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Abstract 

A person’s gait changes when he or she is carrying 
an object such as a bag, suitcase or rucksack. As a 
result, human identification and tracking are made 
more difficult because the averaged gait image is too 
simple to represent the carrying status. Therefore, in 
this paper we first introduce a set of Gabor based 
human gait appearance models, because Gabor 
functions are similar to the receptive field profiles in 
the mammalian cortical simple cells. The very high 
dimensionality of the feature space makes training 
difficult. In order to solve this problem we propose a 
general tensor discriminant analysis (GTDA), which 
seamlessly incorporates the object (Gabor based 
human gait appearance model) structure information 
as a natural constraint. GTDA differs from the 
previous tensor based discriminant analysis methods in 
that the training converges. Existing methods fail to 
converge in the training stage. This makes them 
unsuitable for practical tasks. 

Experiments are carried out on the USF baseline 
data set to recognize a human’s ID from the gait 
silhouette. The proposed Gabor gait incorporated with 
GTDA is demonstrated to significantly outperform the 
existing appearance-based methods. 

1. Introduction 

Gait recognition [13][32][29] is important in visual 
surveillance because it is possible to identify a person 
at a distance and without the person being aware that 
he or she is under observation. Among factors affecting 
human gait, the carrying status [12], i.e. whether or not 
the person is carrying an object (such as a bag, suitcase 
or rucksack) plays a key role. E.g. in the recent London 
incidents (Fig. 1), cameras recorded people’s gait when 
they were carrying rucksacks and these sequences 
were important evidence for agencies fighting against 
international terrorism. 

Figure 1: (http://www.smh.com.au) Human gait when 
carrying rucksacks - captured by passive visual 
surveillance in connection with the recent incidents in 
London (Luton).  

Human brains are constantly analysing motion 
information from external world. The human gait not 
only produces a distinctive moving silhouette but also 
reflects the walker’s physical situation and 
psychological state. The original research on gait was 
entirely from the medical perspective, e.g., Murray 
[23] used gait to classify pathologically abnormal 
patients into several groups for suitable treatments. 

In computer vision research, human gait recognition 
is promising because of its good potential for human 
identification in visual surveillance. It is often difficult 
to deduce a person’s age or gender from a static picture 
taken at a distance, but a dynamic image sequence may 
reveal this information [3]. Appearance-based models 
have been employed in gait research [24]. These utilize 
either the entire silhouette [21][5][18][11][12] or the 
most discriminant parts [9][17][31], such as the torso. 

For a recognition problem, features and 
classification stand as two convex mirrors each 
reflecting and amplifying the other. Herein, we aim to 
solve two issues, i.e., representation and classifier 
design, for gait recognition under carrying status. 

Features for object representation: we develop a set 
of Gabor based gait features to represent the gait 
silhouette sequences; and 

Classification: we develop a general tensor 
discriminant analysis (GTDA), motivated by the 
successes of tensor methods in signal processing [16], 
computer vision [30][26], and pattern recognition 

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



[33][27]. Unlike some previous efforts on tensor based 
discriminant analysis, our algorithm converges during 
the training procedure with a differential scatter 
discriminant criterion (DSDC). The proposed methods 
can also be utilized in many other fields, such as face 
recognition [4][15], texture classification, and image 
retrieval. The contributions of the paper are: 

1. Introduce the Gabor functions to represent the 
gait image and develop three new methods to utilize 
the Gabor functions for gait recognition; 

2. Deduce DSDC and generalize this criterion for 
tensor based discriminant analysis to reduce the ill-
posed problem in linear discriminant analysis (LDA) 
and achieve convergence in the training phase. 

The rest of the paper is organized as follows. 
Section 2 develops three methods to utilize Gabor 
functions for gait representation. In Section 3, LDA is 
briefly reviewed, and GTDA is proposed with DSDC. 
Section 4 shows that our proposed method 
significantly outperforms the existing algorithms for 
gait recognition and conclusions are drawn in Section 
5. 

