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Abstract

The exploration-exploitation dilemma is a recurrent adaptive problem for humans as well as non-human animals. Given a
fixed time/energy budget, every individual faces a fundamental trade-off between exploring for better resources and
exploiting known resources to optimize overall performance under uncertainty. Colonies of eusocial insects are known to
solve this dilemma successfully via evolved coordination mechanisms that function at the collective level. For humans and
other non-eusocial species, however, this dilemma operates within individuals as well as between individuals, because
group members may be motivated to take excessive advantage of others’ exploratory findings through social learning.
Thus, even though social learning can reduce collective exploration costs, the emergence of disproportionate ‘‘information
scroungers’’ may severely undermine its potential benefits. We investigated experimentally whether social learning
opportunities might improve the performance of human participants working on a ‘‘multi-armed bandit’’ problem in
groups, where they could learn about each other’s past choice behaviors. Results showed that, even though information
scroungers emerged frequently in groups, social learning opportunities reduced total group exploration time while
increasing harvesting from better options, and consequentially improved collective performance. Surprisingly, enriching
social information by allowing participants to observe others’ evaluations of chosen options (e.g., Amazon’s 5-star rating
system) in addition to choice-frequency information had a detrimental impact on performance compared to the simpler
situation with only the choice-frequency information. These results indicate that humans groups can handle the
fundamental ‘‘dual exploration-exploitation dilemmas’’ successfully, and that social learning about simple choice-
frequencies can help produce collective intelligence.
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Introduction

Maximizing the sum of rewards from several choice options,

whose distributions are initially unknown and whose profitability

may differ, is a ubiquitous adaptive problem for organisms across

many taxa. Although such problems characterize many foraging

situations in natural environments for humans as well as non-

human animals (e.g., optimal prey choice), they are perhaps best

illustrated by the situation that a gambler faces at a row of slot

machines in Las Vegas, giving them their name: ‘‘multi-armed

bandit’’ (MAB) problems [1]. When played, each machine yields a

random reward from a distribution unique to the machine. The

gambler has only partial, if any, knowledge about the properties of

the machines at the outset, yet she/he may become better

informed as time passes. Given a fixed budget and time, the

gambler’s task is to decide which machines to play and how many

times to play each machine so that she/he can maximize the total

reward earned over a sequence of plays [2]. As illustrated above,

the core of the MAB problem lies in the trade-off between

exploiting the option that has yielded the largest cumulative payoff

so far and exploring the other options to acquire more information

about their expected payoffs. The decision maker must strike an

optimal balance between the two opposing actions to maximize

the overall profit.

Given the ubiquity of the exploration-exploitation dilemma, the

MAB problem has attracted attention across many disciplines,

including operations research [3], information science [4],

statistics [5,6], economics [7], biology [8], and psychology [9].

Most previous research has focused on identifying optimal or

approximate strategies for individual learners to solve this dilemma

[2,10–12] and comparing actual human performance with such

normative strategies in the context of individual reinforcement

learning [13,14].

Interestingly, however, natural MAB problems are often solved

collectively by a group of agents. For example, eusocial insects

such as ants and honeybees often show excellent performance in

foraging – being able to locate and exploit the best of several

resource patches with different qualities [15–17]. Even though

these animals are limited in terms of learning ability and explore

only one or two sites individually, they seem to solve the

exploration-exploitation dilemma collectively by evolved coordi-

nation mechanisms that function at the colony level [18,19]. Such

collective intelligence might also be expected from humans (as in

the ‘‘wisdom of crowds’’ [20–23], but see [24]), especially given the
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availability of modern information technologies. Yet, in contrast to

eusocial insects whose reproductive success is dependent on the

success of their colony, human collective performance may suffer

from free-rider problems [25,26]. In groups involving non-kin

members, free-riders who let others explore for better alternatives

while exploiting their findings through social learning (‘‘informa-

tion scroungers’’) are expected to appear frequently [27,28], and

may consequently undermine the benefits of collective intelligence

[29–34]. In other words, for humans and other non-eusocial

species, the exploration-exploitation dilemma exists not only at the

within-individual level, but also at the between-individual level as a

public-goods game [25,35]. So how do humans solve the MAB

problem in face of such dual dilemmas?

We address this question using a laboratory experiment. In the

modern human environment, it is often argued that the MAB

problem may be solved collectively by mass information-sharing

systems [36]. For instance, with the growth of online shopping sites

like Amazon or review sites like Yelp, consumers can learn how

other consumers have evaluated products (e.g., Amazon’s 5-star

rating system), as well as how many others have purchased those

products. Do such information-sharing systems in fact help us

solve the MAB problem? And, if so, how do the two types of social

information (frequency information in conjunction with evaluation

information) affect our decisions?

