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Abstract

Background: Currently, over half of breast cancer cases are unrelated to known risk factors, highlighting the
importance of discovering other cancer-promoting factors. Since crosstalk between gut microbes and host
immunity contributes to many diseases, we hypothesized that similar interactions could occur between the recently
described breast microbiome and local immune responses to influence breast cancer pathogenesis.

Methods: Using 16S rRNA gene sequencing, we characterized the microbiome of human breast tissue in a total of
221 patients with breast cancer, 18 individuals predisposed to breast cancer, and 69 controls. We performed
bioinformatic analyses using a DADA2-based pipeline and applied linear models with White’s t or Kruskal–Wallis H-
tests with Benjamini–Hochberg multiple testing correction to identify taxonomic groups associated with prognostic
clinicopathologic features. We then used network analysis based on Spearman coefficients to correlate specific
bacterial taxa with immunological data from NanoString gene expression and 65-plex cytokine assays.

Results: Multiple bacterial genera exhibited significant differences in relative abundance when stratifying by breast
tissue type (tumor, tumor adjacent normal, high-risk, healthy control), cancer stage, grade, histologic subtype,
receptor status, lymphovascular invasion, or node-positive status, even after adjusting for confounding variables.
Microbiome–immune networks within the breast tended to be bacteria-centric, with sparse structure in tumors and
more interconnected structure in benign tissues. Notably, Anaerococcus, Caulobacter, and Streptococcus, which were
major bacterial hubs in benign tissue networks, were absent from cancer-associated tissue networks. In addition,
Propionibacterium and Staphylococcus, which were depleted in tumors, showed negative associations with
oncogenic immune features; Streptococcus and Propionibacterium also correlated positively with T-cell activation-
related genes.
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Conclusions: This study, the largest to date comparing healthy versus cancer-associated breast microbiomes using
fresh-frozen surgical specimens and immune correlates, provides insight into microbial profiles that correspond
with prognostic clinicopathologic features in breast cancer. It additionally presents evidence for local microbial–
immune interplay in breast cancer that merits further investigation and has preventative, diagnostic, and
therapeutic potential.
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Background
Despite the prevalence of breast cancer, many cases are

unrelated to known risk factors. Furthermore, not all in-

dividuals with genetic predisposition or exposure to doc-

umented environmental factors develop disease [1],

indicating an urgent need to identify additional determi-

nants of breast carcinogenesis. Increasing evidence sug-

gests that the gut microbiome plays a significant role in

immunity and other essential host processes and that

microbial perturbation (dysbiosis) contributes to disease

states, including malignancy [2]. Recently, tissue-resident

microbes at other sites such as the skin, oral cavity, and

respiratory tracts have been discovered [3]. While several

groups, including ours, have found that the breast har-

bors a diverse microbiome that differs significantly in

patients with and without breast cancer [4–9], the func-

tion of microbiota at extra-intestinal tissues remains

poorly understood.

Immune homeostasis in the gut relies on constant

crosstalk between the microbiota and host immune cells.

By influencing metabolism, inflammation, and immune

responses, the microbiome can regulate cancer initiation

and progression at both local and distant sites [10]. Intri-

guingly, recent work using mouse models demonstrated

that gut microbial composition can determine suscepti-

bility to mammary carcinoma [11]. In humans, a large

case–control study showed that increasing cumulative

antibiotic use corresponded with increased breast cancer

risk [12]. With major efforts focused on examining re-

gional and systemic effects of the gut microbiome, much

less consideration has been given to putative interactions

between extra-intestinal microbial populations and local

immunity, especially as they relate to carcinogenesis.

Though bacterial 16S rRNA and lipopolysaccharides can

associate with immune cells in breast tumors, their im-

pact on immune function remains unclear [13]. Conceiv-

ably, the breast microbiota may influence breast cancer

development and growth not only by modulating local

estrogen levels [14], but also by shaping inflammatory

responses and immune trafficking in the tumor

microenvironment.

To better understand the role of regional micro-

biome–immune system interplay in breast tumorigen-

esis, we compared the breast microbiota and immune

signatures of patients with breast cancer to those of

healthy individuals, focusing on microbial and immuno-

logical differences that co-varied with one another and

with clinicopathologic factors. We thereby sought to ad-

dress the hypothesis that patients with versus without

breast cancer have distinct microbial and immunological

profiles and associations, which highlight potential con-

nections between the breast microbiome and local

cancer-related immune responses.

Methods
Patient enrollment and tissue collection

Fresh-frozen breast tissues were requested from three

tissue biorepositories (Cleveland Clinic Breast Center

Microbiome Biorepository, Cooperative Human Tissue

Network, and Case Comprehensive Cancer Center Hu-

man Tissue Procurement Facility). Specimens were ob-

tained using standard biorepository protocols from

female patients undergoing surgery for breast cancer, re-

duction mammoplasty, or prophylactic mammoplasty

who provided written informed consent. If available,

breast cancer (tumor) and adjacent normal breast tissue

(tumor adjacent normal) pairs from the same donor

were included. Tissue from patients without breast can-

cer (healthy control) was verified by a pathologist to be

free of malignant cells. Patients with genetic predispos-

ition (pathogenic gene carrier or first-degree relative

with breast cancer) or past personal history of breast

cancer were considered at high risk for breast cancer.

Histopathological data were compiled from pathology

reports. For patients recruited at the Cleveland Clinic,

additional clinical history and information regarding

breast cancer risk factors were acquired through a com-

bination of patient interview and standardized question-

naire. Breast cancer staging was standardized using

American Joint Committee on Cancer/Union for Inter-

national Cancer Control 8th edition TNM pathologic

stage criteria. Specimens were flash frozen and stored at

− 80 °C until further processing. This study was ap-

proved by the Cleveland Clinic institutional review board

(IRB #14-774 and 17-791).

To control for possible environmental microbial con-

tamination, a specimen container filled with 5ml of ster-

ile saline or water was left open in the operating room
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during breast surgery at each institution from which

specimens were collected (Cleveland Clinic, Hospital of

the University of Pennsylvania, The Ohio State Univer-

sity Wexner Medical Center, University Hospitals Cleve-

land Medical Center, University of Virginia Medical

Center). These environmental controls were also stored

at − 80 °C and processed in parallel with tissue

specimens.

