough (� 6.5 year) so that between the first and the last
scan, the rate of change will not differ much. For rapidly
changing rates and for large age ranges, this assumption is
violated. In two studies, this assumption could be violated
[Lenroot et al., 2007; van Haren et al., 2008]. However,
these two studies applied an age-dependent analysis,
which we incorporated in full in our analysis. Another six
studies that had an age range >20 years: [Driscoll et al.,
2009; Fotenos et al. 2005; Fox et al., 2000; Goldstein et al.,
2005; Liu et al., 2003; Silbert et al., 2008]. After inspection,
these studies do not seem to violate the assumption of
piecewise constant change rate.

Another issue concerns the definition of ‘‘healthy indi-
vidual,’’ which differed between studies. Some studies
excluded participants with a psychiatric history or hyper-
tension, while others did not obtain this information or
performed population-based studies. In addition, even
when using the same scale (such as the MMSE) as a
screening, the cutoff for inclusion differed between studies
(e.g., 24 for the MMSE in two studies [Mueller et al.,1998;
Silbert et al., 2008] and 28 for one other study [Rusinek
et al., 2003]. Finally, with increasing age, the incidence of
hypertension, diabetes, WM hyperintensities (WMH), and
cognitive decline most likely increases, so that the inclu-
sion of healthy participants at an older age may be limited
to a shrinking population of people that remain
(extremely) healthy throughout life. As can be seen from
Figure 2, there appears to be a flattering of the decrease in
brain volume after the age of 75 years. This might be
explained by the inclusion bias mentioned. It is likely that
extremely healthy participants are selected in the age
range over 75 years of age. Only those who are physically
healthy (can) participate while functionally impaired sub-
jects cannot.

When interpreting longitudinal follow-up studies using
complex techniques such as MRI, one always has to take
into consideration that noise is introduced by changes in
the measurement over time. However, it is unlikely that
such limitations of the study significantly influenced the
results of our analysis. Because of the large number of
studies that were included, one would expect noise to be
largely leveled out. We were able to plot the trajectories of
whole brain volume change with age that were present in
two studies onto our plot based on all studies. Compari-
son of these fits with the overall fit shows that both trajec-
tories, i.e., one during childhood and adolescence [Lenroot
et al., 2007] as well as one in adulthood [van Haren et al.,
2008], agree nicely with the brain volume change based on
all the included longitudinal MRI studies.

In conclusion, we reviewed and integrated the findings
of 56 studies investigating longitudinal whole brain vol-

ume change. The results indicate that whole brain volume
change is an ongoing process throughout the full life span
with increasing brain volume in childhood and adoles-
cence in the age of �13 years after which a rapid volume
decrease sets in. We found suggestive evidence of a sec-
ond period of growth or at least stability in brain volume.
It is only after the age of 35 years, the brain starts to
decrease in adulthood. Longitudinal studies that include
subjects between 15 and 25 years of age are needed to con-
firm our finding of a stable or growing whole brain vol-
ume during this possibly critical stage of brain
development. The results may help in understanding the
mechanisms of normal brain changes and may contribute
to distinguishing psychiatric and neurodegenerative dis-
eases from healthy aging processes.
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