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Abstract

Cohesin is a chromosome-bound multisubunit ATPase complex. Following its loading onto 

chromosomes, cohesin generates chromosome loops to regulate chromosome functions. It has 

been suggested that cohesin organizes the genome via loop extrusion, but direct evidence is 

lacking. Here, we use single-molecule imaging to show that recombinant human cohesin-NIPBL 

complex compacts both naked and nucleosome-bound DNA by extruding DNA loops. DNA 

compaction by cohesin requires ATP hydrolysis, and is force-sensitive. This compaction is 

processive over tens of kilobases (kb) at an average rate of 0.5 kb per second. Compaction of 

double-tethered DNA suggests that a cohesin dimer extrudes DNA loops bidirectionally. Our 

results establish cohesin-NIPBL as an ATP-driven molecular machine capable of loop extrusion.

The ring-shaped cohesin complex binds chromosomes both topologically and non-

topologically and regulates diverse chromosome-based processes, including chromosome 

segregation, DNA repair, and transcription (1–7). Human cohesin consists of the SMC1-

SMC3 heterodimeric ATPase, the kleisin subunit RAD21 that links the ATPase heads, and 

either one of the helical repeat proteins STAG1 or STAG2 (Fig. 1A). Cohesin is loaded on 

chromosomes by the NIPBL-MAU2 complex (8–10). Mutations of cohesin subunits and 

NIPBL result in human developmental diseases with multisystem dysfunctions, collectively 

referred to as cohesinopathy (9, 11), likely due to transcriptional defects caused by cohesin 

deficiency. High-throughput chromosome conformation capture (Hi-C) experiments suggest 

that cohesin mediates the formation of chromosome loops and topologically associated 

domains (TADs) through a process termed loop extrusion (5, 12–20). Single-molecule 

studies have demonstrated that the related SMC complex condensin can extrude DNA loops 
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(21, 22). In contrast, cohesin has been reported to slide on DNA through ATP-independent 

passive diffusion in vitro (23–25). Whether cohesin also has intrinsic loop extrusion activity 

remains an open question. Here, we addressed this question with single-molecule studies 

using recombinant human cohesin.

The cohesin loader NIPBL remains bound to cohesin on chromosomes (26, 27), and is 

required for chromosome looping in cells (15). We thus expressed and purified the 

recombinant human cohesin complex alone or bound to the C-terminal region of NIPBL 

(NIPBLC, residues 1163–2804) in insect cells (Fig. 1B and fig. S1A). Cohesin alone had low 

basal ATPase activity, and this activity was greatly stimulated by NIPBLC and DNA (Fig. 

1C) (28, 29). The ATPase-deficient cohesin SMC1A-E1157Q/SMC3-E1144Q (EQ) mutant 

exhibited minimal ATPase activity even in the presence of NIPBLC and DNA. Negative-

stain electron microscopy showed that 51% (n=352) of the chemically crosslinked cohesin-

NIPBLC complex particles displayed a bent-rod-like conformation with an overall length of 

~50 nm (fig. S1, B and C), while the rest of the particles had a shorter, thicker rod shape 

with a length of ~33 nm. These conformations likely represent different forms of cohesin, 

with SMC1-SMC3 hinge domains partially or fully folded back toward their head domains, 

as had been previously observed for both human and yeast cohesin (30, 31).

If cohesin can extrude DNA loops, it is expected to compact DNA. To test this possibility, 

we used total internal reflection fluorescence microscopy to observe aligned arrays of DNA 

molecules on a lipid bilayer surface in real time (Fig. 1D and movie S1) (32, 33). DNA was 

stained with the green fluorescent dye, YOYO-1. After incubating the DNA curtains with 

unlabeled cohesin-NIPBLC in the absence of buffer flow, we observed that all DNA 

molecules were completely compacted to the barrier in the presence of ATP (fig. S2), and 

this compaction could not be reversed by resuming flow.

We then fluorescently labeled NIPBLC with quantum dots (QDs) to visualize the cohesin-

NIPBLC complex. The QD-labeled cohesin-NIPBLC complexes rapidly bound to the DNA 

array as soon as it entered the flowcell (Fig. 1E). We observed single QD-tagged complexes, 

as indicated by intermittent QD photoblinking (34), but cannot completely rule out QD-

tagged cohesion oligomers (see below). Analysis of the initial binding distribution of the 

cohesin-NIPBLC complexes on the DNA substrate showed preferential loading on AT-rich 

regions (fig. S3, A and B), which was also observed for cohesin alone and for condensin (21, 

24). We also measured one-dimensional diffusion activity of the cohesin-NIPBLC complex 

on double-tethered DNA curtains (fig. S3, C and D). The complex was stably bound on 

DNA for over 5 min and diffused slowly in an ATP-independent manner, with an average 

diffusion coefficient of 0.02 ± 0.003 μm2 s−1 (mean ± SEM; fig. S3, E and F), which is 8-

fold lower than that reported for human cohesin topologically bound to DNA (25). Thus, the 

cohesin-NIPBLC complex displays very limited diffusion activity on DNA.

