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Abstract—Semantic analysis of video has witnessed a signifi-
cant increase of research activities during the last years. Human-
centered video analysis plays a central role in this research since
humans are the most frequently encountered entities in a video.
Results of human-centered video analysis can be of use in numer-
ous applications, one of them being multimedia postproduction.
Three recently devised semantic analysis algorithms are reviewed
in this paper.

I. INTRODUCTION

During the last two decades, an increasing research interest

occurred towards what one could call anthropocentric or

human centered video analysis, namely, algorithms that aim

to extract, describe, and organize information regarding the

basic element of most videos: humans. This diverse group

of algorithms processes videos from various sources and

extracts a wealth of useful information related to the state

(presence, identity, body posture, emotional state, etc.) and

state transitions (body parts movements, activities, etc.) of

individuals, interactions or communication modes between

two or more humans (dialogues, social signals, etc.) and

physical characteristics of humans, such as 3D body models.

Results of human-centered video analysis can be combined

with other semantic analysis and description tools such as

object detection/localization or recognition algorithms in order

to provide a more complete semantic description of a scene.

The interest of the research community for anthropocentric

video analysis stems from the fact that the extracted infor-

mation can be used in various important applications such

as video surveillance, human-computer interfaces, ambient

intelligence environments etc. One such application domain

is film and games postproduction where anthropocentric video

analysis results can be used in tasks such as indexing, retrieval,

summarization and organization of videos, automatic semantic

annotation, semantic extraction of keyframes for animation

purposes, detection of humans for the initialization of matting

or background/foreground segmentation algorithms etc. In this

paper we will review recent research results in three areas

namely frontal facial pose recognition, human head detection

and object recognition.

II. FRONTAL FACIAL POSE RECOGNITION USING

FEATURES EXTRACTED THROUGH DISCRIMINANT

SPLITTING

Facial image analysis tasks such as face detection and track-

ing, facial features detection, face recognition or verification

and facial expression recognition have attracted the interest

of computer vision and pattern recognition communities over

the past years. In some of these facial tasks such as face

recognition and facial expressions recognition, the majority

of developed techniques have been designed to operate on

frontal or nearly frontal face images [1], [2], [3]. Due to this

fact, a face or facial expression classifier trained on frontal

facial images will not be able to operate successfully on

non-frontal images. As a result, techniques that recognize

frontal facial poses need to be developed, so that frontal facial

images can be selected among all available facial images

and used as input in face recognition or facial expression

recognition systems. The same problem arises in cases where

multiple view video data, acquired through a convergent multi-

camera setup, are available. In this case, a frontal facial pose

recognition algorithm can be applied on the available video

streams to identify the view that is closer to a frontal one. By

doing so, frontal images of the person can be acquired and

fed to a face or facial expression recognition technique that

requires frontal faces.

Frontal face pose recognition is essentially a two-class

classification problem (frontal vs non-frontal). However, since

the non-frontal class is much richer, as it contains all possible

head orientations except for the frontal one, it can be split

into a number of classes, each containing non-frontal images

where the head orientation lies within a range of angle values.

Obviously, in such a case all facial images classified to one

of the non-frontal classes are labelled as non-frontal.

The frontal facial pose recognition technique described in

this section segments the facial images to discriminant regions.

The main idea is the creation of a set of regions that is

discriminative for each class of facial images in the sense

that a subset of these discriminant and homogeneous regions

will provide adequate information in order to distinguish this

class from another one. The entire set is necessary in order to

distinguish this class from the rest of the other classes. The

region segmentation is based on the classical image splitting

technique. The features that this method uses are the mean

intensities of the produced regions. Details about the method

will be provided in the following subsections.

A. Feature Extraction Using Discriminant Splitting

Let us assume that there exist n facial image classes namely

one class containing frontal facial views (including small



Fig. 1. Class representation as a stack of images.

deviations from the fully frontal view) and n − 1 classes

corresponding to non-frontal views. Each class contains l
different, equally sized, training facial images. Each of the

non-frontal classes contains images where the head rotation

angle with respect to the vertical axis (yaw) lies within a

certain interval. Thus, the dataset D is divided into n sets

D =
⋃n

i=1
Ui. The main goal is to find homogeneous regions

that are discriminant between the classes. In this way, for each

class, a unique regions pattern, i.e. a set of regions, is created.

This procedure, that is based on a splitting approach, will be

described bellow.

Let two classes a, b each containing l samples (images) of

the corresponding facial class, in sets Ua, Ub. If each image

is of dimensions h × w, these l images can be considered

as a stack of slices (volume) with dimensions l × h × w.