2. Gabor Gait Representation 

Marcelja [22] and Daugman [8] modeled the visual 
cortex by Gabor functions, because they are similar to 
the receptive field profiles in the mammalian cortical 
simple cells. Daugman [8] developed the 2D Gabor 
functions, a series of local spatial bandpass filters, 
which achieve the resolution limit specified by the 
Heisenberg uncertainty principle and have the 
characteristics of spatial locality, orientation 
selectivity, and frequency selectivity. A Gabor 
(wavelet, kernel, or filter) function is the product of an 
elliptical Gaussian envelope and a complex plane 
wave, defined as: 
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where ( ),x x y=  is the variable in a spatial domain 

and k  is the frequency vector, which determines the 
scale and the orientation of Gabor functions, 

di
sk k e φ= , where 8d dφ π= , with 0 7d≤ ≤  and 

max
s

sk k f= , max 2k π= , 2f = , 0 4s≤ ≤ . The 
parameters used here follow [20]. The number of 
oscillations under the Gaussian envelope function is 
determined by 2δ π= . The term ( )2exp 2σ−  is 
subtracted in order to make the kernel DC–free, thus 
making the filter values insensitive to changes in 
illumination. 

Each particular Gabor function can be used as a 
mother function to generate a whole family of Gabor 
functions by scaling and rotating the wave vector. 
Examples of the Gabor functions (the real part) used in 
our experiments are presented in Fig 2. We use Gabor 
functions with five different scales and eight different 
orientations, making a total of forty Gabor functions. 

Figure 2: The real part Gabor functions with five 
different scales (vertical axis) and eight different 
orientations (horizontal axis). 

Figure 3: Gabor representation of an averaged gait 
image. 

The Gabor function representation of a gait image 
can be obtained by convolving the Gabor functions 
with the gait image. This gives forty filtered images, 
which represent the original gait image. Examples of 
the filtered images are given in Fig 3. The method is 
identical to the face representation [20] using Gabor 
functions. Although this method is powerful in face 
recognition, it is less effective for gait recognition, as 
shown by the experiments in Section 4.2. 
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Figure 4: Three new methods for averaged gait image 
representation using Gabor functions: the orientation 
gait representation (OGR), the scale gait representation 
(SGR), and the total Gabor gait representation (TGR).  

Due to the poor performance of the existing Gabor 
representation of gait images, we introduce three new 
representations. These are the orientation gait 
representation (OGR), the scale gait representation 
(SGR), and the total Gabor gait representation (TGR). 
Fig. 4 shows the procedure for OGR, SGR, and TGR 
generation. 

OGR is given by summing the images obtained at 
different filter scales, when the orientation of the filter 
is fixed: 
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where ( ),I x y  is the averaged gait image, ( ), ,s d x yψ
is the Gabor function defined in (1), and ( )OGR ,x y  is 
the output of the OGR method for representation. 
Therefore, we have eight different outputs to represent 
the original gait image. 

SGR is given by summing the images obtained at 
different filter orientations, when the scale is fixed, 
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Therefore, we have five different outputs to represent 
the original gait image. 

TGR is given by summing the images obtained at 
all orientations and scales, 
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Therefore, we have one output to represent the original 
gait image. 

3. General Tensor Discriminant Analysis 

Human gait images are usually represented by 
second–order tensors. The Gabor representation 
contributes an additional dimension giving a third–
order tensor representation of gait. In this paper, we do 
not regard the scale parameter and the orientation 
parameter as two modes but one. Traditionally, such 
high order tensors must be scanned into long vectors to 
comply with the input requirements of conventional 
discriminant analysis [10]. However, during 
vectorization, the intrinsic structure information 1  is 
lost. The number of components in the vector is much 
larger than the size of the training (gallery) set. The 
dimensionality of the feature space is much larger than 
the number of training samples. This often leads to an 
ill-posed classification problem. 

We argue that the current poor recognition rate in 
gait recognition is due to the ill-posed nature of the 
classification. Focusing on this problem, our method, 
named general tensor discriminant analysis (GTDA), is 
a representation and classification scheme for high–
order tensor data, such as images and video. GTDA 
represents these high–order tensor data in their original 
format without destroying their intrinsic structures. In 
this section, we first review LDA and then introduce 
the modified discriminant criterion. 