After the initial binding of cohesin-NIPBLC complexes to single-tethered DNA, we 

observed time-dependent, gradual DNA compaction (Fig. 1F and movie S2). We then 

measured the extent and rate of cohesin-mediated DNA compaction at different applied 

forces (i.e., flow rates; Fig. 1, F to H) (35). At an initial applied force of 0.3 pN, the DNA 

was almost completely compacted with an average rate of 0.5 kb s−1. When the initial 
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applied force increased to 0.6 pN, we detected incomplete DNA condensation with a 

correspondingly slower rate. There was minimal DNA compaction by cohesin-NIPBLC at 

0.8 pN of applied force. Although the applied force changes for DNA molecules as they 

begin compacting, the force-sensitive cohesin translocation is qualitatively similar to 

condensin-mediated DNA looping (22). Reducing the salt concentration from 50 mM to 25 

mM increased the extent and rate of DNA compaction by cohesin at high flow rates (fig. 

S4), suggesting that stronger cohesin-DNA or cohesin-cohesin interactions (as can occur in a 

crowded nuclear milieu) can raise the force threshold of compaction.

Cohesin alone (without NIPBLC) with its RAD21 subunit labeled with QD did not bind or 

compact DNA even in the presence of ATP (fig. S5A), indicating a requirement for NIPBL 

in loading cohesin onto DNA. The slowly hydrolyzable ATP analog, AMP-PNP, could not 

support efficient DNA compaction (fig. S5, A and B). The ATPase-deficient cohesin EQ 

mutant, which was expected to retain nucleotide-binding activity, was also deficient in DNA 

compaction even in the presence of NIPBLC and ATP. Thus, cohesin-NIPBLC-dependent 

DNA compaction requires ATP hydrolysis.

We never detected stepwise DNA condensation events, suggesting that DNA compaction by 

cohesin-NIPBLC is not mediated through search-and-capture of distant DNA segments. 

Instead, we observed frequent cohesin-NIPBLC slippage events at 0.3 pN of applied force 

(fig. S6). These observations suggested that cohesin can slide backward on DNA. The rate of 

the backtracking was similar to that of compaction (fig. S6C). The gradual, processive, ATP-

dependent DNA compaction by cohesin-NIPBLC with occasional slippage indicated that 

cohesin is a bona fide molecular motor.

Surprisingly, after DNA was fully compacted by cohesin-NIPBLC at 0.3 pN, increasing the 

applied force to 0.8 pN did not fully extend the DNA, and the bound cohesin only back-

tracked slightly (fig. S6A). This suggested that the completion of DNA compaction might 

lead to the formation of more stable cohesin-DNA assemblies, providing a plausible 

explanation for the observation that ATP is not required to maintain cohesin-dependent 

TADs after their formation in cells (18).

Cohesin can bind DNA by entrapment of DNA inside the lumen of its ring (topological 

binding) or by physical interaction with DNA that does not involve the opening of its ring 

(non-topological binding). Topological DNA binding is salt-resistant (29). Injection of high-

salt buffer dislodged the bound cohesin and fully reversed DNA compaction (fig. S6A and 

movie S3). Thus, cohesin-NIPBLC that is capable of loop extrusion might not be 

topologically bound to DNA. Analysis of the fluorescent intensities from DNA and QD-

protein complexes indicated that cohesin-mediated DNA compaction preferably occurred at 

the untethered DNA ends (figs. S6A and S7). The underlying reason for this preference is 

unclear but could be due to the ease of formation of seed DNA loops near the ends or flow-

induced higher occupancy of cohesin at DNA ends. Regardless, our data indicated that 

cohesin-NIPBLC is a processive DNA motor that compacts DNA.

