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Abstract

Purpose of review—Recent developments in the statistical physics of complex networks have

been translated to neuroimaging data in an effort to enhance our understanding of human brain

structural and functional networks. This review focuses on studies using graph theoretical measures

applied to structural MRI, diffusion MRI, functional MRI, electroencephalography and

magnetoencephalography data.

Recent findings—Complex network properties have been identified with some consistency in all

modalities of neuroimaging data and over a range of spatial and time scales. Conserved properties

include small-worldness, high efficiency of information transfer for low wiring cost, modularity, and

the existence of network hubs. Structural and functional network metrics have been found to be

heritable and to change with normal aging. Clinical studies, principally in Alzheimer’s disease and

schizophrenia, have identified abnormalities of network configuration in patients. Future work will

likely involve efforts to synthesize structural and functional networks in integrated models and to

explore the inter-dependence of network configuration and cognitive performance.

Summary—Graph theoretical analysis of neuroimaging data is growing rapidly and could

potentially provide a relatively simple but powerful quantitative framework to describe and compare

whole human brain structural and functional networks under diverse experimental and clinical

conditions.

Keywords

network; graph; small-world; modularity; wiring cost

Introduction

The concept of networks in neurology originated in the latter half of the 19th century with the

advent of the “disconnection syndromes” hypothesis propounded by Wernicke, Lichtheim,

Liepmann, Dejerine and others mainly on the basis of clinico-pathological correlations. The

concept was fostered by two developments in related fields: 1) the movement from a
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characterization of human brain surface morphology towards a direct description of

neuroanatomical projection pathways in the white matter and 2) the widespread acceptance of

“associationistic” models of cognitive function described by James and Freud [1]. However,

the early “diagram-makers”, as they were called by their detractors, lost ground to competing

theories of brain organization (such as mass action) in the mid-20th century. The central

concept of a brain network constructed to segregate and integrate information processing was

not again influential until reintroduced to the English speaking world by Norman Geschwind

in the 1960s [2,3]. While Geschwind’s legacy encouraged deeper exploration into cortico-

cortical connectivity organization, noninvasive imaging techniques to probe these relationships

in vivo were not yet widely available.

In the past few decades, a plethora of multiscale noninvasive structural and functional

neuroimaging techniques have become cost-effective while the basic data preprocessing

methods for these techniques have become more finely tuned. Simultaneously, developments

within the realm of statistical physics have led to the formation of a new interdisciplinary field,

now known as “complex network science”, which provides mathematical and conceptual tools

for understanding the organization and emergent behaviors of a diverse range of complex real-

life networks; see [4] for an accessible introduction and [5] for a comprehensive review of the

technical background. A basic insight to have emerged already from complex network science

is that substantively different systems can share key organizational principles in common.

Moreover, within a complex system like the brain, which exists on many different scales of

space and time, it seems that network properties can be highly conserved or scale-invariant.

For example, both microscopic cellular networks and macroscopic networks derived from

neuroimaging data can demonstrate isomorphic properties such as modularity, the existence

of hub nodes, and high efficiency of information transfer for nearly minimal wiring costs; see

[6,7] for recent reviews of complex networks in relation to neuroscience generally. In this

article we will focus specifically on recent studies using mathematical tools drawn mainly from

graph theory to elucidate the complex network properties of the human brain in health and

disease.

Graph theoretical concepts for network analysis

In graph theory, a network is reduced to an abstract description as a set of nodes connected by

edges (or lines); see Figure 1. The edges can be directed or undirected, and weighted or

unweighted. Most graph theoretical analysis of brain networks to date has considered the

simplest case of an undirected, unweighted graph.

The nodes and edges of a brain graph can be empirically defined in many ways. For networks

constructed from microscopic data, such as studies on the nematode worm Caenorhabditis

elegans [8], the nodes would naturally be neurons and the edges would represent the axons

connecting neurons to each other. On the other hand, to construct human brain networks at the

macroscopic scale of neuroimaging data, we might specify that the nodes were the major

subcortical nuclei and cortical regions and the edges represented some statistical measure of

association, e.g., correlation or mutual information, between regions [9,10]; see Figure 2.

