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Human brain networks function in
connectome-specific harmonic waves
Selen Atasoy1, Isaac Donnelly2 & Joel Pearson1

A key characteristic of human brain activity is coherent, spatially distributed oscillations

forming behaviour-dependent brain networks. However, a fundamental principle underlying

these networks remains unknown. Here we report that functional networks of the human

brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the

anatomy of the human cerebral cortex, the human connectome. We introduce a new

technique extending the Fourier basis to the human connectome. In this new

frequency-specific representation of cortical activity, that we call ‘connectome harmonics’,

oscillatory networks of the human brain at rest match harmonic wave patterns of certain

frequencies. We demonstrate a neural mechanism behind the self-organization of

connectome harmonics with a continuous neural field model of excitatory–inhibitory

interactions on the connectome. Remarkably, the critical relation between the neural field

patterns and the delicate excitation–inhibition balance fits the neurophysiological changes

observed during the loss and recovery of consciousness.
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F
undamentals of natural processes are expressed by
physical laws, quantitative relationships among measured
properties that are always true1. Although the discovery

of the mechanisms of neuronal excitation provided a milestone
in explaining single neuron behaviour2, a fundamental
principle underlying the collective neural dynamics has
remained largely elusive3.

A characteristic feature of cortical dynamics in mammals is the
emergence of behaviour-dependent oscillatory networks spanning
five orders of magnitude in the frequency domain4. Recently,
strong temporal correlation within widely distributed cortical
regions has also been discovered in spontaneous slow (o0.1Hz)
fluctuations of the blood oxygen level-dependent signal measured
with functional magnetic resonance imaging (fMRI). This
discovery revealed that spontaneous activity, in the absence of
any external stimuli or task condition, also exhibits highly
structured correlation patterns throughout the brain. Remarkably,
the topography of these correlation patterns, termed the resting
state networks (RSNs)5,6, closely resembles the functional
networks of the human brain identified by various sensory,
motor and cognitive paradigms6,7 and have been found to relate
to electroencephalography microstates, global brain states
occurring in discrete epochs of about 100ms (refs 8,9).

The RSNs are thought to emerge from local cortical dynamics
and cortico-cortical interactions constrained by the anatomical
structure of the human cortex—the human connectome10,11.
Indeed, various computational models have explored
the spontaneous emergence of such oscillatory networks
from anatomical connectivity, local cortical dynamics and
cortico-cortical interactions10,12. However, our understanding of

neural activity lacks a unified fundamental principle revealing
a direct macroscopic description of the collective cortical
dynamics3.

Here, we demonstrate that a ubiquitous mathematical
framework, eigendecomposition of the Laplace operator, which
lies at the heart of theories of heat, light, sound, electricity,
magnetism, gravitation and fluid mechanics13, can predict the
collective dynamics of human cortical activity at the macroscopic
scale. In various natural phenomena, the eigenfunctions of the
Laplacian constitute the basis of self-organizing patterns in a
system: standing wave patterns emerging in sound-induced
vibrations of a guitar string or a metallic plate (first
demonstrated as complex sand patterns by Chladni14), patterns
of ion motion emerging from electromagnetic interactions15,16,
electron wave function of a free particle given by
time-independent Schrödinger equation17,18 and even patterns
emerging in complex dynamical systems such as the
reaction-diffusion models introduced by Turing19, which can
explain various instances of biological pattern formation20, are
predicted by the eigenfunctions of the Laplace operator21,22

(Fig. 1a). Furthermore, Laplace eigenfunctions computed on
one-dimensional domain with periodic boundary conditions such
as a circle, correspond to the well-known Fourier basis23. This
relation has been utilized to extend the Fourier transform to more
complex geometries23 and to define a ‘shape DNA’24 in shape
recognition.

We investigate the extension of Laplace eigenfunctions to
the particular structure of the human connectome, the
connectome harmonics, as a new representation for macroscale
cortical activity. Remarkably, when described in this new
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Figure 1 | Laplace eigenfunctions and connectome harmonics. (a) Laplace eigenfunctions revealing the mechanical vibrations of rectangular metal plates

(1st row)—first demonstrated by Ernst Chladni as patterns formed by sand on vibrating metal plates—and metal plates shaped as mammalian skin (2nd

row) resembling different mammalian coat patterns for different frequency vibrations21,22 (images reprinted from22 with permission) as well as electron

orbits of the hydrogen atom computed by time-independent Schrödinger’s wave function (3rd row)—shown with increasing energy from left to right—and

patterns emerging in electromagnetic interactions between laser-excited ion crystals (last row) (images adapted from15). (b) Workflow for the construction

of macroscale connectome model. The graph representation was formed by connecting each node sampled from the cortical surface with its immediate

local neighbours and by further including the long-range connections between the end points of the cortico-cortical and thalamo-cortical fibres.