RNA extraction

Total RNA was extracted from frozen breast tissue using

the RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden,

Germany) with the following modification. Samples were

homogenized in 2-ml tubes with Lysing Matrix A (MP

Biomedicals, Solon, OH, USA) and 1ml QIAzol Lysis

Reagent using a FastPrep-24 5G instrument (MP Bio-

medicals) with 3 runs of 30 s at 6 m/s. Subsequently,

RNA preparation was performed according to the manu-

facturer’s protocol, including the optional on-column

DNase digestion step. RNA concentrations and quality

(A260/280, A260/230) were determined by spectropho-

tometry (Thermo Scientific NanoDrop 1000, Waltham,

MA, USA), and samples were stored at − 80 °C until fur-

ther analysis.

NanoString gene expression analysis

Total RNA was hybridized to the Human Immunology

v2 Panel CodeSet and processed on an nCounter GEN2

Digital Analyzer (NanoString Technologies, Seattle, WA,

USA) per manufacturer’s instructions. Normalization,

background subtraction, and hybridization/binding

intensity correction were performed using nCounter Ad-

vanced Analysis 2.0 software (NanoString Technologies),

and resulting values were log2-transformed for down-

stream analysis. K-means clustering of normalized gene

expression based on one minus the Pearson correlation

was performed using Morpheus (Broad Institute, Cam-

bridge, MA, USA). Differential pathway analysis, KEGG

pathway overlay, and immune cell type profiling were

also conducted using Advanced Analysis software. False

discovery rates (FDR) for differential gene expression

were adjusted using the Benjamini–Yekutieli method.

Multiplex cytokine assay

Frozen breast tissue was placed into chilled 2-ml

homogenization tubes containing 3.0 mm zirconium

beads (Benchmark Scientific, Edison, NJ, USA). Cold

PBS with 2X complete protease inhibitor cocktail

(Roche, Basel, Switzerland) was added in a ratio of 4 μl/

mg (tumor) or 3 μl/mg (non-tumor) tissue, and samples

were homogenized using a FastPrep-24 5G instrument

(MP Biomedicals) with 3 runs of 30 s at 6 m/s. After se-

quential centrifugation (14,000×g for 15 min at 4 °C,

transfer to a new tube, then 14,000×g for 10 min at 4 °C),

supernatant aliquots were taken for protein quantifica-

tion using a BCA assay kit (Thermo Scientific) in ac-

cordance with the manufacturer’s protocol. PBS with

protease inhibitor was added to normalize the protein

concentrations of all supernatant samples to 1.5 mg/ml,

and samples were stored at − 80 °C until analysis. Cyto-

kine expression was evaluated using the Human Cyto-

kine/Chemokine Array 65-Plex Assay performed by Eve

Technologies (Calgary, AB, Canada). Background fluor-

escence was subtracted from all samples, and data were

log10-transformed prior to further analysis.

DNA extraction

Bacterial genomic DNA was isolated from frozen breast

tissue and environmental controls using the QIAamp

PowerFecal Pro DNA Kit (Qiagen) with minor modifica-

tions as follows. To minimize contamination from envir-

onmental microbial DNA, all pipettes, pipette tips, and

non-enzymatic kit components were UV-irradiated for

at least 1 h prior to use, and extraction was performed in

a dedicated laminar flow hood (AirClean 600 PCR

Workstation, Creedmoor, NC, USA) [15]. For

homogenization, samples were placed into 2-ml tubes

with Lysing Matrix A (MP Biomedicals) along with

800 μl Solution CD1 and processed with 4 runs of 45 s

at 6 m/s in a FastPrep-24 5G instrument (MP Biomedi-

cals). The rest of the protocol proceeded per the manu-

facturer’s instructions. Buffer-only negative controls and

extraction positive controls (ZymoBIOMICS Microbial

Community Standard; Zymo Research, Irvine, CA, USA)

were processed identically in parallel. DNA concentra-

tions and quality (A260/280, A260/230) were deter-

mined by spectrophotometry (Thermo Scientific

NanoDrop 1000), and samples were stored at − 20 °C

until 16S rRNA gene library preparation.

16S rRNA gene sequencing

Bacterial 16S rRNA gene V3-V4 and V7-V9 regions were

PCR-amplified using the QIAseq 16S Region Panel (Qia-

gen) according to kit instructions for amplification of

samples with low bacterial content followed by PCR

cleanup. Pipettes and plasticware were UV-irradiated be-

fore use, and PCR reactions were set up in a dedicated

laminar flow hood. For negative controls, nuclease-free

water was substituted for the DNA template. The QIA-

seq 16S/ITS 96-Index Kit (Qiagen) was used to complete

library construction. After cleanup (Ampure XP beads;

Beckman Coulter, Brea, CA, USA) and quantification

(Qubit dsDNA broad-range assay; Thermo Scientific), li-

braries were normalized to 2 nM, pooled, denatured, and

diluted to a final concentration of 10 pM. Libraries were

validated on a Bioanalyzer DNA 1000 chip (Agilent

Technologies, Santa Clara, CA, USA) and sequenced

with an Illumina MiSeq (San Diego, CA, USA) using the
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V3 reagent kit (2 × 300 bp paired-end) at the Case West-

ern Reserve University Genomics Core.

Bioinformatic analysis

Demultiplexed fastq files were processed with a Divisive

Amplicon Denoising Algorithm (DADA) 2-based pipe-

line [16] as follows. After dereplication was conducted,

the output, a feature table containing amplicon se-

quence variants (ASVs) and associated abundances, was

generated based on forward reads. Chimeric and shifted

sequences were removed through DADA2, and ASVs

present in the environmental and negative controls

were subtracted from all samples as previously de-

scribed [17, 18] using R (Additional file 1: Figure S1).

For this purpose, ASVs have an advantage over trad-

itional operating taxonomic units (OTUs) because

while OTU-based approaches consolidate similar se-

quences into consensus units, the ASV approach treats

exact sequences as unique units, thereby enabling the

removal of contaminating sequences without signifi-

cantly affecting relevant reads [16]. A total of 11,000

ASVs were present in environmental and negative con-

trols; however, > 99% of these ASVs were assigned to

the domain Eukaryota by the DADA2 taxonomy classi-

fier and were thus excluded in downstream analyses.