Thus for our purpose, a certain region B can be considered as

being a parallelepiped volume comprising of the parts of every

image in the class that fall within the region, as illustrated

in Figure 1. We assume that an image I is divided into R
regions. For a region B defined as above and for a class a we

define its discriminant power, with respect to class b, using

the Fisher’s discriminant ratio Fa,b(B) [4]. A region B1 is

more discriminant than a region B2, for a particular pair a, b
of facial classes, when Fa,b(B1) > Fa,b(B2). As mentioned

above, except from the discriminant power of a region the

method exploits also its homogeneity. As in the case of region

discriminant power calculation, the homogeneity of a region

is judged based on the pixels intensity values of the parts

of all the class’s training images that fall within the region’s

boundaries, i.e. on all pixels of the corresponding volume.

In order for the discriminant and homogeneous regions to be

determined for each class a, the classical splitting approach is

applied to the l images of this class. The corresponding stack

of images is recursively split into four quadrants or regions

(Figure 1), until 2D discriminant and non-homogeneous re-

gions are encountered. The splitting is performed by bisecting

the rectangular regions (in the entire image stack) in the

vertical and horizontal directions. In short, if a region is very

discriminant for a class it is being split, whereas if it is not

discriminant enough, it is split if it is inhomogeneous.

Fig. 2. Facial images from the XM2VTS database that belong to the frontal
class and one of the non-frontal classes, along with the corresponding region
patterns.

The above procedure is performed for each facial class

separately. In the end of the training procedure, a region

pattern for each class is created. Two facial images that

belong to different classes along with the corresponding region

patterns are shown in Figure 2.

Finally, each training image Ik within a class a is character-

ized by the vector µ
ak

that contains the mean intensity values

for each of the regions ra,j , j = 1 . . . na, na being the number

of regions in the pattern of class a.

The rationale behind the splitting procedure outlined above

for the creation of the region pattern for each class is that

since each region is finally represented by its mean value,

large regions are represented in a very coarse way, since

they are represented by a single value, whereas an area split

into many small regions is represented in a more refined and

detailed way, as every such small region is represented by

its own mean value. Thus, the algorithm splits regions that

are discriminant for a certain class into smaller regions, in

order to represent these regions with finer detail, which is

important for classification due to their discriminant power.

The fact that the method also splits non-discriminant regions

that are inhomogeneous helps the fine-tuning of the region

placement in the testing (classification) procedure.

B. Image Classification

The algorithm’s testing (classification) procedure is as fol-

lows. The na discriminant regions raj of class a are selected

upon an image I depicting a face in an unknown orientation.

In order to solve small alignment problems, the regions

boundaries are translated locally by small amounts until they

fall on as much as possible homogeneous regions. For a

class a, the intensity means µIraj
of every region raj of

class a are computed in I , providing the image I means

vector µ
Ia

. The image means vector µ
Ia

is then compared

with the (pre-computed) means vectors µ
ak

for all training

images Ik (k = 1 . . . l) of facial class a, resulting in distances

dIak
= ‖µ

Ia
−µ

ak
‖ for every training image k that belongs to

class a. Thus, l distances are computed for each class. This is

repeated for all nTotal classes resulting into l·nTotal distances.

The facial image is classified to the class α∗, that contains the

training image κ∗ whose means vector is closest to the test



image means vector,

(α∗, κ∗) = arg min
α,κ

dIak
. (1)

C. Experimental Performance Evaluation

The proposed method was evaluated on data obtained from

the XM2VTS face database [5]. Face tracking was applied on

the head rotation shot videos, depicting people that start from

a frontal pose, turn their heads to their right extreme, back to

frontal pose then to the left extreme (Figure 3). The resulting

facial images, that depict the face bounding box (Figure 4),

were then rescaled. 6862 facial images were obtained, 2486
being frontal and 4376 non-frontal. Images where the head

rotation is in the range [−100 . . . 100], zero degrees being the

frontal orientation, were considered as frontal. The non-frontal

images were split into four classes. We then randomly split the

images in half for all five classes to form the training and test

sets. The proposed algorithm was found to be able to classify

facial images to frontal and non-frontal with very satisfactory

accuracy. Indeed the correct classification percentage achieved

by the proposed method was 98%.

Fig. 3. A frame from the XM2VTS database.

Fig. 4. Frontal (top row) and non-frontal (bottom row) facial images from
the XM2VTS database.

III. HEAD DETECTION USING TEMPLATE MATCHING AND

HISTOGRAMS OF ORIENTED GRADIENTS

Human head detection is a crucial building block for

many algorithms, such as face recognition, facial expression

recognition, human detection etc. An algorithm that detects

human heads in images or video frames has been developed.

The method combines a fast shape matching technique with a

strong object (head in our case) detector/classifier in order to

achieve improved performance in both tasks.

Fig. 5. The visualization of the edge orientation histograms for the image
in Figure 6. There are 9 bins for every cell. Each bin is represented by a line
of the appropriate orientation and the luminance of the line depends on the
normalized value of the bin.

