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Ubiquitous 1/f scaling in human cognition and physiology suggests a mind–body interaction that
contradicts commonly held assumptions. The intrinsic dynamics of psychological phenomena are
interaction dominant (rather than component dominant), and the origin of purposive behavior lies with
a general principle of self-organization (rather than a special neurocognitive mechanism). E.-J. Wagen-
makers, S. Farrell, and R. Ratcliff (2005) raised concerns about the kinds of data and analyses that
support generic 1/f scaling. This reply is a defense that furthermore questions the model that Wagen-
makers and colleagues endorse and their strategy for addressing complexity.

As science turns to complexity one must realize that complexity
demands attitudes quite different from those heretofore common . . .
each complex system is different; apparently there are no general laws
for complexity. Instead, one must reach for “lessons” that might, with
insight and understanding, be learned in one system and applied to
another. (Goldenfeld & Kadanoff, 1999, p. 89)

In a previous article (Van Orden, Holden, & Turvey, 2003), we
asserted that background noise in repeated measurements of cog-
nitive performance includes 1/f scaling (also called 1/f noise,
fractal time, or pink noise), which may be expected if the behavior
of living beings is self-organizing. Wagenmakers, Farrell, and
Ratcliff (2005, this issue) commented on various aspects of Van
Orden et al. (2003), but we limit our reply to three concerns. First,
they claimed that the data series of Van Orden et al. (2003) mostly
comprised transient short-range correlations, not 1/f scaling. Sec-
ond, and related to the first, is their claim that pink noise does not
strictly imply self-organization but could be generated by compo-
nential models, in particular by the model of Granger (1980).
Third, they worried that self-organized criticality is underspecified.

Can We Rule Out Transient Correlations?

The backbone of the commentary of Wagenmakers et al. (2005)
is whether transient short-range correlations adequately character-
ize the data from Van Orden et al. (2003). The hypothesis of
transient short-range correlations, however, carries the burden of
proof because it asserts something readily observable, a short-
range upper bound to visibly scale-free behavior. Wagenmakers et
al. explained this fact: “The difference between a persistent 1/f �

noise process and a transient . . . process” is that “a transient
process flattens at the lower frequencies” (pp. 110). Although one
expects an eventual breakdown in any natural, finite, scaling
relation, transient processes are very short lived. 1/f-like patterns
may recur across dozens of trials but not hundreds or thousands.

For a transient process, the relation between power (i.e., ampli-
tude) and frequency of variation must break down at some long
time scale where random variation appears. For a transient process,
the spectral slope must level off to become the zero slope of white
noise past some low frequency, a flat plateau of random variation.
When plateaus of random variation reliably dominate low frequen-
cies, they are quite obvious in spectral plots (e.g., see Figure 1).
This is why visual inspection of spectral plots is such a common
and important step in the procedures used to classify time series.
When spectral and fractal methods are used in tandem, as in the
Van Orden et al. (2003) method, it is especially difficult to mistake
transient correlations for scaling relations because the scaling
pattern will plateau in the plot of one or the other analysis (Ran-
garajan & Ding, 2000).

Another way to check for plateaus is simply to collect more data
(Baryshev & Teerikorpi, 2002; Mandelbrot & Wallis, 1968/2002).
Longer and longer data series reach into more and lower frequency
ranges, which provide more and better opportunities to observe
plateaus. For example, Figure 2 presents spectral plots of three trial
series that appear in Figure 3. The boxes bound the frequencies
visible in a spectral plot of 1,024 trials (middle panel) and 1,024
and 4,096 trials (bottom panel). In the examples, more data extend
the scaling relation to more and lower frequency scales. The
8,192-trial series establishes the scaling relation over almost four
decades of spectral frequencies: Event times of about 200 ms show
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long-range dependence across a time span of 10.8 million ms (3
hr). We see comparable outcomes each time we collect longer data
series.