We use the following notation. Bold uppercase 
symbols such as X, Y, Z represent tensor objects; 
normal uppercase symbols such as , ,X Y Z represent 
matrices; italic lowercase symbols such as , ,x y z
represent vectors; normal lowercase symbols such as 

, ,a b c represent scale numbers; and , , ,i j k l  represent 
the indices in a vector, a matrix, or a tensor. 

3.1. Linear Discriminant Analysis (LDA) 

LDA finds a projection of the ;i jx , which is optimal 

for separating the different classes of the ;
N

i jx R∈ ,
where i is the class number, 1 i c≤ ≤ , and j is the 
sample ID in the ith class with 1 ij n≤ ≤ . The 
projection U  is chosen to maximize the ratio between 
the trace of the between-class scatter matrix bS  and the 
trace of the within-class scatter matrix wS :

( )
( )

Tr
arg max

.Tr

T
b

T
U w

U S U
U

U S U
=                                (5) 

                                                       
1 In this paper we use the term “structure information” of an 
image to mean information about the relative positions of 
pixels or regions in the image. 

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



The scatter matrices bS  and wS  are defined by: 
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where 
1

c

i
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=

=  is the size of the training set, in  is the 

number of training samples in the ith class, 

;
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m x
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=  is the mean vector of the total training 

set, ;
1

1 in

i i j
ji

m x
n =

=  is the mean vector for the 

individual class iC , and ;i jx  is the jth sample in the ith

individual class iC .
The optimal projection matrix U  can be computed 

from the leading eigenvectors of 1
w bS S− . In many 

computer vision applications, the dimensionality N of 
the feature space is much larger than the size of the 
training set (i.e., N n ). Since the rank of wS  is at 
most n c− , wS  is singular if N is large, and it is more 
difficult to construct U . This is known as the Small 
Sample Size (SSS) problem. In this paper, we use the 
PCA plus LDA method [11] to avoid the degeneration 
of wS . The dimensionality of the LDA space is fixed 
as 1c −  for gait recognition. More information can be 
found from [11] about the method for gait recognition. 

3.2. Differential Scatter Discriminant Criterion 

The Differential Scatter Discriminant Criterion 
(DSDC) [10] is defined by: 

( ) ( )( )arg max Tr TrT T
b w

U
U U S U U S Uζ= − ,       (7) 

where ζ  is a tuning parameter; *N NU R ×∈
( *N N ) , constrained by TU U I= , is the optimal 
classification projection matrix; and ,b wS S  are defined 
in (6). 

According to [10] (pp.446-447) and [27], the 
optimal solution in (7) is equal to the optimal solution 
in (5), if we set ζ  as the Lagrange multiplier. In [27], 

( )1
max w bS Sζ λ −= , which is the maximum eigenvalue of 

1
w bS S− , to achieve the optimal solution, if we extract 

only one feature (U  which is a vector). When we want 
to extract t features simultaneously, we can 
approximately estimate ζ  as ( )1

1

t
i w bi

S Sλ −
=

, where 

1|ti iλ =  are the first t maximum eigenvalues of 1
w bS S− .

From [10] (pp. 446-447), it is not difficult to obtain 
that the optimal ζ  in (7) is 

( ) ( )Tr TrT T
opt b opt opt w optU S U U S U 2. An accurate solution 

of (7) can be obtained by the alternating projection 
method. 

In real-world applications, because the distribution 
of the testing set diverges from the distribution of the 
training set, we manually set ζ  to achieve better 
prediction results. 

3.3. General Tensor Discriminant Analysis 

Because ( ) ( ) ( )Tr Tr TrA B A B+ = + , based on (7), 
we have: 

( )( )( )arg max Tr T
b w

U
U U S S Uζ= − .                  (8) 

Because ( ) ( )Tr TrABC BCA= , based on (8), we 
have: 

( )( )( )arg max Tr T
b w

U
U S S UUζ= − .                   (9) 

By replacing bS  and wS  according to (6), based on 
(9) we have: 
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where 

Fro
⋅  is the Frobenius norm and the projection 

matrix *N NU R ×∈  ( *N N< ) constrained by TU U I= .
Based on (10), we can analogously obtain the 

general tensor discriminant criterion naturally as: 