Once the network has been rendered in graphical form, its topological properties can be

measured. A key topological metric is the degree of each node, which is simply the number of

edges connecting it to the rest of the network. The probability distribution of degree over all

nodes in the network is called the degree distribution and often has a more-or-less truncated

power law form compatible with the existence of high degree nodes or network hubs.

Another key metric is the path length which is the number of edges that must be traversed to

go from one node to any other node; for a pair of nodes that are nearest neighbors the path

length is 1; the average path length over all possible pairs of nodes, sometimes called the
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characteristic path length, is inversely related to the global efficiency of the network for parallel

information transfer [11]. The clustering coefficient is a measure of the density of connections

between nearest neighbors of an index node: high clustering coefficients indicate nodes that

are part of a clique of densely inter-connected neighbors. These and other metrics on brain

networks can be compared to their values in benchmark networks, such as random networks

(which have low clustering and short path length) or regular lattices (which have high clustering

and long path length).

Watts and Strogatz, in their highly influential article in 1998 [12], used a simple computational

model to show that between the limiting cases of a regular lattice and a random network there

exists an intermediate regime of networks characterized by the combination of high clustering

and short path length. They called this class of networks “small world”, based on previous

observations from sociology that social networks often have similar properties of high

clustering or cliquishness of relationships in local neighborhoods, combined with a surprisingly

short chain of intermediate acquaintances between any two people selected at random from a

large population. This analysis has proven to be attractive to systems neuroscientists because

it resolves a long-standing tension between localized and distributed models of brain

organization: in principle, a small-world network can provide a topological substrate for both

locally specialized or segregated processing in neighborhoods of highly clustered nodes, and

globally distributed or integrated processing on a highly efficient network with short

characteristic path length [13]. Recent work has considerably extended the range of metrics

that have been drawn from complex networks science to applications in neuroscience and

neuroimaging; see Table 1.

Structural brain networks

Human brain structural networks have been constructed in two ways: either indirectly from

inter-regional covariation of gray matter volume or thickness measurements in structural

magnetic resonance imaging data, sMRI; or more directly from measurements of white matter

connections between gray matter regions provided by diffusion tensor imaging, DTI (or related

techniques). Nodes of structural networks have usually been defined as regions of a

predetermined anatomical parcellation scheme, such as the automated anatomical labeling

(AAL) template image, which divides the cortex into approximate Brodmann areas [18]. To

make gray matter networks, based on sMRI data, the edges between nodes are defined by the

strength of correlation between regional volume or cortical thickness measurements [42]. For

example, in a sample of say 100 people, if there is a strong correlation between cortical

thickness in right and left middle frontal gyrus, an edge would be drawn between these nodes

in an undirected graph representing the sample mean network. The main advantage of white

matter networks, based on DTI, is that techniques such as probabilistic tractography can be

used to assign a connection probability between any pair of regional nodes in a single subject.

Moreover, anatomical networks based on tractography in a single subject may seem more

straightforwardly related to axonal projections between regions than networks based on inter-

regional covariation of gray matter (although see Lerch et al [43] for cross-validation of these

two approaches). However, one currently challenging issue for DTI-based networks is that

most tractography techniques under-estimate the probability of connections between regions

widely separated in space, leading to a relative sparsity of long distance edges in the resulting

networks.

Gray matter networks

Gray matter networks in healthy volunteers have been shown to have small-world topology

and relatively low wiring costs, i.e., the mean physical distance between connected nodes is

considerably less than in a comparable random network, consistent with prior evidence that
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nervous systems are organized to nearly minimize wiring costs [14,15]. In normal multimodal

cortical networks, a hierarchical organization was demonstrated, with the highest degree nodes

having low clustering; transmodal and unimodal cortical networks were less hierarchically

organized, suggesting that different cortical divisions might have developed according to

different growth rules [14]. There have also been studies of the modular organization of gray

matter networks, showing that these can be decomposed into a community of sparsely inter-

connected modules, each of which comprises a number of densely intra-connected brain

regions [16]. The modular organization of human brain structural networks seems to reflect

known functional specializations of the brain regions and is comparable to the modularity of

functional networks derived from fMRI [10,21]. A twin design has been used to determine a

network of regional structural associations which are under robust genetic control [17], as also

validated in functional networks [37].