Sequences were then classified against Silva [19]. After

removing eukaryotic sequences and trimming ASVs

with < 3 total reads, α-diversity indices within group

categories were calculated using phyloseq [20] and plot-

ted using ggpubr (https://rpkgs.datanovia.com/ggpubr/)

in R. The metagenomeSeq R package was used to apply

cumulative sum scaling normalization followed by lin-

ear modeling to identify differentially abundant taxa

across groups after correcting for specimen collection

site (hospital), age, and race [21].

Using the psych R package [22], microbiome–immune

networks were constructed based on pairwise Spearman

correlations between genus-level bacterial relative abun-

dances and either NanoString gene expression or multi-

plex cytokine assay data. To enrich for putative

biologically relevant associations, only taxa detected in

at least 2 samples were included, and analyses focused

on immune data that were significantly different in

tumor versus healthy control tissue (FDR < 0.05). Fur-

thermore, a filter was applied to select only associations

with Spearman coefficient |r| > 0.2 and p < 0.05. Net-

works were visualized using a default force-directed lay-

out algorithm in igraph [23].

16S rRNA gene quantitative PCR

Total bacterial load was measured by qPCR using the

following universal 16S rRNA gene primers: Uni340F

(ACTCCTACGGGAGGCAGCAGT) and Uni514R (AT

TACCGCGGCTGCTGGC) [24, 25]. Each 50-μl PCR

reaction contained 4 μl of DNA template or environ-

mental/negative control, 25 μl of QuantiTect SYBR

Green Master Mix (Qiagen), 1.5 μl each of 10 μM for-

ward and reverse primers, and 18 μl of nuclease-free

water. The following thermal cycling program was per-

formed on an Applied Biosystems 7500 Real-Time PCR

System (Foster City, CA, USA): initial 15-min denatur-

ation step at 95 °C; 40 cycles at 94 °C for 15 s, 60 °C for

30 s, and 72 °C for 30 s. The PCR product size was 197

bp, and product purity was verified by melting curve

analysis. Absolute quantification of bacterial DNA was

then performed using standard curves constructed with

Escherichia coli reference genomic DNA (ATCC, Manas-

sas, VA, USA). Although qPCR measures 16S rRNA

gene copies per sample instead of actual bacterial num-

bers or colony-forming units, these values are directly

related, showing considerable correlation [24, 26]. All

standards and controls were run in duplicate; all samples

were run in triplicate.

Immunohistochemistry and image analysis

For a random subset of cases from the Cleveland Clinic

(19 breast cancer cases; 6 prophylactic mastectomy

cases; 5 reduction mammoplasty cases), corresponding

archival formalin-fixed, paraffin-embedded tissue was

sectioned at 5 μm. The immunohistochemistry double

stain was completed using a DISCOVERY ULTRA auto-

mated stainer (Roche). In brief, antigen retrieval was

performed using a tris/borate/EDTA buffer (DISCOV-

ERY CC1; Roche #950-500), pH 8.0 to 8.5, for 64 min at

95 °C. Slides were incubated with a 1:100 dilution of

anti-FOXP3 antibody (clone 236A/E7; Abcam, Cam-

bridge, UK) for 40 min at 37 °C. FOXP3 was visualized

using the OmniMap anti-mouse HRP secondary anti-

body (Roche #760-4310) and the ChromoMap DAB de-

tection kit (Roche #760-159). Slides were then double-

labeled with a pre-diluted anti-CD8 antibody solution

(clone SP57; Roche #790-4460) for 40 min at 37 °C. CD8

was visualized using UltraMap anti-rabbit AP (Roche

#760-4314) and the DISCOVERY Red AP detection kit

(Roche #760-228). Lastly, the slides were counterstained

with hematoxylin and bluing.

Immunostained slides were scanned with an Aperio

AT2 automated slide scanner (Leica Biosystems, Wet-

zlar, Germany). The resulting SVS image files were

viewed and manually annotated by a pathologist using

Aperio ImageScope software 12.3.3 (Leica Biosystems) to

delineate tumor regions. Subsequently, images were ana-

lyzed using CaloPix software (TRIBVN Healthcare, Paris,

France) with the Tissue Recognition 4.0.0 and Cell Rec-

ognition 4.1.0 macros as follows. Using a selection of

pathologist-annotated images, the machine-learning soft-

ware was trained to create a decision model based on

color, texture, and edge criteria on the color-
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deconvolved channels DAB and eosin that assigned a

probability of belonging to the “tumor,” “stroma,” or

“background” classes to each image pixel. Each pixel was

then classified with the label scoring the highest prob-

ability. Similarly, a machine-learning decision model

based on color, texture, and edge criteria was created to

assign a probability of belonging to the “cell” class to

each image pixel. The maxima of the resulting probabil-

ity map generated a point centered on each cell, and de-

tected cells were classified into CD8+ or FOXP3+ cells

using the point neighborhood on the color-deconvolved

channels DAB and eosin. Cell densities were quantified

in the normal breast and intratumoral compartments

using CaloPix as previously described [27].

Statistical analysis

Data were analyzed using GraphPad Prism 8.4.3 (San

Diego, CA, USA) and R v4.0.2. Statistical tests were

based on two-sided comparisons with significance set at

p < 0.05 unless otherwise specified. A sample size of ≥

200 patients with breast cancer was chosen to enable the

assessment of up to 20 clinical variables using multivari-

able regression by the rule of 10 [28]. To compare pa-

tient characteristics, the Kruskal–Wallis test was used

for continuous data and Fisher’s exact test for categor-

ical data. Pairwise bacterial α-diversity comparisons were

made using one-way ANOVA. White’s t or Kruskal–

Wallis H-tests with Benjamini–Hochberg FDR correc-

tion for multiple comparisons were conducted to iden-

tify differentially abundant bacterial taxa when

stratifying by clinical variables. When evaluating differ-

ential abundance based on tumor-specific variables,

FDR-corrected values < 0.1 were considered significant

in order to avoid overlooking important taxa with vari-

able presence [13, 29, 30]. Comparisons of total bacterial

load and of immune cell densities were performed using

the Mann–Whitney test or Kruskal–Wallis test with

posthoc Dunn test. Cytokine multiplex assay data were

analyzed using two-way ANOVA with posthoc Tukey

test. Finally, Spearman rank-order correlation was used

to evaluate associations between genus-level bacterial

relative abundances and immune cell type scores (esti-

mated abundances).