(c) Examples from the 20 lowest frequency connectome harmonics. Left: wave number. Right: spatial patterns of synchronous oscillations estimated by the

eigenvectors of the connectome Laplacian.
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connectome-specific extension of the Fourier basis, the
RSNs match the spatial patterns (Laplacian eigenfunctions)
corresponding to certain natural frequencies (Laplacian
eigenvalues). Our results present evidence that Laplace
eigenfunctions can provide a simple yet almost universal
description for patterns of synchrony throughout the cortex in
the resting state. Further, we demonstrate a plausible biological
mechanism behind the emergence of these patterns from the
cortico-cortical and thalamo-cortical interactions by modelling
the excitatory and inhibitory dynamics with a neural field model.

Results
Connectome harmonics predict resting state networks. To
define the extension of the Laplace operator applied to the human
connectome, we utilized its discrete counterpart, the graph
Laplacian. We first created a graph representation for each of
10 human connectomes by combining the cortical surface
extracted from MRI data of 10 subjects with the long-range
(white matter) cortico-cortical and thalamo-cortical connections
generated from cortical fibre tracts derived from diffusion tensor
imaging (DTI) data of the same subjects (Fig. 1b). For each
subject, we formed the graph representation G ¼ V; Eð Þ of the
modelled connectome, where the nodes V ¼ vi i 2 1; � � � ; njf g� n
being the total number of nodes—uniformly sample the
curved anatomy of the cortical surface and the edges
E ¼ eij vi; vj

� �

2 V�V
�

�

� �

incorporate both local and long-range
cortico-cortical and thalamo-cortical connections. By computing
the graph Laplacian DG on the introduced representation G,
we define the discrete counterpart of the Laplace operator applied
to the human connectome, the connectome Laplacian, for each
individual and estimate its eigenvalue–eigenvector pairs
ðlj;cjÞ, j 2 N, connectome harmonics (see Methods). It is worth
noting that by harmonics here we refer to spatial harmonics—as
opposed to temporal harmonics. We will see later that these
spatial harmonics can emerge from neuronally plausible
dynamics but, at this stage, we are basing our Laplace eigen-
functions on static structural connectomes. It is also important to
note that the introduced graph G differs from previous graph
representations of the human connectome used in population
models10 in that it does not incorporate any parcellation of the
cortical surface and cortico-cortical and thalamo-cortical
connections. Thus, it provides a densely sampled connectome
model with the minimum amount of discretization possible in the
given resolution of the MRI and DTI data. Notably, when the
number of uniformly sampled data points taken from the
underlying manifold, such as the cortical surface, increases, the
graph Laplacian converges to its continuous counterpart, the
Laplace–Beltrami operator—the generalization of the Laplacian to
non-euclidean geometries such as the curved anatomy of the
human cortex25.

In the literature, Laplace eigenvalue–eigenvector pairs
(eigenmodes) have received significant attention initially due to
their relation to the excitation spectrum of a given geometry: the
eigenvalues relate to the natural frequencies, the allowed
frequencies of standing waves emerging on that particular
geometry, whereas the eigenvectors yield the associated wave
patterns18,23. Recent studies demonstrate also the relevance of
Laplace eigenmodes for other physical phenomena including the
phase extraction of an electron wave function18, the patterns
emerging in electromagnetic interactions of ions15,16 and
morphogenesis22,26 (Fig. 1a). Here, we utilized the eigenvectors
of the connectome Laplacian to describe the spatio-temporal
patterns of macroscale neural activity.

We found that the eigenvectors of the connectome Laplacian,
the connectome harmonics, yield frequency-specific spatial

patterns across distributed cortical regions (Fig. 1c;
Supplementary Fig. 1). Here the red–blue patterns represent
examples from the first 20 connectome harmonics in ascending
order of frequency (wavenumber—shown in left) for one
representative subject.

To quantitatively evaluate any similarity between the
connectome harmonics and seven RSNs (Fig. 2a), commonly
observed in the human brain; default mode, control, dorsal
attention, ventral attention, visual, limbic and somato-motor
network, we measured the mutual information between the
reference RSNs27 and each of the connectome harmonic
patterns (Fig. 2b: filled, coloured data points). As a control, we
performed Monte Carlo simulations (2,000 simulations per
subject randomly combined to 500,000 simulations for
group average), in which we randomized the long-range
white-matter cortico-cortical and thalamo-cortical connections
while preserving the local anatomical structure of the subject’s
cortical surface and computed the harmonics of each randomized
network using the same methodology (Fig. 2b: black data points).
Crucially, we found statistically significant similarity between the
default mode network (DMN) and one particular connectome
harmonic (in the range of the 9th connectome harmonic,±2 due
to individual differences) in the group average (Fig. 2b, top row,
*Po0.0002, **Po0.0001; 500,000 Monte Carlo simulations for
group average, corrected for multiple comparisons) as well as
for all 10 subjects individually (Supplementary Fig. 2, P-values:
*Po0.05, **Po0.02; 2,000 Monte Carlo simulations per subject,
corrected for multiple comparisons). For all other resting state
networks, we observed larger individual differences in the mutual
information values (Supplementary Figs 2 and 3), while the
Monte Carlo simulations still yielded significant similarity for
different ranges of the connectome harmonics in the
group analysis (Fig. 2b). In particular, we found that the visual,
somato-motor and limbic networks showed significant similarity
to only low-frequency connectome harmonics, while networks
associated with higher cognitive functions, that is, control, dorsal
attention and ventral attention, significantly matched a broad
range of connectome harmonics distributed over the spatial
frequency spectrum.