Although several previous studies have demonstrated that

consumer choices are actually influenced by social information

on the Internet [37,38] and in the MAB task [39–41], they did not

directly assess how social information could improve the objective

qualities of people’s choice behaviors above and beyond individual

choices. We thus implemented a test-bed for the MAB problem in

the laboratory.

In the current experiment, a group of 5 participants worked on

a 30-armed bandit problem (see Figure 1; also see Figure S1 and

Figure S2 for details). Participants worked on the MAB task for a

total of 100 rounds (though the number of rounds was not

specified in advance). In each round, participants chose one of the

30 alternatives individually, receiving associated payoffs as

personal rewards. For each chosen option, payoffs were randomly

generated from a stationary uniform probability distribution. To

simulate foraging environments in which patch quality is

negatively correlated with frequency (i.e., high quality patches

are rare), one of the 30 options was made to have the highest mean

(the ‘‘category 6’’ option), followed by two ‘‘category 5’’, three

‘‘category 4’’, five ‘‘category 3’’, eight ‘‘category 2’’, and eleven

‘‘category 1’’ options (see Methods section for details about these

categories). In addition to their own private payoff-feedback,

participants could observe information about other members’

choice behaviors from the preceding round. Within the group

condition, we created two sub-conditions in which the richness of

the social information was varied: (A) the ‘‘frequency only’’ sub-

condition where individuals were informed of how many members

had chosen each of the 30 alternatives in the preceding round; and

(B) the ‘‘frequency plus evaluation’’ sub-condition where partic-

ipants could rate their chosen option in each round on a 5-point

scale (see Figure 1B) and could learn averages of those ratings for

each option in addition to the social-frequency information.

Rating the chosen option was entirely optional, and participants

could skip the evaluation and proceed to the next round (see

Methods section for details). As a baseline, we also ran an

individual condition where participants worked on the MAB task

alone without any social information. Our focus is thus on how the

availability of social information may affect human collective

performance on the MAB task in the face of within- and between-

individual exploration-exploitation dilemmas.

Results

In the following, we first examine whether participants benefited

from social information to yield ‘‘collective intelligence’’ at the

group level. We then examine how the richness of social

information affected collective performance by comparing the

frequency-only and the frequency-plus-evaluation sub-conditions.

Group versus individual performance
Figure 2A shows box-plots of participants’ cumulative scores

over 100 rounds in the individual and group conditions.

Participants’ choices in each round were assigned scores ranging

from 1 (choosing one of the 11 lowest-quality options) to 6

(choosing the single highest-quality option). Because participants in

the group condition were nested in the same 5-person groups, we

used a hierarchical linear model to analyze their individual

performances (see Methods section for details). On average,

participants achieved higher scores in the group condition

(M=397.3) than in the individual condition (M=321.7), DD
(difference between model deviances) = 19.50, p=1.0 * 1025.

Figure 2B shows frequency distributions of how often partici-

pants engaged in exploratory choices out of the 100 rounds in the

individual and group conditions. Here, exploration was defined as

a choice in which a participant selected options other than the

‘‘greedy’’ option [10] that had yielded the largest cumulative

payoff so far in her/his own experience (see Methods section for

details). We estimated per-individual exploration probability by a

hierarchical Bayesian logit model with the Markov Chain Monte

Carlo (MCMC) method (see equation S1 in the Supporting

Information). The 95% Bayesian credible interval of the fixed

effect for the conditions (individual vs. group) was [21.63, 20.27],

which indicates that participants engaged in significantly fewer

exploratory choices in the group condition than in the individual

condition (the full results are shown in Table S1). Together with

the results from Figure 2A, this implies that social information

about other members’ choices in the preceding round reduced

each participant’s total exploration time, helping her/him to

exploit better options for a longer time in the group condition than

in the individual condition. In other words, the within-individual

exploration-exploitation dilemma was more efficiently resolved in

the group condition than in the individual condition.