So now a discrepancy exists between our conclusions and those
of Wagenmakers et al. (2005) based on analyses of data from Van
Orden et al. (2003). Wagenmakers et al. found plateaus; we did
not. Why? Wagenmakers et al.’s model contrasts were conducted
on detrended data, and here is where we see the problem. Detrend-
ing can be useful depending on the goals of an analysis (and we get
back to this point further on); however, detrending can create false
plateaus that do not exist in the actual data. Figure 1 illustrates the
problem using the data from Van Orden et al. (2003). Detrending
eliminates fluctuations at the lowest frequency and artificially
truncates the scaling relation. Detrending flattens power in the
lowest frequencies, which creates false plateaus. The false pla-

teaus, in turn, mislead Wagenmakers et al.’s model-testing proce-
dure. The model-testing procedure hinges on the d parameter of
the autoregressive fractionally integrated moving average, or
ARFIMA, model. But the d parameter is tuned to the region of
false plateaus, the region wherein the scaling relation has been
artificially flattened. Effectively, a positive test must detect vari-
ation that was explicitly removed by detrending. Consequently,
detrending sets up Wagenmakers et al.’s analyses to misclassify
scaling relations as transient short-range correlations.

The difficulty with our claim is that we also reported analyses in
Van Orden et al. (2003) using detrended data. Although we had
previously conducted analyses without detrending, we only re-
ported outcomes for detrended data in Van Orden et al. (2003). We
did not mention inspection for plateaus in analyses without de-
trending in part because we have yet to see plateaus in any

Figure 1. In all four panels, the square symbols represent the average power of each spectral coefficient, taken
across participants, from a 511-frequency power spectrum analysis of the Van Orden et al. (2003; VOHT) trial
series in the double-logarithmic domain. The simple reaction time coefficients were averaged across 10
participants; the naming coefficients were averaged across 20 participants. The error bars represent the standard
error of each coefficient’s mean power across participants. The two left panels depict the outcome of the analyses
without detrending; the two right panels depict exactly the same analyses carried out after using the Van Orden
et al. (2003) detrending procedures. Note that the detrending results in a dramatic loss of power for the
coefficient corresponding to the lowest resolvable frequency (��3 on the x-axes) in each of the plots depicting
the detrended data. Nevertheless, the remainder of the scaling relation stays essentially intact.
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comparable data series. We and others have collected many data
sets with outcomes like those shown in Figures 1 and 2 and found
no reliable plateaus without detrending (see especially Thornton &
Gilden, 2004). Consequently, we did not discuss the transient
process hypothesis, although Wagenmakers et al. (2005) made
plain that we should have clarified the issue.

Our argument hinged on the fractal dimension derived using
relative dispersion analysis. One must understand what is at stake
in a dispersion analysis to understand why detrending is so prom-
inent in this analysis. Dispersion analysis is a renormalization
group procedure used to examine how uncertainty in the estimate
of a population mean changes with changes in sample size. In Van
Orden et al. (2003), we explained how a dispersion analysis
estimates fractal dimension and thereby evaluates the rate at which
uncertainty decreases as more data are collected (within the limits
of finite data sets). When its assumptions are met, it is among the
more robust, unbiased, and efficient tools one can use to estimate
fractal dimension (Caccia, Percival, Cannon, Raymond, &
Bassingthwaighte, 1997; Eke, Hermán, Kocsis, & Kozak, 2002).

What role does detrending play? To get a sense of this, first take
note of the apparent linear trend in the short, 1,024-trial data set in
Figure 3. Next notice how other apparent �1,000-trial linear
trends are simply part of larger oscillations in the 4,096- and
8,192-trial data sets collected from the same participant on differ-
ent occasions. If data are fractal, then a data set of a given length
is sampled from a fractal structure of greater length. Thus the
nonstationary linear trend in the short data set is an abbreviated
sample of longer range oscillatory trends. One must always bear
this fact in mind in fractal analyses of finite samples. Statistical
tools are limited in scope to the overt properties of a sample, so
assumptions about the origins of samples must be finessed in the
analysis. Otherwise, for instance, the powerful nonstationarity in
the mean that is so characteristic of fractal processes may dominate
and thus distort the outcome.