To further assess the predictive power of connectome
harmonics for the resting state networks, we utilized an
information retrieval metric, F-measure, which simultaneously
quantifies the recall and precision of connectome harmonics’
prediction of the RSNs. We computed F-measure values between
the connectome harmonics (after applying a binary indicator
function) and the binary patterns of the RSNs27 and compared it
with the F-measure values of randomized harmonics derived
from Monte Carlo simulations. The F-measure provides a stricter
evaluation than the information theoretic mutual information, as
the indicator function imposes a binary decision to each node.
This evaluation (Fig. 2c; Supplementary Figs 4 and 5) confirmed
our previous findings based on mutual information. Taken
together, these results suggest that the visual, somato-motor, and
limbic, as well as the default mode network, are well predicted by
individual connectome harmonics of a narrow frequency range,
whereas the higher cognitive networks rely on a broader
frequency range of connectome harmonics distributed over the
spatial spectrum.

Connectome harmonics as the Fourier basis on the connectome.
Next, we investigated the use of connectome harmonics as a
function basis to represent spatial patterns of cortical networks.
The orthogonality of connectome harmonics means that a linear
combination of these eigenfunctions can be used to recreate
any spatial pattern of neural activity. The importance of the
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connectome harmonic basis lies in its close ties to the classical
Fourier transform, which corresponds to the decomposition
of a signal into a linear combination of the eigenfunctions
of the Laplace operator applied to a circular domain, that is,
sine and cosine functions with different frequencies23.
Since connectome harmonics are defined as the eigenvectors of
the connectome Laplacian—the discrete counterpart of
the Laplacian applied to the human connectome—they extend
the Fourier basis to the particular geometry of the human
connectome. Hence, the spectral transform onto the connectome
harmonic basis naturally extends the classical Fourier transform to
the human connectome.

To analyse the spatial frequency content of the resting state
networks27 (Fig. 2a), we performed a spectral transform to
the connectome harmonic basis and reconstructed the spatial
patterns of individual networks. Although the binary nature of
the reference networks theoretically necessitates the use of the
whole connectome harmonic spectrum for reconstruction—the
same way that a square wave can only be reconstructed using
the sine waves with infinite many frequencies—sharp decreases in
the normalized reconstruction errors were observed by using
just 0.1% of the connectome harmonic spectrum (low-frequency
range; Fig. 3a). The steepest decrease of the DMN’s
reconstruction error occurred for the frequency band that also
showed significant similarity and predictive power in mutual
information and F-measure values, respectively (highlighted by
the red column in Fig. 3a, best matching connectome harmonic of
each subject shown in Supplementary Fig. 6, reconstruction
shown in Fig. 3c) while for the visual, somato-motor and limbic
networks the decrease of the reconstruction error remained large
but constant within 0.1% of the spectrum (Fig. 3a). Slower
convergence was observed for the reconstruction errors of higher
cognitive networks within the range of 1.2% of the spectrum
(low-frequency range) suggesting the reliance of these networks
on a broader range of frequencies (Fig. 3b). These results confirm
our previous findings while providing a novel analytical language
of cortical activity analogous to the classical Fourier transform
that can be utilized to quantify any activity pattern including
task-based event-related designs.

Biological mechanisms underlying connectome harmonics. We
also investigated the biological mechanisms likely to underlie the
self-organization of connectome harmonics on the cortex.
Hitherto, we have assumed that the graph Laplacian based upon
structural connectivity provides a plausible proxy for the effective
connectivity (also known as the Jacobian-please see ref. 28) of an
underlying neuronal dynamical system. In what follows, we
explore the biological mechanisms likely to underlie these
neuronal dynamics. In particular, we exploit the efficient
description of these dynamics given by neural field equations in
terms of connectome harmonics and show how they give rise to
the emergence of connectome harmonics on the cortex.

The dynamics of the oscillatory cortical networks is thought to
emerge from the interplay of excitation; for instance mediated by
glutamatergic principal cells, and inhibition; for instance
mediated g-aminobutyric acid GABAergic interneurons29.
To describe macroscale cortical dynamics, we extend a variant
of neural field models based on Wilson–Cowan equations,
the most commonly utilized mathematical description of
the excitatory–inhibitory neural dynamics30. Neural field
models based on Wilson–Cowan equations are a variant of
reaction-diffusion systems31 originally introduced by Turing as a
mathematical model for morphogenesis19. Based on the principle
that mutual interactions between a diffusing activator and
inhibitor can result in self-organizing pattern formation,
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Figure 2 | Prediction of the RSNs by connectome harmonics. (a) Patterns

of synchronous oscillations, i.e., the RSNs, of the human brain

overlap with the established functional systems, i.e., groups of cortical

regions, which coactivate during certain tasks6,7. For quantitative

evaluation of any similarity between the RSNs and connectome harmonics,

we use the seven RSNs (default mode, control, dorsal attention, ventral

attention, visual, limbic and somato-motor networks) (shown in a)

identified from 1,000 subjects’ intrinsic functional connectivity data27.