Interestingly, regarding the between-individual dilemma, the

exploratory costs essential for emergence of collective intelligence

(i.e., efficient collective exploitations of better options in the group

condition) were not borne equally by all group members. Figure 3

displays participants’ exploratory choices over the course of the

experiment separately for each group sub-condition. We classified

the experimental rounds (except for the 1st round where any

choices were counted as ‘‘exploration’’) into three blocks of 33

rounds each, and examined how often participants in the group

condition engaged in exploratory choices in each block. As the

figure shows, the frequency distributions changed over time,

approaching a more U-shaped pattern in the later blocks. This U-

shaped pattern, as well as the prevalence of explorations in groups,

was more evident in the frequency-plus-evaluation sub-condition

than in the frequency-only sub-condition (the 95% Bayesian

credible interval of the fixed effect for the sub-condition in

individual exploration probability was [0.07, 1.78]; see equation

S2 and Table S2 for details). The observed U-shaped pattern

implies that participants were divided largely between ‘‘informa-

tion producers’’ who engaged in exploratory choices most of the

time and information scroungers who free-rode on those efforts,

exploiting others’ findings through social learning [30-32]. Indeed,

consistent with results from a recent social-learning-strategies

Social Learning in a Group Multi-Armed Bandit (MAB) Problem
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tournament [42], participants who engaged in more exploratory

individual learning attained smaller net profits within each 5-

person group (r(140) =20.52, p=0.45 * 10211; see Figure S4).

Yet, it is noteworthy that, despite the emergence of information

scroungers, groups still benefited overall from exchanging social

information about each other’s behavioral choices in the MAB

task [32,42].

Frequency-only versus frequency-plus-evaluation sub-
conditions
Next we examine how enriched social information (i.e.,

evaluation information alongside frequency information) affected

the collective performance of participants in the MAB task. A

simple statistical intuition suggests that richer information (i.e.,

more predictors) should lead to better collective performance, as

instantiated in many websites posting updated customer reviews of

products in addition to sales volume or rank (e.g., Amazon or

Yelp). However, this intuition may not necessarily hold for the

group MAB situation. First, given the exploration-exploitation

dilemma operating at the between-individual level (see Figure 3),

some people may intentionally abuse the evaluation opportunity.

For instance, they may rate options randomly, or even evaluate

good options as ‘‘bad’’ in order to manipulate others into

exploring different options while they take advantage of their

own new findings. Second, if participants use the rating scale

differently from each other, the evaluation information could be a

statistically less reliable signal as compared to the frequency

information, which is free from such interpersonal scaling

differences. In short, the evaluation information may be suscep-

tible to strategic manipulations as well as individual biases in scale-

use.

Figure 1. Example displays of choice stage. Except for round 1, social information about all 5 group members’ choice behaviors in the
preceding round was made available to each participant. A: An example display in the frequency-only sub-condition. The number displayed in each
box (i.e., option) indicates how many members chose that option in the preceding round (round 1 in this example). B: An example display in the
frequency-plus-evaluation sub-condition. In addition to the social-frequency information (lower black numbers), participants were informed of
average evaluations (upper red numbers) that members had provided about their chosen options in the preceding round, on a 5-point scale that
ranged from 1 (very bad) to 5 (very good). Evaluating options was not mandatory, and a horizontal red bar indicated that no evaluation was
contributed about the option.
doi:10.1371/journal.pone.0095789.g001

Figure 2. Comparison between individual and group conditions. A: Participants’ scores in the individual and group conditions (N = 54 and
N=140, respectively). The y-axis refers to total scores of participants summed over 100 rounds, ranging from 100 (always choosing one of the 11
lowest-quality options) to 600 (always choosing the highest-quality option). The horizontal bars represent the median of each condition, while the
boxes represent 50% ranges, and the upper and lower whiskers represent the highest and lowest values respectively that are within 1.5 * IQR (the
inter-quartile range). B: Histograms of participants’ exploratory choices among the 100 rounds in the individual and group conditions (N = 54 and
N=140, respectively). The x-axis refers to the total number of ‘‘exploratory’’ choices (when a participant selected options other than the one that had
yielded the largest cumulative payoff in her/his own experience so far) out of 100 rounds. The y-axis refers to observed proportions of participants
with a given exploratory-choice frequency in each condition.
doi:10.1371/journal.pone.0095789.g002
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Figure 4A shows the trajectories of participants’ average scores

in the frequency-only and frequency-plus-evaluation sub-condi-

tions (as a comparison, the trajectory in the individual condition

was also displayed). For this analysis, we divided the 100 rounds

into 5 equal blocks. A 2 (Sub-conditions) 65 (Blocks) repeated-

measures Analysis of Variance (MANOVA) yielded a main effect

of blocks (F(4, 26) = 114, p=3.0 * 1026) and an interaction effect

(F(4, 26) = 2.53, p=0.0448), while a main effect of sub-conditions

was not significant (F(1, 26) = 2.67, p=0.11). As can be seen in

Figure 4A, performance generally improved over time, but the

improvement was smaller in the frequency-plus-evaluation sub-

condition than in the frequency-only sub-condition (see also

Figure S3 for trajectories of all participants’ performances). A post

hoc Shaffer’s multiple comparison test revealed that, in block 5,

the average score was significantly lower in the frequency-plus-

evaluation sub-condition (M=4.49) than in the frequency-only

sub-condition (M=5.10; F(1, 26) = 4.27, p=0.0488), which

suggests that, contrary to the aforementioned intuition, the

additional evaluation information may have had a detrimental

effect on participants’ performance in the group MAB task.