Nonstationarity in a sample actually contributes uncertainty and
creates a bias in favor of the fractal account. By detrending we
reduce this bias. Detrending artificially truncates the lowest fre-
quency fluctuations to finesse the limits of statistical tools. It

spectral coefficients that span the full range of resolvable spectral coeffi-
cients for a 1,024-trial series (cf. Gilden, Thornton, & Mallon, 1995). The
slope of a regression line, fit to the lowest 25% of the coefficients, is �.95
(cf. Eke et al., 2002). The middle panel depicts a power spectrum for the
4,096-trial series in Figure 3. The first 511 coefficients were estimated with
the Van Orden et al. (2003) window-averaging method, and the three
lowest frequencies were estimated from a single pass of a 2,047-frequency
analysis, for a total of 514 coefficients. The slope of a regression line fit to
the lowest 25% of the coefficients is �.75. The inset box depicts the range
of frequencies that would come from a 1,024-trial series. The bottom panel
depicts a power spectrum for the 8,192-trial series. The first 1,023 coeffi-
cients were estimated with the Van Orden et al. (2003) window-averaging
method, and the three lowest frequencies were estimated from a single pass
of a 4,095-frequency analysis, for a total of 1,026 coefficients. The slope
of a regression line fit to the lowest 25% of the coefficients is �.94. The
inset boxes bound the ranges of the frequencies from 1,024- and 4,096-trial
series, respectively. None of these series were detrended prior to the
spectral analysis because the goal is to determine the full extent of the
scaling relation.

Figure 2. The three plots depict spectral analyses for three data series in
Figure 3. The top panel depicts a spectral analysis of the 1,024-trial series
in Figure 3. The first 127 frequencies were estimated with the same
window-averaging method described in Van Orden et al. (2003). The three
lowest coefficients were derived from a single pass of a 511-frequency
analysis and appended to the 127-frequency spectrum for a total of 130
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imposes a characteristic scale—a constant, definite mean—at the
largest scales of fluctuation. Thus detrending guarantees that the
analyses are not dominated by a nonstationary linear trend. In turn,
the Van Orden et al. (2003) analysis explicitly accommodated
detrending by restricting the scales (i.e., frequencies) to one fourth
the length of the original trial series, which excludes the false
plateau (p. 340, footnote 2; see also Holden, in press). In other
words, variation at the lowest frequencies is sacrificed to ensure a
more reliable estimate of fractal dimension. Detrending is simply
one part of a conservative procedure to estimate fractal dimension
and evaluate uncertainty in estimates of the mean.

Does Pink Noise Imply Self-Organization?

As explained above, we have yet to find evidence of transient
short-range correlations in our data. Apparently, we confront 1/f

scaling. Granting 1/f scaling, one possible explanation would be
found in a model with very many separate components. For in-
stance, scaling relations that subtend thousands of trials could be
mimicked by a process with a sufficiently large number of inde-
pendent components, perhaps an infinite number of components.
Such a model was outlined by Granger (1980) and is favored by
Wagenmakers et al. (2005).

Wagenmakers et al. (2005) speculated that pink noise could be
encapsulated in the “behavior of many independent groups of
neurons, each with their own different autoregressive decay pa-
rameter” (p. 113). However, Wagenmakers et al.’s intuitions about
independent neural activity, although plausible, do not mesh with
the actual fractal character of the nervous system, so one must look
elsewhere for independent component processes. Fractal fluctua-
tions characterize behavior at individual synapses and collections

Figure 3. The top panel depicts the vocal-response 1,024-trial series from Van Orden et al.’s (2003) Simple
Reaction Time Participant 9, without detrending. The middle panel depicts a 4,096-trial button-press-response
series for the same participant. The bottom panel depicts an 8,192-trial button-press series for this participant.
The latter series illustrates a scaling relation close to the limits of what is reasonable for a continuous session.
For instance, doubling the sample size to a 16,384-trial series would add just one additional lower frequency
coefficient to the spectral plot depicted in Figure 2, but it would require about 6 hr to complete, which would
be difficult to achieve without interruption.
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of synapses (Lowen, Cash, Poo, & Teich, 1997), and action po-
tentials themselves reveal 1/f scaling (Matveev & Wang, 2000).
Fractal fluctuations also appear in the event times of intermittent
synchrony of electrical activity in the human brain (Gong, Niko-
laev, & van Leeuwen, 2003), and long-range correlations appear in
functional magnetic resonance imaging time series (Friston et al.,
1995). In fact, 1/f scaling characterizes in vivo, excitable-tissue
recordings “from the microscopic to the macroscopic” (Lowen et
al., 1997, p. 5673; Bassingthwaighte, Liebovitch, & West, 1994;
West & Deering, 1995).