(b) Similarity measured by mutual information and (c) predictive power

measured by F-measure values between the connectome harmonics

with 40 lowest frequencies and the reference RSNs in ref. 27 (shown

in a) compared with those of randomized harmonics (*Po0.0002,

**Po0.0001 estimated by Monte Carlo simulations with 2,000 simulations

per subject and 500,000 simulations for group average, after multiple

comparison correction by false discovery rate, error bars indicate standard

error across 10 subjects).
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reaction-diffusion models have provided valuable insights into
the mechanisms underlying the emergence of non-linear waves in
several biological processes including morphogenesis19,20,
formation of ocular dominance patterns in the visual cortex32,
visual hallucinations33,34 and interactions of excitatory
and inhibitory activity in neural populations of the cortical
and thalamic tissue30,35. Crucially, the pattern formation in
reaction-diffusion systems is caused by the exponential growth of
certain eigenfunctions of the Laplacian applied to the patterning
domain (see refs 21,22 and Supplementary Notes 1–4). The
selection of which harmonic patterns are ‘activated’ (grow) is
determined by the diffusion parameters of excitation and
inhibition (Supplementary Fig. 7). Hence, the Laplace
eigenfunctions provide the building blocks of complex patterns
emerging in reaction-diffusion systems.

On a two-dimensional continuous idealization of the cortex,
the Wilson–Cowan equations lead to self-organization of
neural oscillatory patterns when short-range excitation is
coupled with broader lateral inhibition36. This type of
functional circuitry, known as ‘Mexican hat’ organization37 or
centre-on and surround-off connectivity38 is well-observed
experimentally in the early visual cortex, known as cortical
surround suppression39,40 and is likely to extend throughout the
neocortex41,42.

Recent experimental evidence showed that a plausible
mechanism underlying the cortical surround suppression in V1
is the activity of the somatostatin-expressing inhibitory neurons
in the superficial layers of the mouse visual cortex and a similar
neural circuit is also likely to underlie surround suppression in
other cortical areas42. These findings are further supported by the
report of broader spatial extent of inhibition compared with
excitation in the primary visual cortex of awake mice43.
Furthermore, layer-specific suppression and facilitation also
generates the necessary circuits for lateral inhibitory
interactions29,44: coordinated modulation of superficial (L2/3)
and deep cortical layers (L5) gives rise to competition between
neighbouring domains and lateral inhibition, although the spatial
extent of excitation and inhibition across cortical domains show
overlapping distributions vertically (across cortical layers) and
horizontally (within layers)44. Notably, it has been shown that the
Mexican hat type of functional circuitry can also be generated in
anatomical circuits with short-range inhibition when a fraction of
the total excitatory conductance is slower than the inhibition37.
A potential biological source of slower excitatory conduction is

the slow synaptic transmission caused by the N-methyl-D-
aspartate receptors contributing mostly to excitatory currents37.

Taken together, this converging evidence suggests that various
biological mechanisms can give rise to the functional circuitry
equivalent to short-range excitation coupled with broad
inhibition, which indeed is the necessary condition for the
self-organization of oscillatory patterns in Wilson–Cowan-type
neural field models30,33,35 (Supplementary Notes 1–5). Next, we
extend the Wilson–Cowan equations to the full structural
connectivity of the thalamo-cortical system by incorporating the
connectome Laplacian and demonstrate the relation between the
emerging oscillatory patterns and the connectome harmonics.

Neural field model of connectome-wide neural dynamics. We
extended a variant of the neural field model35 based on the
Wilson–Cowan equations30 to the three-dimensional connectome
model by incorporating the connectome Laplacian into the spatial
propagation (diffusion) term (Fig. 4a; Supplementary Notes 2 and
3). Numerical simulations were then performed by combining the
network diffusion on the human connectome—modelled by
iterative application of symmetric graph Laplacian23,45 DG—with
the excitatory–inhibitory reaction dynamics (Fig. 4a). This allows
us to extend continuous form neural field models by
incorporating the connectivity of the human connectome. This
neural field approach differs from previous macroscale
simulations10,46 in that spatial propagation is modelled by
network diffusion, as opposed to discrete coupling, yielding a
(spatially) near-continuous model of cortical dynamics.