The shape matching technique uses image edges as input

and is based on a binary search tree [6] that has been

trained with ”head and shoulders” shape templates. Each such

template consists of a contour that outlines the silhouette

of human head and shoulders. The method generates a list

of possible template matches on the input image. The input

features (image edges) are presented to the root of the tree

as input. The root and every subsequent internal node decides

whether to direct the search to its left or right child until the

search reaches a leaf node. The template corresponding to that

leaf node is selected as a candidate and the search continues

by reversing the search decision at nodes with weak decisions.

The HOG classifier uses Histograms of Oriented Gradients

[7] as features to feed into a Support Vector Machine (SVM)

in order to classify the input as head or ”not-head”. The HOG

features are computed by evaluating the image gradients in

non-overlapping 8× 8 pixel cells and distributing them into a

9-bin histogram according to their orientation and magnitude

(Figure 5). Subsequently, the histograms of overlapping blocks

consisting of 2×2 cells are normalized and concatenated into

a feature vector.

To achieve head detection we scan the image with a sliding

window and use the shape tree to obtain possible matches of

the head and shoulders contour templates on each window

position (Figure 6). Then we collect the blocks that the

template contour goes through (Figure 7) into a feature vector.

This process is used both on a set of training images in order

to obtain the training feature vectors for the SVM as well as

on the test images that are to be classified. In order to obtain

negative examples, the template matching and feature vector

extraction methods were used on images that do not contain

any human heads.

By combining these techniques we can improve the shape

matching performance by validating a shape match provided

by the shape tree with a classification result, thus reducing the



Fig. 6. A head and shoulders contour template matched on an image.

Fig. 7. The blocks selected by the contour to be included in the feature
vector.

number of false positive matches. The classification rate of the

HOG classifier is also improved since we do not use the entire

image window that most probably contains background in it,

but rather only the blocks relevant to the object as input.

IV. MULTIVIEW OBJECT RECOGNITION UTILIZING A BAG

OF KEYPOINTS APPROACH

Localization and recognition of objects within a scene pro-

vides information that can complement and enrich information

related to humans. Object recognition is quite unlike most

other tasks in computer vision, for example face recognition,

person detection, emotion recognition etc. This is because a

class of objects may encompass a vast variety of different

entities, both ontologically and visually. Moreover, in the case

of objects, the border between recognition (“which one”) and

categorization (“what type of”) is very blurry. This is due to

the fact that, unlike humans, objects do not have a distinct

identity, and many objects can have multiple nearly identical

copies (e.g cars of the same model). Another characteristic of

object recognition is that, with the exception of a few classes of

radially symmetric objects, most objects exhibit a high visual

variety from different views. Due to this fact, the fusion of

information from multiple cameras is of great help in object

recognition. Thus, we have attempted to design a system that

performs object recognition (or categorization) using informa-

tion from (initially) two cameras. Instead of designing a system

from scratch, we have chosen to extend a successful generic

single-camera object recognition and categorization system [8]

which has been recently shown [9] to have a performance close

to the state of the art. The following subsection reviews the

single-camera algorithm whereas subsection IV-B describes

the proposed multi-view approach

A. Single Camera Framework

The single camera method used [8] was founded on the

current trends in computer vision, namely the use of local

feature points, and decision using SVMs.

The fundamental steps for the training phase of the single-

camera method are the following:

1) Extraction of local feature points from all (labelled)

images of a training set. Local feature analysis methods

consist of two generally independent components, a

feature point detector, and a feature point descriptor.

In the present case, the feature point detector that

was selected was the Harris affine detector [10]. The

advantage of this detector is that is especially robust

to transformations. The feature descriptor, respectively,

is the classic SIFT descriptor [11] which consists of a

set of Gaussian derivatives computed at 8 orientation

planes over a 4 × 4 grid of spatial locations, giving a

128-dimensional vector.

2) Clustering of local feature descriptors into a number

of classes. The clustering of local feature descriptors is

done in order to abstract the distribution of the feature

points. The k-means algorithm is used for this purpose.

The number of classes k is decided experimentally, and

generally ranges around 1000. The feature that is used

for the assignment of a specific feature point to a cluster

is the SIFT descriptor. At the end of the clustering

procedure, only the cluster centers are retained.

3) Computation of a summary descriptor (feature vector)

for each image in the training set. A histogram repre-

senting the number of feature points that were assigned

to each class center is used as feature vector.

4) Training of a classifier using the feature vectors of all

images. Depending on the separation of the training

example images into classes, the classification can lead

to object recognition, object class recognition (a.k.a.

object categorization), object verification etc. In the

present case we have chosen to implement object recog-

nition. The classifier that was selected was the classic

SVM. Different types were tried, but the simplest linear

variety was found to be most effective. Since SVMs

are intrinsically a two-class classifier, we use the classic

multi-class extension whereby a classifier is trained for

each pair of classes and the final recognition of an

image is done by a voting procedure, with each classifier

contributing a vote to the class it selects.