To shed some light on the potentially detrimental effects of the

evaluation information, we examined the relationship between the

total number of times group members chose to rate their payoffs

over the 100 rounds and the group’s overall mean score (see

Figure 4B). Figure 4B also displays each group’s total number of

exploratory choices over the 100 rounds. As can be seen, more

evaluation was associated with lower group score (r(14) =20.613,

p=0.0198), indicating that evaluation information may indeed

have had detrimental effects. Group score was also negatively

correlated with the total number of exploratory choices (r(14) =2

0.854, p=9.95 * 1025). A causal analysis using a hierarchical

Bayesian logit model with the MCMC method (see Methods

section) revealed that evaluations and exploratory choices had a

circular relation, whereby more evaluations led participants to

engage in more exploratory behaviors, which facilitated further

evaluations. This behavioral loop led participants in the frequency-

plus-evaluation sub-condition to engage in over-exploration and

fail to exploit better options for enough time (see Table S3 for

details of the MCMC results).

Fragility of evaluation information
As argued earlier, one possible reason for the detrimental effects

of the evaluation information was that it could be faked much

more easily than the frequency information. Figure 5 displays the

validities of each participant’s evaluation information in terms of

correlation coefficients between the participant’s ratings of options

on the 5-point scale and actual experienced outcomes. As can be

seen, 20 out of 70 participants in the frequency-plus-evaluation

sub-condition provided invalid evaluations of options (i.e.,

correlations between their ratings of options and actual experi-

enced payoffs were either non-significant or significantly negative).

Three of them even rated bad options as ‘‘good’’ and/or good

options as ‘‘bad’’, suggesting strategic manipulations of evaluation.

Finally, Figure 6A and 6B show overall validities of the two

types of social information. Although both types were positively

correlated with the objective option-qualities (frequency: r=0.45,

p=2.2 * 10216; evaluation: r=0.22. p=2.2 * 10216), the

correlation coefficient was significantly lower for the evaluation

than the frequency information (z=13.39, p=3.52 * 10241). The

lower validity of the evaluation information was caused by

individual differences in use of the rating scale (see Methods

section for details). Modal points that participants used most

frequently on the 5-point scale were different from each other

(F(69, 13) = 2.88, p=0.0378), as reflected in the broad 50% ranges

in Figure 6B.

Discussion

The ‘‘multi-armed bandit’’ (MAB) problem is a pervasive

adaptive task for humans as well as non-human animals. Eusocial

insects often show an impressive array of performances on the

MAB task through evolved coordinated mechanisms that function

at the group level. Different from their colonies, however, the

exploration-exploitation dilemma exists both within- and between-

individuals for human groups composed of non-kin. This study

Figure 3. Temporal changes in frequency distributions of exploratory choices in the group condition. Shown from top to bottom, the
first block (rounds 2–34), the second block (rounds 35–67) and the last block (rounds 68–100). The y-axis refers to observed frequencies of
participants with a given exploratory-choice frequency in each sub-condition (both N=70).
doi:10.1371/journal.pone.0095789.g003

Social Learning in a Group Multi-Armed Bandit (MAB) Problem
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thus focused on how a group of human agents may solve such dual

dilemmas collectively with the aid of social information about each

other’s behavior.

Results from the experiment showed that average choice

performance was substantially better in the group condition than

in the individual condition (see Figure 2A). Analysis of choice

behaviors suggest that on average, participants in the group

condition were able to shorten total exploration time and exploit

better options for a longer time by referring to each other’s past

behaviors (see Figure 2B). Interestingly, such exploratory costs

were not borne evenly by all members – some members behaved

as information scroungers [27,28,32] who free-rode on other

members’ exploratory efforts via social learning, harvested the

‘‘greedy’’ option [10] most of the time (see Figure 3) and earned

more profits than information producers within each group (see

Figure S4). However, opportunities to share social information

were still beneficial for producing collective intelligence, which

suggests that a group of human agents working on the MAB task

can deal with the within- and between-individual dilemmas

successfully, if not perfectly. In other words, social learning

opportunities can provide greater net benefits to individuals above

and beyond asocial learning, which is consistent with recent

arguments from evolutionary theories emphasizing individual-

fitness advantages of cultural learning [29,32–34,42–44].