Results
Patient characteristics

Our study included fresh-frozen breast specimens from

221 patients with breast cancer and 87 patients without

breast cancer. Of the patients without breast cancer, 18

were categorized as being at high risk for breast cancer

based on genetic predisposition or patient history; speci-

mens from these patients were nonetheless verified as

histologically free of malignant cells by a pathologist. Pa-

tient demographic and clinicopathologic characteristics

are shown in Table 1. Since significant differences in age

and race were present among patient groups, these vari-

ables, along with specimen collection site (hospital),

were treated as confounders (covariates) in subsequent

statistical analyses. For the 66 patients recruited at the

Cleveland Clinic, additional information on known

breast cancer risk factors and oral antibiotic use was

available, which showed no significant differences among

the patient groups aside from breast cancer family his-

tory (Table 2).

Breast tumor tissue exhibits distinct microbiome

composition

Since the breast tissue microbiome has a relatively low

biomass, we took extensive precautions to minimize the

potential impact of bacterial contaminants as described

in the “Methods” section, including collecting and ana-

lyzing multiple environmental and negative controls

alongside the tissue samples [15]. Furthermore, amplicon

sequence variants detected in the environmental and

negative controls were computationally removed from

subsequent analyses (Additional file 1: Figure S1). Abso-

lute quantification of total bacterial load using qPCR

with universal 16S rRNA gene primers revealed signifi-

cantly greater bacterial abundance in all breast tissue

types versus environmental and negative controls (Add-

itional file 1: Figure S2a). Moreover, the total bacterial

load was similar across tissue types (Additional file 1:

Figure S2b) and, as expected, was several orders of mag-

nitude lower in comparison to that found in high-

biomass sites such as the gut and stool [25, 31, 32].

To quantify overall differences in breast microbial di-

versity between tissue types, we applied two measures of

α-diversity, defined as within-group taxonomic richness

and evenness, and found that tumor tissue exhibited sig-

nificantly decreased α-diversity compared to tumor adja-

cent normal or healthy control tissue (Fig. 1a).

Interestingly, high-risk tissue also demonstrated a trend

toward reduced α-diversity, particularly in comparison

to tumor adjacent normal tissue. We next sought to

characterize breast microbial differences at various taxo-

nomic levels. In all tissue types, the top bacterial phylum

was Proteobacteria, with either Firmicutes or Actinobac-

teria being the next most abundant (Fig. 1b). Differences

between tissue types were more apparent at lower taxo-

nomic levels: for example, compared to other tissues,

tumor tissue contained a much higher percentage of the

families Pseudomonadaceae and Enterobacteriaceae (Fig.

1c). At the genus level, Pseudomonas constituted a

greater proportion of the breast microbiome in tumor

versus other tissues, and Proteus, the second most abun-

dant genus in tumor tissue, was largely absent from

non-tumor tissues (Fig. 1d). Porphyromonas and Azomo-

nas also had a higher abundance in tumor compared

Tzeng et al. Genome Medicine           (2021) 13:60 Page 5 of 17



with other tissues. Conversely, Propionibacterium and

Staphylococcus were prominent constituents of healthy

control, high-risk, and tumor adjacent normal tissues

but were scarce in tumor tissue. Healthy control tissue

was further characterized by the marked presence of Ste-

notrophomonas and Caulobacter, genera that were not

detected above the 3% abundance threshold in other

tissues.

Subsequently, we identified 48 bacterial genera that

were differentially abundant after stratifying by tissue

type and adjusting for known confounders and

microbiome-influencing factors (patient age, race, hos-

pital) [9, 33, 34]. Benign tissue samples (healthy control,

high-risk) displayed similar microbiome composition

and were characterized by greater mean relative abun-

dances of 11 genera (Propionibacterium, Finegoldia,

Granulicatella, Streptococcus, Anaerococcus, Ruminococ-

caceae UCG-002, Corynebacterium 1, Alicyclobacillus,

Odoribacter, Lactococcus, Esherichica/Shigella) com-

pared to cancer-associated samples (tumor, tumor adja-

cent normal) (Fig. 2a, Additional file 2: Table S1).

Nonetheless, there were subtle differences between the

microbial profiles of healthy control and high-risk tis-

sues, including certain genera that were present in

healthy control yet absent from high-risk samples (e.g.,

Vibrionimonas, Amphibacillus) and vice versa. Of the

genera present in both types of cancer-associated tissue,

the majority (17/22) were enriched in tumor adjacent

normal versus tumor tissue, emphasizing that the micro-

biome of breast tumors is distinct not only from that of

healthy control tissue, but also from that of adjacent

normal tissue.

Table 1 Patient characteristics

Variable Cancer
(n = 221)

High-risk
(n = 18)

Healthy control
(n = 69)

p-value

Age at surgery (years) 57 (47–66) 45 (36–51) 38 (26–47) < 0.0001

Racea < 0.0001

Caucasian 191 (86%) 14 (78%) 37 (54%)

African American 26 (12%) 4 (22%) 27 (40%)

Others 4 (2%) 4 (6%)

TNM stagea

0 3 (1.5%)

1 124 (63%)

2 44 (22%)

3 27 (13.5%)

Gradea

1 24 (11%)

2 86 (40%)

3 107 (49%)

Histology

IDC 164 (74%)

ILC 27 (12%)

IDC + ILC 12 (6%)

Others 18 (8%)

ER+a 164 (82%)

PR+a 143 (72%)

HER2+a 15 (8%)

TNBCa 30 (15%)

LVIa 90 (43%)

Node positivea 109 (52%)

Data are presented as number of patients (%) or median (interquartile range)
aMissing data: age (n = 1), race (n = 1), stage (n = 23), grade (n = 4), ER (n = 21), PR (n = 22), HER2 (n = 37), TNBC (n = 23), LVI (n = 14), and node-positive status