                                                       
2 The derivative of ( ) ( )Tr TrT T

b wU S U U S Uζ−  with U

is given by b wS U S Uζ− . To obtain the optimal solution of 

(7), we need to set b wS U S Uζ−  as 0 (as we have a strict 

condition here, i.e., ( ) 0b w kS S uζ− = , ku U∀ ∈ , ku  is a 
column vector in U ). Consequently, we have 

( ) ( )Tr TrT T
opt b opt opt w optU S U U S Uζ= , where optU  is the 

optimal solution of (7).  
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where ;i jX  denotes the jth training sample (tensor) in 

the ith individual class iC ; ;
1

1 in

i i j
jin =

=M X  is the ith

class mean tensor; ;
1 1 1

1 1inc c

i j i i
i j i

n
n n= = =

= =M X M  is the 

total mean tensor of all training tensors; lU  denotes 
the lth mode projection matrix for decomposition in the 
training procedure; and ⊗  denotes the tensor product. 
Moreover, 1

; 1| ij n
i j i c

≤ ≤
≤ ≤X , 1|ci i =M , and M  are all Mth–

order tensors that lie in the 1 2 ... MN N NR × ×  space; and the 
notation lT⋅  means the lth transpose/permutation of the 
tensor by rearranging the lth mode to the 1st mode. As 
pointed in Section 3.2., lζ  is the lth Lagrange/tuning 
parameter. 

The problem defined in (11) is the so-called 
General Tensor Descriminant Analysis (GTDA). 
GTDA has no closed form solution and we choose the 
alternating projection method to obtain the optimal 
projection matrices 1|Ml lU = , i.e., we can optimize dU  in 
GTDA (11) with the given 1|

l d
l l MU ≠

≤ ≤  iteratively until 
convergence. In the tth iteration, with the given 

( ) 1; 1 |l d
l Ml tU ≠

≤ ≤−  in the (t-1)th iteration and the matrix 
unfolding3 operation defined in [16], we can obtain the 
optimal dth mode projection matrix ( );d tU  by 
maximizing: 
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where ( );i dM  means the dth mode matrix unfolding on 

( ); 1
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M

i l t
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∏M ; ( ); ;i j dX  is the dth mode matrix 

unfolding on ( ); ; 1
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= ≠
∏X ; and ( )dM  is the dth

                                                       
3 The dth mode matricizing or matrix unfolding of an Mth

order tensor X  are tensors in dNR obtained by keeping 
index d fixed and varying the other indices. Therefore, the dth

mode matrix unfolding ( )dX  is in 1

l d
d dl M

N NR
≠

≤ ≤
×∏ .

mode matrix unfolding on ( ); 1
1;

M

l t
l l d

U⊗ −
= ≠
∏M . To reduce 

the complexity of the training procedure, in this paper 
we set lζ  as the maximum eigenvalue of 

( ) ( )( ) ( ) ( )( )
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where A
B

 means 1B A− .

With this setting, we can achieve a better gait 
recognition rate. 

Furthermore, for the first iteration in optimization, 
we can choose the 1|

l d
l l MU ≠

≤ ≤  to be random matrices or 

*l lN N×1 . The algorithm to obtain the optimal solution of 
GTDA is given by Table 1. 

According to the algorithm described in Table 1, 
we obtain *

1| l lN NM
l lU R ×

= ∈ *l lN N<  iteratively. For 

GTDA, we use the projected tensor 
1

l

M

l
l

U×
=

= ∏Y X  to 

represent the original general tensor X . For 
recognition, the prototype pX  for each individual class 
in the database and the test tensor tX  to be classified 
are projected by projection matrices 1|Ml lU =  onto 

pY and tY , respectively. The test tensor class is found 
by minimizing the distance p tε = −Y Y  over p.

Unlike the existing tensor extension of discriminant 
analysis [32], the training stage of GTDA converges. 
The following method can check the convergence of 
GTDA. In step 5 of Table 1, we check the convergence 
through ( ) ( )1

T
l t l tU U I ε− − ≤  for all 1 l M≤ ≤ , where 

ε  is small. If ( ) ( )1
T

l t l tU U I− = , the calculated projection 

direction in the tth or the current iteration is equivalent 
to the (t–1)th or the last iteration. 