In this light, we worry that Wagenmakers et al.’s (2005) newly
proposed encapsulated mechanisms lack physical or psychological
motivation before the fact and require that one posits implausible
coincidences after the fact (see also Hausdorff & Peng, 1996;
Thornton & Gilden, 2004). Each arbitrarily chosen frequency is
equated with a special psychological or physical mechanism
changing on that specific frequency of variation—infinite frequen-
cies equal infinite mechanisms. The amplitude of variation for
each mechanism must line up with the scaling relation between
power and frequency, which is treated effectively as a collective
succession of coincidences. But the actual scaling relation is not
tied to any specific frequencies. It provides no motivation for the
specific frequencies and amplitudes of variation of models: It is
scale free.

A scaling relation is legitimately a phenomenon in and of itself,
a fact that Wagenmakers et al. (2005) did not consider. Criticality,
as in self-organized criticality, predicts emergent 1/f scaling or
pink noise, which should be widely observed in human perfor-
mance. Pink noise is widely observed in human performance. Does
the inverse of this deduction hold true? Does the presence of pink
noise strictly imply self-organization? No. As stated in our original
article, “Ubiquitous pink noise is not sufficient evidence for self-
organized criticality; it is simply a necessary consequence” (Van
Orden et al., 2003, p. 343).

Is Self-Organized Criticality Underspecified?

The third issue of this reply is Wagenmakers et al.’s (2005)
concern that a hypothesis of self-organized criticality is under-
specified. If we correctly understand the commentary, they would
see any hypothesis as underspecified that did not eventually yield
a conventionally reductive, mechanistic model of cognition.

We concede that the divide between Wagenmakers et al. (2005)
and Van Orden et al. (2003) on this point may equal the distance
between paradigms. Thus we must defend a point of view and a
modeling strategy that they seem to reject out of hand. To begin
with, it is legitimate to propose hypotheses that refer to emergent
properties (Anderson, 1972), and it is reasonable to speculate that
criticality emerges spontaneously in living systems (Bak, 1996;
Kauffman, 1993, 1995). It is also credible that 1/f scaling in
behavioral measures refers to an emergent property of a human
being, in body and mind. Now how might we formulate this as a
modeling problem? At what level do we model emergent behavior
of the human organism; what are the building blocks? There is
presently no workable entry level below the level of the emergent
phenomena themselves.

For instance, 1/f scaling appears to be a universal feature of
human behavior. Human universals are routinely attributed to
causal bases in the human genome, a rationale that appears in

evolutionary psychology and cognitive science. Thus the entry
level for a fully specified causal model would be at the human
genome. But complexity immediately overwhelms this entry point,
far below the level of organismic behavior. There are too many
interacting gene products, many of which are enzymes, receptors,
members of signaling sequences, and other functional parts of
metabolism. Deriving features of human behavior from “a system
with this many interacting components . . . is clearly out of the
question” (Whitesides & Ismagilov, 1999, p. 91).

We are equally frustrated as we move up in scale: “Studies of
metabolic cycles and signaling pathways . . . demonstrate the cur-
rent difficulty in rationalizing even the behavior of these relatively
simple systems, much less the emergent properties of organisms”
(Whitesides & Ismagilov, 1999, p. 89).

And what about the conventional scale of cognitive mecha-
nisms? In Van Orden et al. (2003), we explained why emergent
macrolevel behavior is antithetical to the conventional reductive
pursuit of cognitive mechanisms. Aside from that, not one cogni-
tive mechanism exists on which cognitive scientists can agree
about its boundaries, its empirical shape, or details about its
function. This criticism has been raised and elaborated on by many
contemporary commentators (e.g., Harley, 2004; Stanovich, 2004;
Thelen & Smith, 1994; Uttal, 1990, 2001; Watkins, 1990; Weldon,
1999).

So where is the entry level to model an emergent property? In
Van Orden et al. (2003), we began with a question about 1/f
scaling based on Juarerro’s conjecture. Juarrero (1999) had argued
persuasively that conventional assumptions about intentional be-
havior are nonstarters and to date, to our knowledge, no one has
successfully refuted her critique. She went on to speculate that
workable assumptions might be found in self-organizing phenom-
ena. She conjectured that intentional behavior originates in em-
bodied states of self-organized criticality. She made this bold
conjecture without apparent knowledge of widespread findings of
pink noise in human performance or physiology, but her conjecture
anticipates widely observable pink noise.