(n = 10). Percentages are calculated from the total number of patients with known values

IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor 2; TNBC,

triple-negative breast cancer; LVI, lymphovascular invasion
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Multiple bacterial genera are significantly associated with

prognostic breast tumor features

While previous studies have described associations be-

tween specific breast microbial taxa and prognostic

breast cancer features such as stage [9], histologic grade

[8], receptor status [4, 7, 9, 13, 35], and lymphovascular

invasion [4], none has examined these associations to-

gether in the same study. Our comparatively large sam-

ple size enabled us to use multivariate regression to

identify bacterial genera with statistically different abun-

dances when stratifying by cancer stage, grade, histologic

subtype, receptor status, lymphovascular invasion, or

lymph node status and adjusting for patient age, race,

and hospital. In particular, Porphyromonas, Lacibacter,

Ezakiella, and Fusobacterium were more abundant in

higher versus lower stage tumors, and 13 genera were

present only in stage 3 tumors (Fig. 2b, Additional file 2:

Table S1). Similarly, multiple genera were significantly

associated with histologic grade, with a number of gen-

era present only in grade 1 tumors (Fig. 2c, Additional

file 2: Table S1). Distinct microbial profiles also corre-

lated with each histologic tumor subtype: for instance,

invasive ductal carcinoma (IDC) was characterized by

the presence of Tepidiphilus, Alkanindiges, and Stenotro-

phomonas, while invasive lobular carcinoma (ILC) sam-

ples contained Peptostreptococcus, Micromonospora,

Faecalibacterium, and Stenotrophomonas (Fig. 2d, Add-

itional file 2: Table S1).

Upon stratifying samples by tumor receptor status, we

noted that estrogen receptor (ER)-positive tumors consist-

ently had lower abundances of 7 genera (Alkanindiges,

Micrococcus, Caulobacter, Proteus, Brevibacillus, Kocuria,

Parasediminibacterium) compared to ER-negative tumors

(Fig. 3a). In contrast, 6 genera (Pelomonas, Ralstonia,

Oblitimonas, Lactobacillus, Methylophilus, Achromobac-

ter) showed associations with progesterone receptor (PR)-

positive status (Fig. 3b). Human epidermal growth factor 2

(HER2)-positive tumors had significantly higher abun-

dances of 7 genera (Cloacibacterium, PRD01a011B,

Alloprevotella, Stakelama, Filibacter, Blastomonas, Anae-

rostipes) compared to HER2-negative tumors (Fig. 3c).

Meanwhile, 6 of 7 genera that were relatively decreased in

ER-positive tumors, along with the genus Azomonas, were

enriched in triple-negative breast cancer (TNBC) tumors

(Fig. 3d). We also identified taxonomic associations with

markers of tumor metastatic potential. Lymphovascular

invasion and node-positive status correlated with reduced

abundance of Oblitimonas (Fig. 3e, f). Lymphovascular in-

vasion further associated positively with Lactobacillus and

negatively with Alkanindiges, while node-positive status

associated positively with Acinetobacter and Bacteroides

and negatively with Achromobacter. Collectively, these

findings of shared as well as distinct bacterial profiles asso-

ciated with prognostic breast tumor features suggest that

breast microbiome–tumor interactions are complex and

likely involve multiple factors.

Breast microbial and immunological signatures co-vary

with each other and form association networks

Given the gut microbiome’s well-defined role in shaping

host immunity [10], we hypothesized that differential

composition of the breast microbiome may influence the

intratumoral immune microenvironment. To delineate

the immunological landscape in our samples, we

Table 2 Breast cancer risk factors and antibiotic use in patients recruited at the Cleveland Clinic

Variable Cancer
(n = 48)

High-risk
(n = 7)

Healthy control
(n = 11)

p-value

Age at menarche (years) 13 (12–13) 12 (12–13) 11 (10–12) 0.230

Postmenopausal 28 (58%) 5 (71%) 4 (36%) 0.367

Gravity/parity 2 (1–3.8)/2 (1–3) 2 (1–3)/2 (0–3) 1.5 (0–2.5)/1 (0–2.3) 0.309/0.397

OCP or HRT usea 33 (69%) 6 (100%) 4 (57%) 0.248

Family history of breast cancera 26 (54%) 4 (67%) 0 (0%) 0.001

Alcohol usea 0.421

Frequent 19 (40%) 2 (28.5%) 4 (40%)

Occasional 12 (25%) 2 (28.5%) 5 (50%)

None 17 (35%) 3 (43%) 1 (10%)

Last oral antibiotic usea 0.985

< 1month ago 6 (17%) 1 (17%) 2 (20%)

1–6 months ago 12 (34%) 2 (33%) 4 (40%)

> 6months ago 17 (49%) 3 (50%) 4 (40%)

Data are presented as number of patients (%) or median (interquartile range)
aMissing data: OCP or HRT use (n = 5), family history (n = 1), alcohol use (n = 1), and antibiotic use (n = 15). Percentages are calculated from the total number of

patients with known values

OCP, oral contraceptive pill; HRT, hormone replacement therapy
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Fig. 1 Breast bacterial community composition varies by patient breast cancer status and tissue type. a Bacterial α-diversity as measured by
Shannon and Simpson diversity indices within breast tissue from patients with (tumor, tumor adjacent normal) versus without (healthy control,
high-risk) breast cancer. Violin plots show median and interquartile range. p-values result from one-way ANOVA tests. Taxonomic composition of
the breast microbiome, depicted as average relative abundances at the phylum (b), family (c), and genus (d) levels for each tissue type
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Fig. 2 Specific bacterial genera correlate with clinicopathologic features. Mean relative abundances (proportions) of bacterial genera that were
differentially present in distinct breast tissue types (a) and in breast tumors stratified by cancer stage (b), histologic grade (c), and histologic
subtype (d). Stages 0 and 1 were combined for analysis due to the very small number of samples classified as stage 0. Crossed-out boxes indicate
samples for which specific genera were not detected. Color bars vary on a logarithmic scale. All genera shown had FDR-corrected p-value < 0.05
by Kruskal–Wallis H-test after adjustments for age, race, and hospital
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measured the expression of 579 immune-related genes

in 443 breast tissue samples (196 tumor, 175 tumor ad-

jacent normal, 17 high-risk, 55 healthy control) using

NanoString. We applied an unsupervised learning algo-

rithm to the most differentially expressed genes in

tumor versus healthy control tissue (Additional file 3:

Table S2) to separate samples into 3 clusters. Cluster 1

contained 91% (179/196) of total tumor samples, and

95% of samples in this cluster were tumor tissue (Fig. 4a).