3.4. Why Use a Tensor Representation? 

To vectorize a tensor into a vector makes it harder 
to keep track of the information in spatial constraints. 
For example, two 4-neighbor connected pixels in an 
image may be separated hugely from each other after a 
vectorization. 

To better characterize or classify natural data, a 
scheme should preserve as many as possible of the 
original constraints. When the training samples are 
limited, these constraints help to give reasonable 
solutions to classification problems. Take the strategy 
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in the Gaussian distribution estimation as an example4:
when the training samples embedded in a high 
dimensional space are limited, we always add some 
constraints to the covariance matrix, such as requiring 
the covariance matrix to be a diagonal matrix. 

Table 1. An iterative algorithm to solve GTDA.

Input: Training tensors 1 2 ...
1| MN N Nn

i i R × ×
= ∈X  and the 

dimensionality of the output tensors 1* 2* *... MN N N
i R × ×∈Y .

Output: The projection matrix *
1| l lN NM

l lU R ×
= ∈

constrained by T
l lU U I=  and the output tensors 

1* 2* *...
1| MN N Nn

i i R × ×
= ∈Y .

Initialization:
*l ll N NU ×= 1 .

Step 1. For 1t =  to T {
Step 2. For 1d =  to M {
Step 3. Calculate lζ  according to (13); 

Step 4. 

Optimize ( );d tU  with the given ( ) 1; 1 |l d
l Ml tU ≠

≤ ≤−

by maximizing (12) by conducting the 
singular value decomposition on: 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
; ;

1

; ; ; ; ; ;
1 1

i

c T

i i d d i d d
i

nc T

l i j d i d i j d i d
i j

n M M M M

X M X Mζ

=

= =

− −

− − −
.

 }//For loop in Step 2. 

Step 5. 

Convergence checking: the training stage of

GTDA converges, if ( ) ( )1
T

l t l t Fro
U U I ε− − ≤ for 

all 1 l M≤ ≤ .
 }//For loop in Step 1. 

Step 6. Calculate output tensors 
1

l

M

i i l
l

U×
=

= ∏Y X .

The tensor representation helps to reduce the 
number of parameters needed to model the data. For 
example, when a tensor X  has the size 1 2n n× , we 
need to estimate the projection matrix U  with the size 
( )1 2n n n× ×  for traditional LDA ( n  is the number of 
selected features), but we only need to estimate the 
projection matrices 1U  with the size 1n n×  and 2U
with the size 2n n×  in GTDA. Furthermore, the 
estimation procedures for the 1st mode projection 
matrix 1U  and the 2nd mode projection matrix 2U  are 
independent. Consequently, the number of the 
parameters in GTDA is much less than that of LDA. 

                                                       
4 Constraints in TR1DA are justified by the form of the 
data. However, constraints in the example are ad hoc. 

Therefore, the under sample problem can be reduced 
through GTDA because GTDA could be deemed as a 
constrained LDA according to: 

( ) ( ) ( )1 2 2 1vec vec .X U U U U X⊗ ⊗ = ⊗          (14) 

3.5. Convergence Issue for GTDA 

To describe the convergence of GTDA, we need to 
define the following functions based on (12) and (13), 
respectively: 

( ) ( ) ( ) ( ) ( )( )
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ζ ζ ζ
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−
= = +−

=

= =

= = =

− −
=

− −

.  (16) 

where ( )Xλ  means the maximum eigenvalue of X .
With (15) and (16), we can define: 

( )
( )

( )
*

;

, max ,
N Nd d

l t
U U

U R
g d t f d t

×∈
= ,                           (17) 

( ) ( ), max ,
d

g d t f d tζ ζζ
= .                                   (18) 

Formally, the alternating projection method never 
decreases ( ),UF d t  and ( ),F d tζ  with the increasing t

and d, because ( ),Ug d t  and ( ),g d tζ  are convex.  

4. Experimental Results 

This section first briefly describes the USF 
HumanID gait database [24] (gallery and probe data 
sets), and the performance of the baseline system [24] 
is reported. We then compare the performances of our 
schemes with [11] and [24]. 