We found that structured oscillatory patterns naturally
self-organize on the human connectome for a wide-range of
diffusion parameters in the model (Fig. 4a–d; Supplementary
Figs 8 and 9; Supplementary Movies 1–4). Linear stability analysis
of the neural field model revealed that a wide range of
connectome harmonics could be activated for different diffusion
speeds of excitation and inhibition (Fig. 4b; Supplementary Notes
3–5), rendering the neural field model a plausible neural
mechanism for the self-organization of connectome harmonics.
In particular, we observed a decrease in the frequency of coherent
oscillations when excitatory activity is decreased, modelled by
slower diffusion of excitation, or when inhibitory activity is
increased, modelled by faster diffusion of inhibition in the neural
field model (Fig. 4c,d). This relationship between the frequency of
temporal oscillations and the excitation–inhibition balance shows

cba

0 0.1
0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
liz

e
d

re
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

DMN

Control

Dorsal attention

Ventral attention

Visual

Limbic

Somato-motor

Random

Default mode network

Reconstruction with 5% of connectome harmonics

Reconstruction with 0.5% connectome harmonics

Reconstruction with 0.05% of connectome harmonics

Best matching (9th) connectome harmonic

% of connectome harmonics

1

0

1.4

–0.4

–0.5

–0.5

–0.02

0.02

1.1

1.3

Figure 3 | Reconstruction of the RSNs from connectome harmonic basis. Normalized reconstruction error of each resting state network using (a) 0.1%

and (b) 1.2% of the connectome harmonics spectrum averaged across 10 subjects (error bars and shading indicate standard error across 10 subjects)

compared to the reconstruction of a randomized binary pattern. Red band in a highlights the steepest decrease for the DMN. (c) Reconstruction of the

DMN using (from top to bottom) 5, 0.5 and 0.05% of the spectrum and the best matching connectome harmonic of one subject’s data.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10340 ARTICLE

NATURE COMMUNICATIONS | 7:10340 | DOI: 10.1038/ncomms10340 |www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


remarkable overlap with the neurophysiological changes observed
during the loss and recovery of consciousness (for the analysed
parameter range). Neurophysiological evidence suggests that
drug- or sleep-induced loss of consciousness is associated
with increasing inhibitory or decreasing excitatory activity,
which is accompanied by a transition from the low amplitude,
high-frequency patterns to low-frequency coherent oscillations in
cortical activity47. Recent work also shows gradual decoupling
between the posterior and anterior midline nodes of the DMN
during loss of consciousness48,49. We observed this decoupling in
seed-based correlation analysis of the neural field patterns for the
exact parameters, which resulted in slower cortical oscillations
(Fig. 4e,f; Supplementary Fig. 9).

Finally, we tested the stability of the emerging oscillatory
patterns to external perturbations such as noise using Lyapunov
stability analysis50. This method involves perturbing the system at
some time t* and observing whether the perturbed system
converges to the original system. In dynamical systems, such as
described by neural field models, the eigenvalues of the linearized
system around a known fixed point immediately reveals the local
behaviour of the system; that is, it would allow one to identify the
unstable ‘growing’ eigenmodes that dominate observed
fluctuations (Supplementary Notes 3–5). However, due to the
nonlinearities inherent in the Wilson–Cowan equations as well as
the high dimensionality of the modelled system, the continuum of
the fixed points, that is, the trajectory, was not readily obtainable
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Figure 4 | Neural field model. (a) Left: dynamics of excitatory (E) and inhibitory (I) activity. Right: time evolution of the excitatory E(vi, t) and inhibitory

I(vi, t) activity at the cortical location vi 2 V at time t where DEE, DIE , DEI and DII describe the diffusion processes of E and I activity acting on excitatory

(EE, IE) and inhibitory (EI, II) neural populations and ts refers to the units of system time, that is, characteristic time scale. (b) Linear stability analysis of the

neural field model in terms of connectome harmonics. The red regions correspond to the diffusion parameters in the phase space that algebraically satisfy

the necessary condition for oscillations, that is, the critical Hopf regime, plotted as a function of the analysed diffusion parameter vertical axis and the

eigenvalue of the connectome harmonic horizontal axis. (c) Power spectrum of the temporal oscillations in (a total of 267) numerical simulations averaged

over all nodes. (d) Spatial pattern for an arbitrary time slice and the temporal profile of four seed locations shown in e. (f) Seed-based correlation analysis

of the neural field patterns demonstrates the decoupling between the posterior and anterior midline nodes of the DMN for the same set of parameters

leading to slow cortical oscillations.
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analytically. Therefore, we numerically integrated the system to
determine the stable solution, in our case a periodic solution, for
certain parameters. We first perturbed the system separately 10
times by white noise at time t* and analysed the largest difference
between the unperturbed trajectory and each of the perturbed
trajectories over time by computing the L-infinity norm L(t) (see
Methods). Fig. 5a shows that L(t) is bounded and converges to
eE0, whereas Fig. 5b,c illustrate the convergence of the limit
cycle and the temporal oscillations of the perturbed system to that
of the unperturbed system for two example vertices v1 and v2.
These results demonstrate that for the analysed parameter range
the extended Wilson–Cowan equations (Fig. 4a) are robust to
external perturbations such as noise.

Taken together, the extension of the Wilson–Cowan-type
neural field models to the particular structural connectivity of the
human connectome provides a biologically plausible, robust
mechanism likely to underlie the self-organization of connectome
harmonics in the thalamo-cortical system.