The empirical question that we posed in Van Orden et al. (2003)
was whether 1/f scaling or pink noise is widely present in human
performance. The phenomenological model of Gilden (2001) and
colleagues addresses this question at the level it is posed (Thornton
& Gilden, 2004). In their fractal model, spectral data comprise a 1/f
scaling relation plus white noise, exactly the level of the emergent
phenomenon. This is the modeling strategy common to studies of
complex systems. “One should most often use a more phenome-
nological and aggregated description, aimed specifically at the
higher level” (Goldenfeld & Kadanoff, 1999, p. 88). The modeling
strategy works because patterns at the macroscale of behavior are
independent of the details of microscale motion. Systems vastly
different in their structural details may display the same recogniz-
able patterns in their behavior—patterns that may include but are
by no means limited to 1/f scaling.

Only the most transparent “rice pile” complex systems lend
themselves to the kind of solutions that Wagenmakers et al. (2005)
espoused. For instance, “the study of complexity in [chemical]
systems of reactions . . . that can be described by nonlinear equa-
tions has been limited to the few that are both complex enough to
be interesting and simple enough to be tractable” (Whitesides &
Ismagilov, 1999, p. 89). These model systems are studied for
abstract universal principles that may characterize more complex
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opaque systems such as human activity. Model systems like sand
piles are informative about interaction-dominant dynamics and
self-organization, for example.

A fractal account does not necessarily require details of internal
mechanisms to answer the theoretical questions that are posed. In
the case of opaque complex systems, it is their behavior that
motivates the hypothesis of self-organization, not the details of
interacting primitives. Wagenmakers et al. (2005) did not consider
these implications of modern complexity science. Not every sci-
entific problem yields analytic solutions nor succumbs to conven-
tional reductive analysis (Camazine et al., 2001; Kelso, 1995;
Rosen, 1991, 2000; Turvey, 2004; West & Deering, 1995).

Is self-organized criticality underspecified? From Wagenmakers
et al.’s (2005) perspective, the answer appears to be yes, because
a mechanistic model of emergence in a human organism is not
forthcoming. From our perspective, the answer has to be no,
because we make adequate progress as the assumptions and prin-
ciples of complex systems, including self-organized criticality, are
elaborated. The latter approach has worked famously for move-
ment coordination (Amazeen, Amazeen, & Turvey, 1998; Kelso,
1995), and it may also suffice to characterize situated cognitive
activity (e.g., Hock, Balz, & Smollon, 1998; Hock, Schöner, &
Voss, 1997; Thelen, Schöner, Scheier, & Smith, 2001; Tuller,
Case, Ding, & Kelso, 1994; Van Orden, Holden, Podgornik, &
Aitchison, 1999). Moreover, this approach makes a place for
intentionality, which is conspicuous by its absence in mainstream
accounts (Van Orden & Holden, 2002).

Last, we remark on Wagenmakers et al.’s (2005) concern that
Van Orden et al. (2003) advanced no predictions beyond 1/f. Our
primary target in Van Orden et al. (2003) was the question for
cognitive science What kind of system do we study? The answer,
a system with 1/f scaling, sets the stage for novel, heterodox
expectations. In Van Orden et al. (2003), we discussed two im-
mediate predictions: (a) cognition—whatever its nature—does not
divide into statistically independent processes, and (b) the same
processes govern cognitive performance in very short and very
long time frames. These predictions remind us of, for instance,
repeated calls to investigate in earnest the possibility of a single
memory system and a unitary theory of forgetting (McGeoch,
1932; Melton, 1963; Nairne, 2002; Neath & Surprenant, 2003).

Beyond immediate expectations, surprising unimagined predic-
tions await. Cursory looks at contemporary physics and biology
are reassuring on this count. Early enterprises identified scaling
and fractal phenomena, which laid the foundation for contempo-
rary work: broad empirical investigations of nature’s muddier but
more generic aspects guided by predictions derived through fractal
equations (e.g., Kinzig & Harte, 2000; Shapir, Raychaudhuri,
Foster, & Jorne, 2000). We anticipate similar developments in
cognitive science.
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