In contrast, tumor adjacent normal, high-risk, and

healthy control samples were distributed between clus-

ters 2 and 3. Gene set analysis demonstrated that tumor

tissue also clustered separately from tumor adjacent nor-

mal and high-risk tissues based on cellular pathway al-

terations relative to healthy control tissue (Fig. 4b).

Interestingly, the toll-like receptor (TLR) signaling path-

way, best known for its microbial sensing role [36], was

one of the top 10 most altered pathways in tumor tissue,

with significant downregulation of TLR4 and upregula-

tion of MYD88, IRAK1, and other downstream genes

compared to healthy control tissue (Additional file 1:

Figure S3).

The NanoString gene panel further allowed us to esti-

mate tissue immune cell abundance using cell type-

specific gene signatures [37]. While similar numbers of

CD45+ cells were present in all tissue types, total T-cells,

CD8+ T-cells, natural killer (NK) cells, and neutrophils

were enriched in tumor versus tumor adjacent normal,

high-risk, and healthy control tissues (Fig. 4c). Conversely,

dendritic cells and macrophages were decreased in tumor

relative to non-malignant tissues. We also evaluated tissue

immune infiltrates using duplex immunohistochemistry,

which showed much greater densities of CD8+ and

FOXP3+ cells in tumor compared to high-risk and healthy

control tissues, concordant with the NanoString-based cell

abundance estimates (Additional file 1: Figure S4a, b).

When assessing functional immune status via a 65-plex

cytokine assay, we detected significantly elevated expres-

sion of many inflammation-associated cytokines, including

VEGF-A, IP-10, and IL-1RA, in tumor compared to non-

tumor breast tissues (Fig. 4d).

We then employed network analysis to identify associ-

ations between the breast microbiome and immune-

related gene expression or cytokine concentrations. Our

Fig. 3 Specific bacterial genera correlate with breast tumor receptor status and metastatic potential. Mean relative abundances (proportions) of
bacterial genera that were differentially present in ER positive versus negative (a), PR positive versus negative (b), HER2 positive versus negative
(c), and TNBC versus non-TNBC (d) breast tumors, and in breast tumors with versus without lymphovascular invasion (e) and with versus without
positive lymph nodes (f). All genera shown had FDR-corrected p-value < 0.1 by White’s t test after adjustments for age, race, and hospital
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Fig. 4 Breast tumor tissue exhibits a distinct immunological signature. a K-means clustering (k = 3) of 443 breast tissue samples by expression
levels of immune-related genes as measured by NanoString. Genes with the greatest differential expression between tumor and healthy controls
are shown (|fold change| > 2 and FDR < 0.05; n = 179 genes). Rows represent individual genes (log2 count normalized to standard deviations from
the mean), and columns represent individual tissue samples. Cluster 1 is strongly enriched for tumor tissue. b Heatmap of directed global
significance scores based on NanoString data showing 164 cellular pathways whose genes were overexpressed (red) or underexpressed (blue) in
the indicated tissue type relative to healthy control tissue. c Estimated abundance of immune cell subsets in each tissue type based on stably
expressed, specific marker genes present in the NanoString CodeSet. Abundance estimates are reported as the average log2 counts of marker
genes for each cell subset that has been centered to have mean value 0; each unit increase corresponds to a doubling in abundance. d
Cytokines present at significantly different levels in the indicated tissue types relative to healthy control tissue as measured by Milliplex assay
(p < 0.05 by 2-way ANOVA with posthoc Tukey test; n = 40 cytokines). Color bar varies on a logarithmic scale
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analyses focused on genes and cytokines that were dif-

ferentially expressed in tumors (Fig. 4a, d). In total, 38

associations between 15 bacterial genera and 34 immune

features (17 immune-related genes, 17 cytokines) were

revealed in breast tumor tissue (Fig. 5). Breast tumor

microbiome–immune networks consisted largely of

isolated modules with bacterial nodes more likely to

be connected to multiple immune nodes than vice

versa; this network structure was present in tumor

adjacent normal tissue as well (Additional file 1:

Figure S5). In contrast, microbiome–immune net-

works in healthy control and high-risk breast tissues,

while also organized around bacterial rather than im-

mune nodes, contained modules that tended to be

larger and more interconnected (Fig. 5, Additional file 1:

Figure S5).

Fig. 5 Network analyses reveal microbiome–immune associations in healthy control and tumor breast tissues. Visualization of significant
microbiome associations with immune gene (a) and cytokine (b) expression based on Spearman coefficients (p < 0.05 for all associations shown).
Each node corresponds to a single microbial (green) or immune (gold) feature, with node size proportional to the number of connections with
other nodes. Edges (lines) between nodes depict positive (red) or negative (blue) associations, with edge width proportional to the magnitude
of association
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Within otherwise sparse tumor networks, 5 of the 15

bacterial genera had putative interactions with 2 or more

immune features in the same network (Fig. 5). Of these

5 genera, 3 (Methylibium, Pelomonas, Propionibacter-

ium) were identified as nodes in both microbiome–im-

mune gene and microbiome–cytokine networks,

highlighting them as top candidates for potentially influ-

encing the intratumoral immune milieu. Atopostipes and

Cloacibacterium were also present as nodes in both

tumor networks, though they formed fewer connections

with immune features. Meanwhile, major bacterial hubs

in benign tissue networks, including Anaerococcus, Cau-

lobacter, and Streptococcus, were notably missing from

cancer-associated tissue networks (Fig. 5, Additional file

1: Figure S5). The genus Methylibium, a prominent node

in healthy control networks, exhibited much lower con-

nectivity in tumor networks.