DNA is packaged into chromatin in the nucleus. We next tested whether cohesin-NIPBLC 

could compact nucleosome-bound DNA (Fig. 2A). We incorporated 1–6 QD-labeled human 
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nucleosomes on each DNA substrate via salt dialysis (Fig. 2, B and C), and visualized the 

nucleosome-bound DNA substrate upon injection of unlabeled cohesin-NIPBLC at multiple 

applied forces (Fig. 2D). The extent of nucleosome-DNA compaction was about 80% (Fig. 

2E), and the average rate of the compaction was 0.5 kb s−1 (Fig. 2F). Compaction of 

nucleosome-bound DNA was also force-sensitive and dependent on ATP hydrolysis (Fig. 2, 

D to F). Thus, cohesin-NIPBLC compacts nucleosome-bound DNA with properties similar 

to those of naked DNA. Nucleosomes impede the movement of topologically loaded cohesin 

(23, 24). Our finding that cohesin-NIPBLC compacts naked and nucleosome-bound DNA 

with similar rates again suggested that the loop-extruding cohesin might not be topologically 

loaded. Furthermore, high-salt washout of cohesin revealed that nucleosomes themselves 

were not repositioned during cohesin-dependent compaction (Fig. 2D). These data suggested 

that cohesin can act on chromatin without having to displace or slide nucleosomes.

To directly visualize loop extrusion by cohesin, we prepared ‘U’-shaped DNA by tethering 

both DNA ends to the surface and monitored the looping events in real time (movie S4). A 

small loop formed immediately after cohesin-NIPBLC injection, and gradually elongated 

until the motor stalled or one side of the loop reached either DNA-tethering point (Fig. 3A, 

fig. S8A, and movies S5 to S7). Both arms of the ‘U’-shaped DNA were shortened during 

the process. These results are consistent with cohesin-NIPBLC extruding DNA loops 

bidirectionally, as unidirectional asymmetric loop extrusion is expected to shorten only one 

arm of the ‘U’-shaped DNA. The loop was stably maintained for a few minutes, and 

injection of a high-salt buffer quickly restored the DNA to its original ‘U’-shape (movie S8). 

As expected, we did not detect any looping activity in the absence of ATP or with the 

cohesin EQ mutant.

To visualize cohesin-NIPBLC at the base of the loop, we directly labeled cohesin-NIPBLC 

containing SNAPf-tagged STAG1 with Alexa Fluro 647 dye (Alexa647). Alexa647-labeled 

cohesin completely compacted DNA with a similar rate as the unlabeled complex (fig. S8B). 

Cohesin-NIPBLC bound at the base of the extruding loop (Fig. 3B, fig. S8C, and movie S9). 

Consistent with symmetric, bidirectional loop extrusion, cohesin-NIPBLC moved toward 

DNA-tethering points during the process (Fig. 3C). The average size of extruded loops was 

33 kb, and the mean rate of loop extrusion was 0.5 kb s−1 (Fig. 3, D and E).

A single condensin complex can extrude DNA loops asymmetrically and in one direction 

(22). A single cohesin complex might be able to perform symmetric loop extrusion. 

Alternatively, two cohesin complexes might act in concert to extrude loops in both 

directions. To determine how many cohesin molecules perform loop extrusion, we analyzed 

photobleaching steps of Alexa647-labeled cohesin-NIPBLC on DNA loops. On about 50% 

of DNA loops, we observed two fluorescent foci, with one each at the loop base and tip (Fig. 

4A). The number of photobleaching steps of both Alexa647-cohesin foci peaked at 2 (Fig. 4, 

B to D). Cohesin foci on DNA that did not form loops had no discrete peaks for the number 

of photobleaching steps (Fig. 4D). Thus, the loop-extruding complexes most frequently 

contained two cohesin molecules. These data suggested that a cohesin-NIPBLC dimer might 

be the minimal functional unit for loop extrusion.
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Collectively, our results supported a model in which a cohesin-NIPBLC dimer extrudes DNA 

loops symmetrically in both directions (Fig. 4E). Bidirectional loop extrusion by a cohesin 

dimer also explains the observed and simulated Hi-C maps of chromosome loops (5, 19). We 

observed loop extrusion by recombinant human cohesin-NIPBLC at relatively low applied 

forces and low salt concentrations. We anticipate that cellular crowding, MAU2, the N-

terminal region of NIPBL, and other cohesin interactors further stabilize cohesin on DNA 

and enhance its intrinsic loop extrusion activity in cells.