Discussion
Our results reveal several notable findings: firstly, by extending a
universal mathematical framework, eigendecomposition of the
Laplacian, to the anatomical structure of the human connectome,
we introduce connectome harmonics—a connectome-specific
extension of the Fourier basis—as a new representation to
describe and analyse any spatio-temporal patterns of cortical
activity. Remarkably, decomposition of the RSNs into the
connectome harmonics revealed significant overlap between the
resting state networks and certain connectome harmonic
patterns. This suggests that connectome harmonics provide a
simple explanatory principle linking the dynamics of oscillatory
cortical networks to the anatomy of the human connectome. This
finding is the first experimental evidence demonstrating that the
ubiquitous mathematical framework, eigendecomposition of the
Laplacian, when applied to the human connectome, can provide a
simple yet almost universal principle possibly underlying the
functional networks of the brain.

Secondly, due to the orthogonality, and therefore
independence, of the connectome harmonics corresponding to
different frequencies (wavenumbers), the set of all connectome
harmonics provides a function basis (a new coordinate system or
representation) to describe and analyse any spatio-temporal
pattern of cortical activity, independent of the imaging modality,
experimental design and even species. Although in this work we
demonstrate the application of this novel technique for the
human connectome, it can be extended to any other mammalian

brain, given its structural connectivity. Hence, connectome
harmonics provide a new frequency-specific language to describe
spatio-temporal patterns of neural activity and open the door to a
new dimension of tools available to probe brain dynamics across
various species and technologies.

The potential importance of having an efficient basis set
(connectome harmonics) may be particularly relevant for
dynamic causal modelling. Indeed, the eigenfunctions of the
graph Laplacian are used to summarize the activity of cortical
patches in dynamic causal models of electromagnetic activity51.
From the point of view of dynamic causal modelling for resting
state fMRI, the eigenmodes of the functional connectivity have
been used as prior constraints on effective connectivity. Our work
suggests that these could be replaced with the eigenfunctions of
the graph Laplacian of the structural connectome. Furthermore,
one could adjudicate between the utility of eigenmodes based on
structural and functional connectivity using Bayesian model
comparison—that would compromise a further validation of our
universal basis set.

Thirdly, we have emphasized the universality of eigenfunctions
or eigenmodes of the graph Laplacian, connectome
harmonics, in describing coupled dynamical systems; such as
neural field models. By using the graph Laplacian defined on the
human connectome, we demonstrate how well-studied neural
field models such as those based on the Wilson–Cowan
equations30 can be extended to the full structural connectivity
of the thalamo-cortical system and linked to the RSNs of the
human brain. However, as the definition of connectome
harmonics is independent of the chosen dynamical model, both
analytically and numerically, the introduced mathematical
framework of connectome harmonic basis can also be applied
to extend other more complex network models; (for example refs
10,12,52), to the full structural connectivity of the thalamo-
cortical system in (spatially) near-continuous domain.

In fact, recent computational models suggest very rich and
complex dynamics, characterized by rapid transitions between a
few discrete states of correlated activity can emerge in resting
state52, which is initiated by the noise-driven exploration of the
repertoire of the correlation states10,12. These computational
studies are supported by recent empirical evidence showing
complex dynamics between different RSNs. Studies combining
the high temporal resolution of magnetoencephalography data
with band-width-specific correlation analysis suggest that the
RSNs assemble and disassemble over time, enabling
communication (through periods of coherent oscillations) not
only within but also across different networks53–55. Furthermore,
fMRI studies using sliding time window correlations instead of
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Figure 5 | Stability analysis of the neural field model. Stability of the emerging oscillations to external perturbation is tested by perturbing the neural field

model for a sample oscillatory parameter set (s2
EE

¼ 6, s2
IE
¼ 10, s2

EI
¼ 10 and s2

II
¼ 50). (a) The distance measure L(t) versus the time from perturbation

t� t* where t* denotes the time of perturbation by white noise. Before the perturbation L(t) is identical to 0. L(0) shows how far the perturbed system

altered from the underlying oscillatory stable state. After perturbation, that is, when t� t*40, L(t) approaches 0 showing the system is Lyapunov stable.

(b) The convergence of the limit cycle; that is, excitatory activity of two non-adjacent nodes plotted over time, of the perturbed (black solid line) to

unperturbed (orange dashed line) system. (c) The original (unperturbed) trajectory (dashed line) and the perturbed trajectory (solid line) for two sample

vertices (green and blue lines) after perturbation t� t*A[0, 5] unit time. The perturbed trajectory converges back to the original trajectory (with a small

phase shift) demonstrating that the state corresponding to the original trajectory is Lyapunov stable to small perturbations.
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averaging correlations over the whole time course found that a
discrete set of connectivity states, dominant recurrent patterns of
correlated neural activity, emerge and dissolve over tens of
seconds56,57. Connectome harmonic basis could provide a novel
theoretical framework for linking these recent empirical findings
and advanced computational models focusing on
noise-driven exploration of the connectivity states, as they
reveal the patterns of correlation on the thalamo-cortical
system, and define the set of independent connectivity states or
building blocks through which complex dynamics can be
expressed in a non-parametric manner, for instance without
tuning the size of the temporal window for correlation
analysis58,59. Hence, re-formulating the dynamical models, such
as those in ref. 52, in terms of connectome harmonics could
reveal how noise-driven transitions occur between different
frequencies and results in communication between different
RSNs.