At the pathway level, while several genes involved in

TLR signaling (TLR3, TLR4, IRAK1) [36] co-varied posi-

tively with Methylibium and Enhydrobacter in healthy

control networks, these associations were not identified

in tumor networks (Fig. 5a). However, effector molecules

produced downstream of TLR activation (Additional file

1: Figure S3), such as IP-10, MIP-1B, and RANTES, were

significantly associated with Propionibacterium and Rey-

ranella in tumor tissue (Fig. 5b). Multiple genes related

to T-cell activation and differentiation (e.g., CD6, DPP4,

ICOS, IFNGR1, NFATC2, SH2D1A, TBX21) [38], as well

as T-cell estimated abundances, also correlated positively

or negatively with bacterial genera in the breast (Fig. 5,

Additional file 1: Figures S4c, S5). For instance, Strepto-

coccus associated positively with CD6, LAG3, SH2D1A,

and TIGIT expression and with T-cell abundance in

healthy control tissue. In both healthy control and tumor

tissues, Acinetobacter correlated positively with CD8+ T-

cell abundance. In tumor tissue, Methylibium demon-

strated significant negative correlations with ICOS and

TBX21 expression and with T-cell abundance. Finally,

significant associations existed between immune features

with strong ties to breast carcinogenesis and specific mi-

crobial taxa found in tumors (Fig. 5): for example, the

oncogene TRAF4 [39] co-varied negatively with

Staphylococcus, and the proangiogenic factor VEGF-A

[40] co-varied positively with Pelomonas and negatively

with Bradyrhizobium. PDGF-AA and PDGF-BB, markers

of poor prognosis in breast cancer [41], both co-varied

negatively with Propionibacterium. Taken together, these

results provide early evidence for potential tissue micro-

biome–immune interactions in breast cancer.

Discussion
Only recently has the breast microbiome come to light,

and despite data highlighting microbial differences in tis-

sue from patients with versus without breast cancer [4–

9, 35, 42], the role of tissue-resident bacteria in breast

carcinogenesis remains unclear. Our results showed that

multiple bacterial taxa correlate strongly with prognostic

clinicopathologic features in breast cancer and that some

of these taxa exhibit significant associations with immu-

nomodulatory genes, immune cell infiltrates, and soluble

factors, providing a putative basis for how microbial–im-

mune crosstalk may influence the tumor microenviron-

ment. Although this is the first study to identify

relationships between specific breast microbial taxa and

local immunity, our findings are consistent with prior

work in colorectal and pancreatic cancer demonstrating

that intratumoral bacteria can alter regional immune cell

activation and recruitment, thereby affecting tumor

development and progression [43, 44].

Numerous potential biological pathways exist through

which the breast microbiota may modulate immune

function and thus affect tumorigenesis. Decreased mi-

crobial diversity (Fig. 1a) or loss of keystone taxa (Fig.

2a) in breast tumors could disrupt homeostatic micro-

biome–immune interactions (Fig. 5), leading to immune

dysregulation and carcinogenesis [2, 44]. Moreover, the

low interconnectivity of tumor microbial–immune

networks may reduce robustness and allow small pertur-

bations to trigger oncogenic inflammation [2]. Connec-

tions between specific bacterial taxa and immune

features may further contribute to breast cancer patho-

genesis. For instance, we found that Propionibacterium,

which includes common commensal species as well as

opportunistic pathogens [45], was depleted in breast tu-

mors (Figs. 1d and 2a); it was also positively associated

with several genes related to T-cell activation and nega-

tively associated with oncogenic growth factors (Fig. 5),

suggesting that loss of this genus could promote tumor

growth by downregulating adaptive antitumor responses

and generating a pro-tumorigenic environment. In a

similar fashion, Staphylococcus, another genus with re-

duced abundance in tumors, co-varied negatively with

the expression of the known oncogene TRAF4 (Fig. 5a).

Streptococcus likewise demonstrated positive correlations

with multiple T-cell activation genes, yet showed de-

creased abundance in cancer-associated samples. We

postulate that deficient T-cell activation due to missing

microbe-associated signals could contribute to the his-

torically poor T-cell responses observed in breast cancer,

despite the fact that we and others have noted increased

lymphocyte infiltration in breast tumors compared with

healthy breast tissue (Fig. 4c, Additional file 1: Figure

S4b) [46, 47].

Additionally, we observed perturbations in the expres-

sion of TLR cascade members, which are canonically in-

volved in microbial recognition (Additional file 1: Figure

S3). Concurrent downregulation of several TLR genes

and upregulation of downstream genes such as MYD88
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in breast tumor versus non-tumor tissues may signify

negative regulatory feedback subsequent to stimulation

by tumor-associated microbial products [36]. While we

did not pinpoint significant associations between TLR

pathway genes and specific bacteria taxa in tumors, we

identified mixed relationships between various genera

and TLR-induced effector molecules (Fig. 5b). Notably, a

previous small study showed similar decreased expres-

sion of TLR genes in conjunction with reduced bacterial

load in ER+ breast tumors compared to healthy control

tissue [48], while prior analysis of the pancreatic tumor

microbiome implicated selective TLR activation in

microbiota-induced immunosuppression and oncogen-

esis [49], underscoring this pathway’s central role as a

nexus between the microbiota, host immunity, and

tumorigenesis. Further work is needed to evaluate pre-

cisely how microbe-associated immune alterations im-

pact breast carcinogenesis and progression.

Aside from directly influencing host immune re-

sponses, the breast microbiome may produce metabo-

lites that affect cancer and immune cells. Although an

agnostic comprehensive metabolomic survey was outside

the scope of this study, many bacterial genera that we

identified are known to generate bioactive compounds.

For example, species of the Streptococcus genus, which

was present at much higher abundance in tissue from

patients without breast cancer (Fig. 2a), synthesize ca-

daverine, a lysine derivative that inhibits breast tumor

invasion and epithelial-to-mesenchymal transition [14,

50]. Odoribacter, which was present only in non-tumor

tissues, includes species known to mediate antitumor

activity through production of butyrate, an anti-

inflammatory and tumoristatic short-chain fatty acid [14,

51]. In addition, microbiota-derived bile acids accumu-

late in breast tumors and correlate with decreased prolif-

eration [52], presenting a compelling avenue for future

exploration in relation to the breast microbiome.

This study is the most extensive to date using fresh-

frozen surgical specimens to compare the breast micro-

biome in patients with versus without breast cancer [53].