For better performance in the MAB problem, it is important to

switch from the exploration phase to the exploitation phase at

some point and harvest from a reasonably good option, rather

than keep exploring for the very best option all the time. In this

sense, our study introduces an important dimension for the rapidly

growing literature on human collective intelligence. It has been

argued that social influence sometimes undermines collective

performance on simple estimation tasks [45]. For example, in a

recent study [24], each participant was first asked to make numeric

estimates about some factual questions (e.g., population density of

Switzerland, crime statistics), and then provided social information

about other participants’ estimates to reconsider her/his initial

responses. Compared to the initial estimates, estimates after the

social information were found to be less accurate, by which the

researchers concluded that even mild social influence could

undermine the wisdom of crowds effect. Although such demon-

strations are useful in illuminating the functions of social influence,

we conjecture that the experimental paradigm that focuses only on

accuracy may miss a critical aspect of natural decision-making –

cost-benefit trade-offs under a fixed time/energy budget. Given

that most natural decisions are made under time/energy

constraints, striking an optimal balance between the benefits of

accuracy and necessary cognitive/physical costs is essential to

Figure 4. Effects of adding social evaluation information. A: Trajectories of participants’ average scores. The scores of all 5 members of each
group were averaged to yield aggregated group performance scores in each block that could range from 1 (choosing the lowest-quality options) to 6
(choosing the highest-quality option). Thus, the unit of analysis was the group, with N= 14 in each sub-condition. Means of these group scores were
plotted for the 2 sub-conditions and 5 blocks in the figure. As a baseline, average scores of participants in the individual condition were also plotted
(N= 54). The error bars indicate 61 SEM. B: Scatter plots of collective scores against the total number of ratings contributed and the total number of
explorations in groups of the frequency-plus-evaluation sub-condition (N= 14). The x-axis refers to the total number of times group members chose
to rate their payoffs over the 100 rounds (minimum: 0, maximum: 500), and the y-axis refers to the group’s overall score (minimum: 100, maximum:
600). The size of circle represents the total number of exploratory choices in the group (minimum: 0, maximum: 500– see Fig. 2 for the definition of
exploration).
doi:10.1371/journal.pone.0095789.g004

Figure 5. Credibility of evaluation information. The plot shows
validities of each participant’s evaluation information in the frequency-
plus-evaluation sub-condition (N= 70). Each participant is represented
by a circle. The y-axis refers to the Pearson’s correlation coefficient
between a participant’s ratings of options on the 5-point scale and
actual earned payoffs. The size of each circle represents the total
number of ratings that the participant provided out of the 100 rounds.
To reduce overlap, the circles were jittered horizontally.
doi:10.1371/journal.pone.0095789.g005
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maximizing the overall profitability of choices. By extending the

MAB problem to a group context, this study has demonstrated

that the benefit of social information arises not only from

improving individual decision accuracies per se, but also from

enabling agents to save exploration costs collectively, even in the

face of the between-individual exploration-exploitation dilemma.

This study also examined how the richness of social information

may affect collective performance. Contrary to the statistical

intuition that more predictors should lead to better choices,

sharing evaluations of options in addition to their frequency of

choice had a detrimental effect on choice performance (see

Figure 4A and 4B). Even though frequency information and

evaluation information were both expected to be useful cues to

predicting objective option-qualities, participants performed worse

when both cues were combined than when only the frequency

information was available, similar to the ‘‘less-is-more’’ effect in

the judgment and decision making literature [46]. Our results

suggest that at least two factors were responsible for this decline.

First, nearly 30% of the participants seemed to try to manipulate

others toward exploration of new options by providing unreliable

evaluations (see Figure 5). Notice that for such manipulative

purposes, faking evaluation is much cheaper and easier than faking

the frequency information, which would require sacrificing the

benefits of one’s own behavioral choices. Second, participants used

the rating scale differently from each other, especially in which of

the 5 rating levels to use most frequently in evaluation. With such

idiosyncratic individual biases, the average of those ratings across

individuals could be misleading (see Figure 6A and 6B). In short,

the evaluation information seems to be susceptible to manipula-

tions and individual biases in scale-use, and thus more fragile than

the social frequency information.