An intuitive understanding of the role of connectome
harmonics in describing coupled dynamical systems, in the
setting of large-scale brain dynamics, rests on associating the
graph Laplacian with the effective connectivity among cortical
nodes. In other words, if the graph Laplacian corresponds to a
matrix of effective connection strengths, then its eigenfunctions
become the eigenmodes or principle components of the
functional connectivity. Furthermore, the graph Laplacian or
effective connectivity becomes the (negative) partial correlation
matrix of observed fluctuations in activity28. This is important
because it explains why the eigenmodes based on the graph
Laplacian provide a plausible space in which to describe the RSNs
based on functional connectivity. This correspondence rests upon
undirected connectivity (represented by symmetric
adjacency) matrices, which means that one can interpret
effective connectivity as mediating a ‘diffusion’ of neuronal
activity. To complete this picture, note that the diagonal terms of
the graph Laplacian ensure the sum of input connections to any
node is zero (see Methods). It is important to note, however, that
in contrast to the diffusion process in other physical phenomena,
the neural activity propagates not only locally but also through
the long-range white-matter thalamo-cortical connections, the
‘diffusion’ process occurs on the particular connectivity of the
human connectome. Our description of the universal harmonics
implied by the graph Laplacian in terms of diffusion rests on the
undirected nature of the structural connectome (represented by a
symmetric adjacency matrix). However, we know that reciprocal
forward and backward connections show strong asymmetries in
the human brain, rendering the conceptual link between the
(directed) effective connectivity and diffusion not always valid.
Having said this, there is no reason why one cannot pursue
modelling and simulation using the eigenmodes of directed
effective connectivity matrices28.

In summary, in this work we introduce a new connectome-
specific representation of cortical activity patterns and dynamics,
which extends the Fourier basis to the structural connectivity
of the thalamo-cortical system. Remarkably, when expressed in
this new analytic language, RSNs of the human brain overlap
with the connectome harmonic patterns of certain frequencies.
We demonstrate the self-organization of these connectome-
specific harmonics patterns from the interplay of neural
excitation and inhibition in coupled dynamical systems as
described by neural field models. Interestingly, due to the
emergence of these harmonic patterns in various natural
phenomena, ranging from acoustic vibrations, electromagnetic
interactions and electron wave functions to morphogenesis, it is
tempting to suppose that human brain activity might also be
governed by the same underlying principles as other natural
phenomena.

Methods
Data. Data used in the preparation of this work were obtained and made available
by the Human Connectome Project (HCP), WU-Minn Consortium (Principal
Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657), which is
funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for
Neuroscience Research and by the McDonnell Center for Systems Neuroscience at
Washington University. We use MRI and DTI data of 10 unrelated subjects (six
female, age 22–35) provided by the HCP, WU-Minn Consortium, available on
https://db.humanconnectome.org/data/projects/HCP_500. All MRI and DTI
datasets were preprocessed according to minimal preprocessing guidelines of the
HCP protocol and no additional preprocessing was performed.

For quantitative evaluation of the resting state networks (RSNs) we use the
parcellation of the cerebral cortex into seven networks (default mode, control,
dorsal attention, ventral attention, visual, limbic and somato-motor networks)
identified from 1,000 subjects’ intrinsic functional connectivity data27, available on
http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011.

Workflow. From T1-weighted MRI data of each subject (resolution 0.7mm), we
reconstruct the cortical surfaces separating the white and grey matter, referred to as
the white matter surface in the rest of the manuscript, as well as grey matter and
the cerebrospinal fluid, referred to as the grey matter surface in the rest of the
manuscript, separately for each hemisphere using the Freesurfer Software
http://freesurfer.net. We register each cortical surface to the 1,000 subject average
cortical surface of the cortical parcellation data (in the rest of the manuscript
referred to as average subject, represented by 20,484 vertices), in order to allow for
the vertex-to-vertex comparison between the connectome harmonics and the 1,000
subject averaged reference of the resting state networks.

From the DTI data of each subject (resolution 1.25mm), we extract the white
matter cortico-cortical and thalamo-cortical fibres by applying a deterministic
tractography algorithm60 using the MATLAB implementation of Vista Lab,
Stanford University http://white.stanford.edu/newlm/index.php/MrDiffusion.
After registering the DTI data and the cortical surface of each subject, we initialize
the seeds for tractography on the cortical surface separating the white and grey
matter. Centred around each vertex (node)—in total 20,484—we initialize eight
seeds and perform the tractography with the following parameters: fractional
anisotropy threshold 0.3, that is, fractional anisotropy o0.3 being termination
criteria for the tracking, minimum tract length 20mm, and maximum angle
between two contiguous tracking steps 30�.