A study of people with schizophrenia found that their gray matter network was characterized

by an increased physical distance between connected nodes, suggestive of inefficient wiring,

and attenuated hierarchical organization of heteromodal cortex, which might be indicative of

abnormal neurodevelopment [14]. In Alzheimer’s disease, gray matter networks have been

associated with changes in the degree distribution associated with a more lattice-like network

which is highly sensitive to computationally simulated lesions to the hub nodes [15,44].

White matter networks

Three diffusion-based methods have been used in important studies recently to construct white

matter networks: diffusion tensor imaging (DTI) [18], diffusion spectrum imaging (DSI)

[19], and diffusion weighted magnetic resonance imaging (DW-MRI) [20]. Convergently,

these studies suggest that there exists a core of the white matter network which densely

interconnects the posterior and medial cortical regions [19], association cortical hubs [20], and

has longer-range white matter connections to the rest of the brain [18].

Functional brain networks

Functional brain networks have been constructed from functional magnetic resonance imaging

(fMRI), electroencephalography (EEG), and magnetoencephalography (MEG).

fMRI

Functional MR imaging has coarse time resolution (order of seconds) but good spatial

resolution (millimeters). It has therefore been used to make anatomically precise, even voxel

level [26,28], maps of functional networks operating at low frequencies (< 0.5 Hz).

Two studies this year have confirmed the modular [21] and, in fact, hierarchically modular

[22] community structure of healthy functional networks. Meunier et al.(2009) further studied

the effect of aging on modular structure, finding an increased number of smaller modules and

fewer inter-modular connections to frontal regions in the older adults (mean age = 67.3 years)

than in the younger adults (mean age = 24.3 years) [21].

Several recent studies have described the effects of diseases such as schizophrenia, attention

deficit hyperactivity disorder (ADHD), and Alzheimer’s disease (AD) on fMRI brain networks.

Liu et al. (2008) showed that topological measurements such as clustering and small-worldness

were inversely correlated with duration of illness in schizophrenia [23]. Supekar et al. (2008)

showed that the clustering coefficient was significantly reduced in patients with Alzheimer’s

disease, and could be used to distinguished AD participants from the controls with a sensitivity

of 72% and specificity of 78% [24]. Interestingly, Buckner et al. further showed that the cortical

hubs (nodes with high degree) of the resting state functional network also show high amyloid-

β deposition in people with Alzheimer’s disease [28]; see Figure 3. Children with ADHD seem
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to show the opposite trend, with a significantly increased local efficiency (or clustering)

compared to age-matched volunteers, with regional changes in efficiency found especially in

prefrontal, temporal, and occipital cortices [25].

EEG and MEG

EEG and MEG data contain information about the brain’s electromagnetic activity over a wide

range of frequencies (~1 to 100 Hz) with millisecond time resolution but relatively poor spatial

resolution (centimeters).

Several studies in aging, schizophrenia, and Alzheimer’s disease have found functional

networks operating in these higher frequencies which show comparable topological changes

to those described in the lower frequency fMRI data. For example, the transition from

childhood (8–12 yr) to adulthood (21–26 yr) is suggested by Micheloyannis et al. to be

characterized by a reduction of overall connectivity (decreased clustering and increased path

length) [29]. Similarly, Stam et al. showed, in an analysis of weighted networks derived from

resting state MEG data, that patients with Alzheimer’s disease had reduced connectivity as

shown by decreased clustering and increased path length [40]. Finally, a comparable decrease

in local clustering was found in weighted networks derived from EEG data on patients with

schizophrenia studied both under resting conditions [30] and while performing a working

memory task [31].