For recognizing an object in an incoming image (testing

stage), a similar procedure is followed: Harris-affine feature

points are detected, and their SIFT descriptors are extracted.

These descriptors are then assigned into the previously com-

puted cluster centers, and the number of feature points as-

signed to each center forms a histogram, which is then passed

to the previously trained Support Vector Machine which makes

the final decision about which object is depicted in the image.

B. Multi-camera Framework

Fig. 8. Schematic of the two-camera configuration used.

We base our approach to multi-camera object recognition

on the assumption that the relative spatial configuration of the

(static) cameras is known a priori. Here, we are concerned only

with the positions of the cameras with respect to the object, i.e.

their relative position in a coordinate system rigidly attached

to the observed object. Although the proposed approach can

be applied to an arbitrary number of cameras, we will limit

the discussion to the two-camera problem.

Let us then assume cameras C1 and C2 as in Figure 8.

Assuming a spherical coordinate system centered on the center

of the object, the positions of the two cameras are {ρ1, φ1, θ1}
and {ρ1, φ1, θ1}. Since the keypoint bag recognition method

described in the previous subsection is largely scale invariant,

the only relevant parameters in this case are the angle differ-

ences, normalized to lie between 0 and 2π

∆φ = φ1 − φ2 + 2nπ, n ∈ {0, 1} (2)

and

∆θ = θ1 − θ2 + 2nπ, n ∈ {0, 1} (3)

Thus, in the general case, a different classifier would need to

be trained for each combination of ∆φ and ∆θ, i.e. for each

spatial configuration of the two cameras.

The classifier that was used is a modification of the basic

keypoint bag system described in subsection IV-A. In essence,

instead of a single keypoint histogram corresponding to the

one camera, two keypoint histograms H1 and H2 are created,

from the images corresponding to the two cameras. Each

histogram is, as before, computed by classifying the SIFT

descriptors into pre-computed bins. H1 and H2 are then

concatenated into a combined histogram H , which is then

processed as usual by the SVM stage.

The main difference is in the training stage. Firstly, in

the training data, each training image X is labelled not only

with the identity of the object in question, but also with the

angles φx and θx from which it was imaged. An arbitrary

“frontal” pose is chosen as a zero axis. Then, local features

are extracted and the k-means centers are established as de-

scribed in subsection IV-A, without taking camera orientation

into account. Likewise, the histograms for each image are

computed irrespective of camera orientation, using the class

centers generated by the k-means. But in order to compute

feature vectors that will form the training data of the SVM,

for each image X in the training database, other images Y
belonging to the same class are sought such that

φy − φx = ∆φ + 2nπ, n ∈ {0, 1} (4)

and

θy − θx = ∆θ + 2nπ, n ∈ {0, 1} (5)

. Then the histograms of the two images Hx and Hy are

concatenated into histogram H which is used to train the SVM

classifier.

C. Experimental Performance Evaluation

Due to the lack of challenging multi-view object detec-

tion/recognition databases we created our own database. We

selected to focus on furniture, and particularly on chairs.

Chairs are a recurrent object in human environments, and

present particular difficulties since they are topologically very

diverse, highly concave, and have large gaps in their silhouette.

Fig. 9. Example of the images captured for the chairs database.

For our training set, 8 distinct chairs were selected as shown

in Figure 9. For each chair, 16 different camera orientations

were defined, by sampling φ and θ. In all cases, r was constant.

Within each orientation, 6 different photographs were taken,

by randomly varying φ and θ within ±10◦ and r by ±15cm.

We thus gathered 96 images per object. In general, the objects

in question took up approximately 50% of the area of each

image (including gaps in the objects).



To achieve a fair comparison we compared the result of

the multi-camera recognizer with the result of the merging of

two single-camera classifiers, each operating on one of the

two images that form the input to the multi-camera algorithm.

When the two single camera results are different, the merging

is achieved by selecting the one with the greatest SVM margin.

We trained both methods using 2/3 of the images. Then the

other 1/3 of the images were used for testing and the process

was repeated three times. The result of the combination of the

two single-camera classifiers was an accuracy of 96%, while

the two-camera classifier had an accuracy of 100%

V. CONCLUSION

Semantic analysis of videos is a very challenging research

topic, especially when targeting humans (identity, state, ex-

pressions, actions etc). Despite the recent progress and the

numerous applications (one of them being multimedia post-

production) much remains to be done until the corresponding

algorithms reach maturity and good levels or robustness and

accuracy. This is especially true in cases where such algo-

rithms need to operate in an unconstrained environment with

light variations, cluttered background etc. The use of multiple

video feeds, from calibrated, synchronized cameras, or the

existence of 3D information is expected to greatly facilitate

efforts towards this direction.
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