Graph representation of the human connectome. The graph representation of
the human connectome G is formed by representing the vertices sampled form the
surface of grey matter by the nodes V ¼ vi i 2 1; � � � ; njf g with n being the total
number of nodes (20,484 in this study) and by including the local and long-range
connections between the vertices as the edges E ¼ eij vi; vj

� �

2 V�V
�

�

� �

of the
graph G ¼ V; Eð Þ. Thereby, the local connections correspond to the connections of
the vertices on the cortical surface mesh (six connections per vertex to their nearest
neighbours) and the long-range connections are determined by the white-matter
cortico-cortical and thalamo-cortical fibres. To this end, the nearest vertex of each
fibre end point is identified on the grey matter cortical surface and a long-range
connection between the two vertices is added for each fibre tract. In this study, we
use an undirected, unweighted graph representation leading to the following
adjacency matrix:

A i; jð Þ ¼
1 if i; jð Þ 2 E
0 otherwise:

�

ð1Þ

It is important to note that this graph model of the human connectome differs
from the previous studies10,12, in which each node represents one cortical region
acquired by a certain parcellation of the cerebral cortex and the edges denote the
fibre density between the cortical regions. In contrast to previous graph models of
the human connectome, the particular representation used in our study closely
approximates the continuous form of the human cortex due to the uniform and
dense sampling of the vertices (nodes) from the continuous grey matter cortical
surface.

Connectome Laplacian and connectome harmonics. Given the graph repre-
sentation G ¼ V; Eð Þ of the human connectome, we compute the symmetric graph
Laplacian DG on the connectome graph in order to estimate the discrete
counterpart of the Laplace operator23,45 D applied to the human connectome, the
connectome Laplacian, as:

DG ¼
1

2
D�Að ÞT D�Að Þ

� 	

; ð2Þ

where the adjacency matrix A is defined in equation (1) and

D ¼ D i; ið Þ ¼
X

n

j¼1

A i; jð Þ ð3Þ

denotes the degree matrix of the graph. We then calculate the connectome
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harmonics cj, jA{1, ?, n} by solving the the following eigenvalue problem:

DGcj við Þ ¼ ljcj við Þ; 8vi 2 V ð4Þ

with lj, jA{1, ?, n} being the corresponding eigenvalues of DG.

Neural field model. Let E(x, t) and I(x, t) correspond to the activity; that is, local
spatio-temporal averages of membrane-potentials, of the excitatory and inhibitory
neurons at the cortical location x 2 R

3 at time t. Following the Wilson–Cowan
equations30,35, time evolution of the excitatory and inhibitory neural firing rates
satisfy the following non-linear differential equations35:

ts
@E x; tð Þ

@t
¼ � dEE x; tð Þþ S aEEDEE E x; tð Þ½ � � aIEDIE I x; tð Þ½ �ð Þ ð5Þ

ts
@I x; tð Þ

@t
¼ � dII x; tð Þþ S aEIDEI E x; tð Þ½ � � aIIDII I x; tð Þ½ �ð Þ: ð6Þ

where DEE, DIE, DEI and DII denote the diffusion (spatial propagation) operators of
excitatory (E) and inhibitory activities (I), each separately acting on excitatory and
inhibitory populations with names (EE, IE) and (EI, II) respectively. Here S denotes
the sigmoidal activation function,

S rð Þ ¼
1

1þ e� r
; ð7Þ

and ts is a characteristic time scale of the system. We extend the Wilson–Cowan
equations to the full structural connectivity of the thalamo-cortical system by
incorporating the connectome Laplacian to the diffusion (spatial propagation)
terms (Supplementary Notes 1 and 2).

Lypunov stability. We test the robustness of the neural field model for
perturbations using Lyapunov stability analysis50. This method involves perturbing
the system at some time t* and observing whether the perturbed system converges
to the original system. If this is the case, the system may be called Lyapunov stable.
As the neural field model is oscillatory for the parameter sets we are concerned
with, we must define a measure, which determines the distance between two states.
We first perturb the system separately 10 times by white noise at time t*. We then
take the absolute value of the difference at each node at each time step and taking
the maximum difference. This is known as a L-infinity norm and is commonly
used in stability analysis as it looks at the worst case instead of an average case. At
each time step we compare all differences across the 10 perturbed systems and
again take the worst case. This quantity is defined to be L(t). We plot the distance
measure L(t) over time and observe whether L(t)-0 or L(t)-e with eE0. In
Fig. 5(a) we see that L(t)-e and is bounded demonstrating the robustness of the
neural field model to noise perturbations.
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15. Roos, C. Quantum physics: simulating magnetism. Nature 484, 461–462 (2012).
16. Britton, J. W. et al. Engineered two-dimensional Ising interactions in a trapped-

ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).
17. Schrödinger, E. An undulatory theory of the mechanics of atoms and

molecules. Phys. Rev. 28, 1049 (1926).
18. Moon, C. R. et al. Quantum phase extraction in isospectral electronic

nanostructures. Science 319, 782–787 (2008).
19. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond.

B Biol. Sci. 237, 37–72 (1952).
20. Kondo, S. & Miura, T. Reaction-diffusion model as a framework for

understanding biological pattern formation. Science 329, 1616–1620 (2010).
21. Murray, J. D. How the leopard gets its spots. Sci. Am. 258, 80–87 (1988).
22. Xu, Y., Vest, C. M. & Murray, J. D. Holographic interferometry used to

demonstrate a theory of pattern formation in animal coats. Appl. Opt. 22,
3479–3483 (1983).
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