The effects of sleep on functional networks have been described in studies using EEG with a

relatively small number of electrodes (12–19), resulting in networks that are roughly an order

of magnitude smaller than those considered in fMRI and waking electrophysiological

techniques. Ferri et al. (2008) reported that small-worldness became steadily greater through

light sleep, slow-wave sleep, and REM sleep in frequency bands less than 15 Hz, indicating a

definite reconfiguration which may be related to neural plasticity during sleep [32]. Dimitriadis

et al. make the further claim that the topological structure of networks in stages 1, 2, 3, 4, and

REM are significantly different and can be clearly distinguished with a high sensitivity and

specificity using a data driven clustering algorithm [33]. In addition to studies of healthy

subjects, Leistedt et al. analyzed the sleep networks of acutely depressed patients and showed

that they were characterized by an increased path length, i.e., a randomization of network

topology, which may directly impact the cognitive capacity of the brain during wakefulness

[34].

Recent challenges and trends

Given the recent explosion of human brain network papers based on graph theoretical analysis

of neuroimaging data, a current challenge to the field is to evaluate the convergence of structural

and functional networks measured at different frequency and spatial scales using different

techniques. Preliminary evidence suggests anecdotally that there is some degree of

isomorphism between gray matter and white matter networks, and between disease-related

changes in low and high frequency functional networks derived from fMRI and EEG/MEG

data, respectively. However, these issues need to be addressed more rigorously and directly,

for example by using computational models [45], to provide a more integrated account of brain

network organization [46].

Another emerging issue is that we do not yet understand the impact of different methodological

choices at several steps of network generation and analysis on the resultant findings. Studies

have used different parcellation schemes [26,27], continuous metrics of association [47], edge

weights (continuous or binary) [23,30,38,40], and strategies for thresholding association

matrices. Encouragingly, many headline results (e.g., network small-worldness) seem to be
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robust to methodological details but, nonetheless, it will be important to develop a more rational

basis for choosing between alternative options.

Within the past year, we have also seen an increasing interest in studying how networks change,

e.g., over time and in response to task demands. While network dynamics seem to have a

persistent or long memory component [39], they can also adjust quickly to behavioral changes

or cognitive demands [35]. This adaptivity to changing environmental contingencies may be

related to evidence that brain networks are dynamically in a critical state, “on the edge of

chaos”, which facilitates their rapid reconfiguration in response to altered inputs [48]. The

inter-dependence of network organization and behavior has already been studied for several

specific tasks [29,31,36,49,50]. Recent papers have described methodological developments

which could be relevant to more extensive applications of graph theoretical analysis to task-

related functional networks in future [41,51,52].

Conclusion

Graph theoretical analysis of human brain network organization based on neuroimaging data

has developed rapidly in the last 1–2 years. The basic concepts and techniques have proven to

be generally applicable to all major current modalities of neuroimaging data over a wide range

of spatial and frequency scales. Preliminary data have also indicated that structural and

functional network measures are heritable, abnormal in clinical disorders, and change in the

context of normal aging, collectively suggesting that these metrics are capturing aspects of

brain organization that are of substantive neurobiological importance.
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Figure 1.

Tutorial of basic network concepts. Top Plaque Definitions for a node, an edge, a triangle, and

a connected triple. Second Plaque The clustering coefficient, C, is given by the ratio of the

number of connected triangles to the number of connected triples. Third Plaque The path

length, L, is given by the fewest number of edges linking one node, i, to another node, j. Bottom

Plaque A modular network structure occurs when there are more connections within a module

than between modules. In this schematic, modules are given by distinct colors, e.g., blue, green,

and yellow.
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Figure 2.

Workflow of human brain network construction. To construct a brain network, one can begin

with either structural (including either gray or white matter measurements) or functional data

(including low frequency fMRI data and high frequency EEG or MEG data). Raw data is

conventionally put into a parcellation scheme whereby the brain is subdivided into on the order

of 100 regions of interest. For EEG and MEG data, this parcellation is already performed by

the sensors. The pairwise association between brain regions is then computed, and usually

thresholded to create a binary matrix. A brain network is then constructed from nodes (brain

regions) and edges (pairwise associations which were larger than the chosen threshold).
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Figure 3.

Network hubs have increased amyloid-β deposition in Alzheimer’s disease. Left Location of

cortical hubs, i.e., nodes with a high number of connections or degree, in healthy resting state

fMRI networks. Right Location of greatest amyloid-β deposition in people with Alzheimer’s

disease as measured in a PET study. Reproduced with permission from [28].
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