Given these results, it is tempting to argue that websites such as

Amazon or Yelp that implement similar rating systems may also

suffer from these problems. However, users of these websites may

not have strong incentives to deceive others into exploring.

Furthermore, rather than the 5-star rating system implemented in

our study, many recent websites (the most famous being Facebook)

have adopted a ‘‘Like’’ button where only positive evaluations are

allowed. Interestingly, in the animal kingdom, most eusocial

insects use only positive signals to recruit other workers to valuable

resource patches (e.g., waggle dances by honeybees [15],

pheromone trails [47] or tandem-running by ants [17]), while

negative or mixed signals that can inform others of the ‘‘badness’’

of patches are rather rare. Given their impressive choice

performance as colonies, it seems important to examine how

these positive-negative differences in rating systems may affect

group dynamics under uncertainty. Comparing different species

from insect colonies to human societies and examining similarities

and differences in their computational algorithms will be helpful in

illuminating such questions [19,22,48,49]. In future research,

collaborations between biologists and social scientists on these

topics will be essential for a better understanding of the nature of

collective intelligence, which is much desired in our rapidly

connecting societies.

Materials and Methods

Ethics statements
This study was approved by the Institutional Review Board of

the Center for Experimental Research in Social Sciences at

Hokkaido University (No. H24-3). Written informed consent was

obtained from all participants before beginning the task.

Participants
One hundred and ninety-four undergraduates (42 females; age:

mean6 S.D. = 19.861.44) were randomly selected from a subject

pool at Hokkaido University in Japan to participate in the

experiment. After the experiment, participants received monetary

rewards based on their performance in the MAB task as

compensation for their participation (mean 6 S.D.

= 1175.76139.6 JPY).

Experimental procedure
For each experimental session, six to eight participants were

brought into the laboratory. Five were randomly assigned to the

group condition and the remaining participants were assigned to

the individual condition. Upon arrival, each participant was seated

in a separate semi-soundproof cubicle equipped with a computer

terminal, and received further instructions individually on a

computer screen. Participants remained strictly anonymous to

Figure 6. Validity of frequency and evaluation information in the frequency-plus-evaluation sub-condition. A: Relation between
option quality and choice frequency. The y-axis refers to the mean objective quality of options chosen by 1, 2, 3, 4, or 5 participants in each round. B:
Relation between option quality and choice evaluations. The y-axis refers to mean objective qualities of options rated on the 5-point scale ranging
from 1 (very bad) to 5 (very good). We merged all rounds of all 14 groups into one dataset, thus both graphs represent 5000 observations each. The
horizontal bars represent medians, while the boxes represent 50% ranges, and the vertical bars represent 1.5 * IQR (the inter-quartile range).
doi:10.1371/journal.pone.0095789.g006

Social Learning in a Group Multi-Armed Bandit (MAB) Problem
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each other throughout the experiment, and the monetary reward

was also paid individually after the experiment. The experimental

task software was constructed using z-Tree [50]. The entire session

lasted about 75 minutes.

The MAB task. The experimental task assigned to partici-

pants was a 30-armed bandit problem in which they had to choose

between 30 options that could yield different payoffs. Participants

worked on the MAB task for a total of 100 rounds, and each round

consisted of two stages: a choice stage followed by a feedback

stage. First, each participant was asked to choose from an array of

30 options (see Figure 1) by clicking their preferred option. Next,

participants were informed about their payoffs. Payoff amounts

depended on the quality of the option each participant chose. For

each chosen option, payoffs were randomly generated from a

stationary uniform probability distribution with an interval [min,

min +150] (where min is the option’s minimum payoff), rounded up

to the next integer. To simulate some foraging environments in

which qualities of patches are negatively correlated with their

frequency (i.e., high quality patches are rare), we varied the

profitability of the 30 options as follows. Eleven of the 30 options

were in the lowest-quality category (category 1) with min =0, eight

options in category 2 with min =15, five options in category 3 with

min =30, three options in category 4 with min =45, two options in

category 5 with min =60, and only one option was in the highest-

quality category (category 6) with min =75. The locations of these

options on the computer screen were fixed across 100 rounds and

were common for all participants in the same experimental

session, but were randomly re-shuffled across different experi-

mental sessions. At the outset of each session, participants were

told that (a) they would have multiple (unspecified) choice

opportunities in the experiment, (b) payoffs from their choices

would be randomly determined by some unknown probability

distribution unique to each option, and (c) those individual payoffs

would be summed, multiplied by 0.1, and rounded up to the

nearest ten Yen to determine their individual rewards after the

experiment (see Figure S1 and S2 for more details about the

program).