4.1. HumanID Gait Database 

We carried out all of our experiments upon the USF 
HumanID outdoor gait database, which has been built 
and widely utilized for vision–based gait recognition. It 
consists of 1,870 sequences from 122 subjects. For 
each of the subjects, there are the following covariates: 
change in viewpoints (Left or Right), change in shoe 
type (A or B), change in walking surface (Grass or 
Concrete), change in carrying condition (carrying a 
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BrieFcase or No Briefcase), and change in elapsed 
time (May or November) between sequences being 
compared. All these covariates are very important for 
different aspects/applications; among them, the 
carrying status is particularly important. In the USF 
gait gallery [24] there are three pre-designed 
experiments for algorithm comparisons when the 
carrying status is positive. For algorithm training, the 
database provides a gallery with the following 
covariates: grass, shoe type A, right camera, and no 
briefcase. 

4.2. Comparison Experiments 

Table 2. Rank 1/5 experimental results for human gait 
recognition. The left group with columns H, I, and J is 
the rank 1 performance and the right group with 
columns H, I, and J is the rank 5 performance. 

Rank 1/5 H I J H I J 
Baseline 61 57 36 85 78 62

LDA1 63 59 54 90 81 79
LDA2 62 60 57 89 86 77

GTDA1 65 59 29 92 79 59 
GTDA2 90 88 58 97 95 79 
GTDA3 92 84 66 97 98 85
GTDA4 92 78 59 95 95 81 

We compare the performances of our schemes with 
[11] and [24]. The dissimilarity measure for the gait 
recognition is the same as with [24], 
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where ( ) 1| PNMethod
P iAS i =  is the ith projected averaged 

silhouette or AS in the probe data and ( ) 1| GNMethod
G jAS j =

is the jth projected AS in the gallery. The equation 
measures the dissimilarity, which is the median value 
of the pN  outputs from the minimum Euclidean 
distance between the averaged silhouettes from the ith
AS of the probe and all AS of the gallery. 

Focusing on appearance-based models in human 
gait recognition, we implemented all proposed 
methods together with some important conventional 
methods, such as LDA1 (LDA with real gait) [11], 
LDA2 (LDA with gait feature fusion) [11], and the 
baseline algorithm [24]. To give a compact report 
about our comparison experiments, we build a set of 
abbreviations to denote our different schemes, namely, 
GTDA1 (GTDA using the conventional Gabor 
method), GTDA2 (GTDA using OGR), GTDA3 (GTDA 
using SGR), and GTDA4 (GTDA using TGR). As 
introduced in Section 1, we mainly focus on the 

carrying status issue, and it corresponds to tasks H, I
and J [24] in these tables. 

Table 2 reports all comparing experiments in clear 
manners. The bold numbers show “which scheme 
gives the best results for this problem”. In the table, the 
first three rows give out the performances of the 
baseline algorithms, LDA1 and LDA2, respectively; 
while the performances of the new schemes upon the 
same gallery set and probe set are fully reported on all 
the comparison experiments. As shown in Table 2, the 
recognition rate is significantly improved in terms of 
both rank 1 and rank 5 evaluations by using our 
GTDA3.

4.3. Convergence Examination 

In this part, we mainly study the convergence of the 
proposed GTDA. From Figure 5, it can be inferred that 
only 3 to 5 iterations are usually required to achieve 
GTDA convergence. In contrast, the traditional 
2DLDA cannot converge during the training 
procedure, which can be seen from the first figure in 
[32]. 

5. Conclusions 

This paper proposes effective methods to solve the 
carrying status problem in visual surveillance. We first 
introduced a multi-resolution representation of human 
gait through three different Gabor filter based multi-
resolution representations for the averaged silhouette 
sequences. To reduce the ill-posed problem, we also 
developed the general tensor discriminant analysis 
(GTDA), which converges well during the training 
stage. From un-convergence to convergence, an huge 
improvement was achieved in comparison with the 
previous tensor-based learning algorithms. By these 
means, upon the USF baseline platform, we reported 
state-of-the-art results on the carrying status issue of 
gait recognition. 
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Figure 5: Three orientation convergence examination curves in the GTDA4 (GTDA using SGR) training procedure 
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