For microbiome studies, particularly in low-biomass tis-

sues, fresh-frozen samples are superior to formalin-fixed

paraffin-embedded (FFPE) samples because the latter

suffer from DNA degradation and greater risk of micro-

bial contamination during formalin fixation and archival

storage [13, 54]. Interestingly, while studies using fresh-

frozen breast samples have found reduced or similar

bacterial α-diversity in tumor versus non-tumor tissues

(Fig. 1a) [4, 8, 9, 55], recent work based on FFPE sam-

ples showed the opposite trend [13]. Our large sample

size provided sufficient power to examine microbial as-

sociations with multiple covariates, including histologic

subtype and node-positive status (never previously inves-

tigated), and detect taxa-level differences in relative

abundances even after correcting for multiple compari-

sons. Unlike previous studies, we performed the add-

itional step of adjusting our comparisons for known

confounders (e.g., age, race) that were significantly dif-

ferent between patients with and without cancer, de-

creasing the false positive rate. Due to the challenges of

working with low-biomass tissue such as the breast [15],

we implemented numerous other measures to exclude

false positives (contaminants), including (1) working

with UV-irradiated pipettes and disposables in a dedi-

cated laminar flow hood and (2) procuring operating

room controls from each institution from which we re-

quested tissue and computationally removing ASVs

found in these controls, or in DNA extraction and li-

brary preparation negative controls, from all samples

(Additional file 1: Figure S1).

Consistent with previous reports [13, 42, 55], we found

that the dominant bacterial phylum in breast tissues was

Proteobacteria, followed by Firmicutes and Actinobac-

teria (Fig. 1b). We also measured lower abundance of

Enterobacteriaceae and higher abundances of Coryne-

bacterium, Lactococcus, and Streptococcus in breast tis-

sue from healthy patients compared to those with cancer

(Figs. 1c and 2a), in accordance with prior work [5].

However, the same study describes a positive association

between Staphylococcus and adjacent normal versus

healthy control tissue [5], whereas we note the opposite

relationship. Another group observed that the abun-

dance of Alkanindiges correlated with ER− tumors [13],

which agrees with our findings (Fig. 3a). Although we

identified other bacterial profiles corresponding with

breast tumor receptor status (Fig. 3a–d), these profiles

were distinct from though not contradictory to those de-

scribed previously [4, 7, 9, 13, 35]. Overall, it remains

difficult to directly compare breast microbiome data

from individual studies for myriad reasons, including dif-

ferences in tissue source (fresh-frozen vs FFPE, surgery

vs biopsy, geography), experimental protocols (tissue

collection, DNA extraction, library preparation, sequen-

cing), bioinformatic pipelines, and statistical methods

that influence results [33]. Ideally, a standardized proto-

col for breast microbiome studies should be developed

and universally adopted. Future work should also inves-

tigate associations between the breast microbiome and

other clinical factors known to correlate with breast can-

cer risk, including patient body mass index and race [9],

to determine whether these factors may additionally

influence breast microbial composition.

Like other cross-sectional patient-based microbiome

studies, our findings are limited by the inability to deter-

mine causality. For instance, the negative relationship

between Propionibacterium and IP-10 (Fig. 5b) could in-

dicate that the microbe inhibits cytokine production, the

cytokine hinders microbe growth, or both. We intended

Tzeng et al. Genome Medicine           (2021) 13:60 Page 14 of 17



instead to provide detailed characterization of breast mi-

crobial and immune signatures that co-varied and corre-

lated with clinicopathologic data as a springboard for

future preclinical and clinical work. Even if certain mi-

crobial patterns result from, rather than drive, pro- or

anti-tumorigenic immune alterations, this knowledge

could potentially be applied as a biomarker for breast

cancer susceptibility or prognosis. In this context, our

identification of subtle microbial differences between

histologically normal breast tissues from patients at nor-

mal versus high risk for breast cancer (Fig. 2a) merits

replication in larger studies. The high-risk patient group,

consisting of individuals with well-documented breast

cancer risk factors who were nonetheless histologically

cancer-free at the time of the study, represents particu-

larly fertile ground for future investigation: correlating

differences between healthy control and high-risk tissues

with longitudinal outcomes (e.g., cancer development)

could increase our understanding of factors associated

with cancer initiation and facilitate the development of

better approaches for cancer detection and prevention.

Our results also encourage further examination of

routes through which microbes may colonize the breast

tissue, including translocation from the gut and passage

via the nipple. Specifically, dendritic cells have been

shown to carry live commensal bacteria and may facili-

tate bacterial transport from the gut lumen to the breast,

especially during pregnancy and lactation [56, 57]. Fur-

ther supporting the existence of a gut–breast axis are

observations that probiotic Lactobacillus strains can be

found in the mammary gland after oral ingestion [58]

and that dietary changes can influence breast micro-

biome profiles [59]. Meanwhile, skin and oral bacteria

may travel through nipple–areolar orifices to populate

the breast tissue, with the latter contacting the nipple

during breastfeeding or sexual activity [6]. Although

some compositional overlap is present, previous work

indicates that the breast microbiome is distinct from

that of the gut, oral cavity, and overlying skin, suggesting

that environmental factors such as pH, available nutri-

ents, and oxygen levels may select for certain dominant

taxa following initial colonization [4, 6, 42, 53]. Add-

itional preclinical and clinical studies that concurrently

characterize the microbiome at multiple sites in the

same individuals are essential for clarifying these poten-

tial bacterial entry routes and may pave the way for

breast microbial manipulation as a potential therapeutic

modality or adjunct.

Conclusions
In conclusion, we provide evidence supporting a novel

role for local microbiome–immune crosstalk in breast

cancer and delineate breast microbial profiles associated

with multiple prognostic clinical variables. This work

sets the stage for further studies assessing causative

mechanisms whereby microbial–immune interactions

influence breast cancer development and progression.

As our understanding of the breast microbiome in-

creases, it may become possible to use diet [59], probio-

tics [60], selective antibiotics [49], or fecal microbiota

transplant [2, 61] as well as topical, injected, or surgically

applied agents to establish a more anti-tumorigenic

breast microbiome to treat or, better yet, prevent breast

cancer.
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