Thus, at the beginning, participants had no knowledge about

the properties of the options, the exact shapes of the payoff

distributions, and the total number of rounds. As time passed,

however, participants could learn about the task structure via the

feedback from their choice outcomes in each round.

Conditions. In addition to the private payoff-feedback,

participants in the group condition could learn other members’

choice behaviors in the preceding round. Two sub-conditions were

nested in the group condition. Half of the 28 groups were

randomly assigned to the ‘‘frequency only’’ sub-condition in

which, at the choice stage, each participant could learn how many

group members had chosen each option in the preceding round

(see Figure 1A). The remaining 14 groups were assigned to the

‘‘frequency plus evaluation’’ sub-condition where, in addition to

the abovementioned social-frequency information, participants

could learn the average ratings that participants had given to their

chosen options in the feedback stage (see Figure 1B). Rating the

chosen option at the feedback stage was entirely optional, and

participants could skip the evaluation and proceed to the next

round. Contributing or skipping evaluation had no monetary

impact. When all 5 members finished the feedback stage, they

proceeded to the next choice stage. As a control, we also

implemented an individual condition, in which 54 participants

worked on the 30-armed bandit problem alone, without any social

information.

Statistical Analysis
Comparing participants’ performance in the individual

and group conditions. We used the qualities (category 1–6) of

each option to score participants’ choice performance in the MAB

task. Because the difference in expected payoffs between any two

adjacent categories were held constant (15 points), the qualities of

options can be treated as an interval scale. We summed

participant’s choices over the 100 rounds, which yielded scores

that could range from 100 (always choosing one of the 11 lowest-

quality options) to 600 (always choosing the highest-quality

option). Because participants in the group condition were nested

in the same 5-person groups, we used a hierarchical linear model

with the individual vs. group condition as a fixed effect and group-

specific effect as a random effect to analyze their performance.

Comparing participants’ exploratory choice frequencies

between conditions. We used hierarchical Bayesian logit

models with the Markov Chain Monte Carlo (MCMC) method

to estimate per-individual exploration probability in the two

conditions (equation S1) and in the two sub-conditions (equation

S2) [51]. The individual vs. group condition, and the frequency-

only vs. frequency-plus-evaluation sub-condition were treated as

fixed effects, and individual- and group-specific effects were

treated as random effects. We then examined the 95% Bayesian

credible interval of a parameter (l1) for the condition (or sub-

condition) effect to see if the interval contained zero; if not, we

interpreted the effect as significant. The MCMC simulation was

conducted using the package rjags under R 3.0.3 and JAGS v 3.3.0

(further technical details are provided in the Supporting Informa-

tion).

Comparing participants’ performance in the frequency-

only and frequency-plus-evaluation sub-conditions. We

divided the 100 rounds into 5 blocks, and calculated each

participant’s average score in each block. Because the activities of

participants in the same group were correlated, we averaged all 5

members’ scores in each group to derive aggregate scores and

assure independence of samples. Therefore, the unit of analysis

was the group, with N=28. We applied a 2 (Sub-conditions)6 5

(Blocks) repeated-measures ANOVA (available in the package

‘‘anovakun v.4.3.3’’ under R 3.0.1) to this data set.

Causal analysis of the relation between evaluation and

exploration. We constructed two mixed logit models treating

both individual- or group-specific effects as random effects. One

model posits that an individual’s exploration probability at round

t+1 is influenced by the total number of ratings contributed in the

group at round t (evaluation effect model; equation S3). The other,

converse model assumes that probability of each member’s

contributing rating in the feedback stage at round t is influenced

by whether or not she/he engaged in exploration in the choice

stage at round t (exploration effect model; equation S4). We used

the hierarchical Bayesian method [51] to infer the parameters

using the package rjags under R 3.0.3 and JAGS v 3.3.0 (further

technical details of this analysis are provided in Supplementary

methods, Text S1). We used 95% credible intervals to determine

the significance of each parameter.

Analysis of individual differences in scale-use. We first

examined the modal point that each participant used in evaluation

(i.e., which point of the 5-point scale, from 1 to 5, was used most

frequently by each participant). We then applied a variance-ratio

test to see whether the modes were more variable between

participants belonging to the same group (as an index of individual

idiosyncratic biases in scale-use) than between-group means.