High-salt buffer dislodged loop-extruding cohesin from DNA. Cohesin-NIPBLC bound to 

DNA at low salt exhibited diffusion kinetics much slower than those of topologically loaded 

cohesin. Finally, nucleosomes do not hinder cohesin-mediated DNA compaction. These 

findings suggested that cohesin mediates loop extrusion through non-topological or pseudo-

topological interactions with DNA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Human cohesin-NIPBLC compacts linear DNA.
(A) Schematic representation of human cohesin-NIPBL. CC, coiled coil. (B) Coomassie 

staining of purified recombinant human cohesin and cohesin-NIPBLC. (C) The ATPase 

activities (Mean ± SEM) of human cohesin and cohesin-NIPBLC (50 nM) in the absence or 

presence of 500 nM 40-bp dsDNA. (D) Illustration of DNA curtains bound by human 

cohesin-NIPBLC. One end of DNA is tethered to the surface. (E) An image of fluorescently 

labeled cohesin-NIPBLC (magenta) on single-tethered DNA molecules stained with 

YOYO-1 (green). (F) Representative kymographs showing DNA condensation mediated by 

cohesin-NIPBLC at two applied forces. Red gradient triangle indicates the protein injection 

time window. The concentration of protein traversing the flowcell was diluted for a few 

minutes by constant buffer flow. (G and H) Quantification of the percentage of DNA length 

condensed (G) and the DNA condensation rate (H). Boxplots indicate the median, 10th, and 

90th percentiles of the distribution. P-values are obtained from two-tailed t test: **** p < 

0.0001. At least 25 DNA molecules were measured for each condition.
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Fig. 2. Cohesin-NIPBLC compacts nucleosomal DNA.
(A) An illustration of nucleosomal DNA compaction by cohesin-NIPBLC. (B) An image of 

QD-labeled nucleosomes deposited on single-tethered DNA curtain with or without flow. 

(C) Distribution of the number of nucleosomes per DNA (Mean ± SD). (D) Representative 

kymographs of the compaction of nucleosome-bound DNA by WT or EQ cohesin-NIPBLC 

at different applied forces with or without ATP. (E) Percentage of the length of nucleosome-

bound DNA condensed in (D). (F) Compaction rate of nucleosome-bound DNA by cohesin-

NIPBLC. At least 25 DNA molecules were measured for each condition in (E) and (F).
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Fig. 3. Real-time visualization of loop extrusion by cohesin-NIPBLC.
(A) A time-course showing DNA loop extrusion by cohesin-NIPBLC on YOYO-1 stained 

‘U’-shaped DNA (top). Scale bar, 2 μm. Both DNA ends (dashed circle) are tethered to the 

surface and the extruding loop is extended at 0.1 ml/min buffer flow. Upon cohesin-NIPBLC 

injection, a small loop appeared at the tip of the DNA and elongated until the base of the 

loop (arrow) reaches one tethering point. A brief shutoff of flow retracted DNA completely, 

indicating DNA was not stuck to the surface. Injection of a high-salt buffer (500 mM NaCI) 

disrupted the loop. The scaled colormap (middle panel) shows that the DNA intensity 

matches the growing loop. The schematic drawing (bottom panel) depicts a model of loop 

extrusion. (B) Time-course montage of loop extrusion showing the localization of labeled 

cohesin-NIPBLC (indicated by white arrowheads) at the base of the DNA loop. Turning the 

flow on and off showed that the cohesin-NIPBLC complex moved with the DNA, confirming 

that it was indeed bound to the DNA loop. (C) A representative kymograph showing the 
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movement of a labeled cohesin-NIPBLC complex toward the DNA-tethering points. (D and 

E) Quantification of the loop size (D) and the rate of loop extrusion (E) by Alexa647-labeled 

cohesin-NIPBLC.
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Fig. 4. Cohesin-NIPBLC dimers promote loop extrusion.
(A) Top panel, a representative image of Alexa647-labeled cohesin-NIPBLC complexes 

bound to both the base and the tip of a DNA loop. Bottom panel, the number of Alexa647-

cohesin foci on each DNA loop (n=51 DNA molecules). (B) A representative two-step 

photobleaching trace of cohesin at the loop base was plotted, with the corresponding DNA 

loop image and its kymograph shown above the trace. Dashed red line: photobleaching 

steps; gray: intermittent blinking indicating single fluors. (C) The intensity distribution of 

single photobleaching steps of Alexa647-cohesin at the DNA loop was fit to a Gaussian 

distribution (red line). (D) The distribution of the number of cohesin-NIPBLC molecules at 

the DNA loop base (left panel) and at the loop tip (right panel). (E) Model for bidirectional 

loop extrusion by a cohesin-NIPBLC dimer.
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