Supplementary data
The data is available in the Supporting Information, Data S1.
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Supporting Information

Figure S1 Time sequence in the frequency only sub-
condition. At the choice stage of each round, each participant

chose one of 30 green box icons, then continued to the feedback

stage where she/he learned how many points they earned in this

round. They continued to the next round’s choice stage by clicking

the ‘‘Next’’ button. Participants played 100 rounds in total,

although they were not informed of this ahead of time.

(TIF)

Figure S2 Time sequence in the frequency-plus-evalua-
tion sub-condition. At the feedback stage of each round,

participants were asked to decide whether or not to contribute an

evaluation of their chosen option. If yes, they were asked to rate

the option on a 5-point scale before proceeding to the next round’s

choice stage.

(TIF)

Figure S3 Trajectories of all participants’ choices,
shown separately for each group. The performances of all

5 participants in each group are displayed in separate curves in

each subplot. The y-axis refers to the objective quality (category) of

the chosen options. The left column shows choice trajectories in

the frequency-only sub-condition and the right column shows the

frequency-plus-evaluation sub-condition. The numbers on the

right indicate the rank of the group in terms of the average score of

its 5 members, within the respective sub-condition. As can be seen,

choices fluctuated more (i.e., were more exploratory) in the

frequency-plus-evaluation sub-condition than in the frequency-

only sub-condition, and more among lower ranked groups than

among higher ranked groups.

(TIF)

Figure S4 Relation between exploration frequency and
total score. The x-axis shows a participant’s rank within their 5-

person group in terms of exploration frequency. The y-axis refers

to the participant’s rank in terms of total score. The size of circle

represents the total number of participants having the indicated

rank combination.

(TIF)

Table S1 MCMC results of the exploration probability
model (equation S1).
(PDF)

Table S2 MCMC results of the exploration probability
model (equation S2).
(PDF)

Table S3 MCMC results of the causality between
exploration and evaluation.
(PDF)

Data S1

(CSV)

Text S1 Supporting methods.
(DOCX)

Acknowledgments

We thank Keigo Inukai for his advice on computer programming and data

analysis and Tom Wisdom for editing the manuscript.

Author Contributions

Conceived and designed the experiments: TK WT HK. Performed the

experiments: WT HK. Analyzed the data: WT HK. Wrote the paper: TK

WT.

References

1. Robins H (1952) Some aspects of the sequential design of experiments. Bull Am

Math Soc 58: 527–535.

2. Gittins J, Glazebook K, Weber R (2011) Multi-Armed Bandit Allocation Indices

2nd Edition. UK: John Wiley & Sons Ltd. 293 p.

3. Kathehakis MN, Robbins H (1995) Sequential choice from several populations.
Proc Natl Acad Sci USA 92: 8584–8585.

4. Tewari A, Bartlett PL (2008) Optimistic linear programming gives Logarithmic
regret for irreducible MDPs. In: Platt JC, Koller D, Singer Y, Roweis S, editors.

Advances in Neural Information Processing Systems 20. Cambridge: MIT Press.

5. Gittins JC (1979) Bandit processes and dynamic allocation indices. J Roy Stat

Soc B 41: 148–177.

6. Berry DA, Fristedt B (1985) Bandit Problems: Sequential Allocation of

Experiments. Netherlands: Springer. DOI: 10.1007/978-94-015-3711-7.

7. Brezzi M, Lai TL (2000) Incomplete learning endogenous data in dynamic

allocation. Econometrica 68: 1511–1516.

8. Keasar T, Rashkovich E, Cohen D, Shmida A (2002) Bees in two-armed bandit

situations: foraging choices and possible decision mechanisms. Behav Ecol 13:
757–765.

9. Anderson CM (2012) Ambiguity aversion in multi-armed bandit problems.
Theor Decis 72: 15–33.

10. Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction.

Cambridge: MIT press.

11. Tokic M, Palm G (2011) Value-difference based exploration: adaptive control

between epsilon-greedy and softmax. In: KI 2011: Advances in Artificial

Intelligence: 34th Annual German Conference on AI, Berlin, Germany, October
4–7, 2011, Proceedings. Heidelberg: Springer. 335–346.

12. Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multi-armed

bandit problem. Mach Learn 47: 235–256.

13. Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical

substrates for exploratory decisions in humans. Nature 441: 876–879.

14. Cohen JD, McClure SM, Yu AJ (2007) Should I stay or should I go? How the

human brain manages the trade-off between exploitation and exploration.
Philos T Roy Soc B 362: 933–942.

15. Seeley TD, Camazine S, Sneyd J (1991) Collective decision-making in honey
bees: how colonies choose among nectar sources. Behav Ecol Sociobiol 28: 277–

290.
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